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Abstract— In this paper, we study a model of network adap-
tation mechanism to control spreading processes over switch-
ing contact networks, called adaptive susceptible-infected-
susceptible model. The edges in the network model are ran-
domly removed or added depending on the risk of spread
through them. By analyzing the joint evolution of the spreading
dynamics “in the network” and the structural dynamics “of
the network”, we derive conditions on the adaptation law to
control the dynamics of the spread in the resulting switching
network. In contrast with the results in the literature, we allow
the initial topology of the network to be an arbitrary graph.
Furthermore, assuming there is a cost associated to switching
edges in the network, we propose an optimization framework
to find the cost-optimal network adaptation law, i.e., the cost-
optimal edge switching probabilities. Under certain conditions
on the switching costs, we show that the optimal adaptation
law can be found using convex optimization. We illustrate our
results with numerical simulations.

I. INTRODUCTION

Accurate prediction and effective control of spreading
dynamics over networks are relevant problems in epidemi-
ology and public health, computer malware, or security
of cyberphysical networks. Although we find many recent
advances in the field of network epidemiology [1], there
are still many open questions to transfer this knowledge to
realistic epidemiological situations. One fundamental result
in the mathematical analysis of spreading in networks is the
close connection between the eigenstructure of the contact
network and epidemic thresholds [2]–[4]. This result enabled
the authors in [5]–[8] to propose a convex optimization
framework to design the optimal distribution of pharmaceu-
tical resources to control disease spread. This framework is
specially adapted to static network structures in which the
pattern of interconnections does not change over time. As
we argue below, this may not be the case in many practical
situations.

Social distancing is one of the most important nonphar-
maceutical approaches to control disease spread over human
contact networks [9], [10]. Examples of social distancing
are, for instance, isolation of patients, school closures, and
avoidance of crowds. In spite of the obvious effect that such
behavior have on the dynamics of the spread, there is a lack
of studies about the role of social distancing in the spread of
diseases over human contact networks. One of the reasons is
that social distancing induces an adaptation of the network
structure that depends on the state of the infection. Although
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there are results in the literature about disease spreading over
time-varying networks (see, e.g., [11]–[13]), these works are
based on the assumption that the evolution of the network is
independent of the state of the individuals. In this paper, we
propose a tractable framework to analyze the co-evolution of
the state-dependent network structure and the dynamics of
the spreading process taking place on it.

Most of the available studies of spreading processes over
human networks with social distancing have been relying
on various unrealistic simplifying assumptions. The authors
in [14]–[17] propose epidemic thresholds under the so-
called mixing assumption; all the individuals in a network
interact randomly with each other. However, this assumption
is not satisfied in structured human populations. Although
the analysis in [18] does not rely on the mixing assumption,
it relies on the quantity called a reproduction number, whose
validity for disease spread over time-varying networks is not
yet fully established [19].

This paper analyzes, without the mixing assumption, the
dynamics of spreading processes taking place in switching
networks whose structure adapt to the state of the spread. The
disease spread is modeled by an extended version of the well-
known susceptible-infected-susceptible (SIS) model, which
is called the adaptive SIS model [16]. Without the mixing
assumption employed in [16], we derive conditions under
which the network adaptation is able to protect against the
spread of the disease. We furthermore use these conditions
to propose a cost-optimal adaptation policy to contain the
disease. This policy is based on the assumption that adapting
the network structure to the state of the disease has an
associated cost. The optimal policy can be then found by
solving an optimization program. Under certain conditions,
this optimization program can be effectively solved using
elements from convex optimization [20].

This paper is organized as follows. In Section II, we
introduce the adaptive SIS model studied in this paper.
In Section III, we analyze the exponential stability of the
infection-free equilibrium of the adaptive SIS models. Based
on our stability analysis, Sections IV and V study an cost-
optimal adaptation strategy for networks of homogeneous
and heterogeneous agents, respectively.

A. Mathematical Preliminaries

The probability of an event is denoted by P(·). The
expectation of a random variable is denoted by E[·]. We
let I denote the identity matrix and 1p the p-dimensional
vector whose entries are all one (we omit the dimension p
when it is obvious from the context). A real matrix A,
or a vector as its special case, is said to be nonnegative,
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denoted by A ≥ 0, if all the entries of A are nonnegative.
The notations A > 0, A ≤ 0 and A < 0 are understood in
the obvious manner. For another matrix B having the same
dimensions as A, the notation A≤ B implies A−B≤ 0. We
again understand A < B, A ≥ B, and A > B in the obvious
manner. The Kronecker product [21] of A and B is denoted
by A⊗B. Let A be a square matrix. The maximum real part
of the eigenvalues of A is denoted by η(A). We say that A is
Hurwitz stable if η(A)< 0. Also, we say that A is Metzler if
the off-diagonal entries of A are all non-negative. We say
that A is irreducible if no similarity transformation by a
permutation matrix makes A into a block upper triangular
matrix. For matrices A1, . . . , An, the direct sum

⊕n
i=1 Ai

is defined as the block diagonal matrix having the block
diagonals A1, . . . , An. When A1, . . . , An have the same
number of columns, we define col1≤i≤n Ai = col(A1, . . . ,An)
as the block matrix obtained by stacking the matrices A1,
. . . , An.

A directed graph is a pair G = (V ,E), where V is a finite
set of nodes, and E ⊆V×V is a set of directed edges. Unless
otherwise stated, we assume V = {1, . . . ,n}. A directed path
from i to j in G is an ordered set of nodes (i0, · · · , i`) such
that i0 = i, (ik, ik+1) ∈ E for k = 0, . . . , `−1, and i` = j. We
say that G is strongly connected if there exists a directed
path from i to j for all i, j ∈ V . The adjacency matrix of G
is defined as the n× n matrix A = [ai j]i, j such that ai j = 1
if (i, j) ∈ E and ai j = 0 otherwise. Similarly, an undirected
graph is a pair G = (V ,E), where V is a finite set and E is
a subset of unordered pairs {i, j} of the elements i, j ∈ V .
The adjacency matrix of an undirected graph is defined in a
similar manner. A graph is strongly connected if and only if
its adjacency matrix is irreducible.

Finally, we recall basic facts about a class of optimization
problems called geometric programs [20]. Let x1, . . . , xm
denote m real positive variables. We say that a real-valued
function f of x = (x1, . . . ,xm) is a monomial function if there
exist c > 0 and a1, . . . ,am ∈ R such that f (x) = cxa1

1 · · ·x
am
m .

Also, we say that f is a posynomial function if it is a sum
of monomial functions of x. Given posynomial functions f0,
. . . , fp and monomial functions g1, . . . , gq, the optimization
problem

minimize
x

f0(x)

subject to fi(x)≤ 1, i = 1, . . . , p,

g j(x) = 1, j = 1, . . . ,q,

is called a geometric program. It is known [20] that a geo-
metric program can be converted into a convex optimization
problem.

II. SUSCEPTIBLE-INFECTED-SUSCEPTIBLE MODEL
OVER ADAPTIVE NETWORKS

This section introduces the model of spreading processes
over adaptive networks studied in this paper and state the op-
timal design problem under consideration. Each node in the
network can be in one of two states: susceptible or infected.
The state of node i evolves over time and is represented by a

binary variable xi ∈ {0,1}. We say that node i is susceptible
at time t if xi(t) = 0, and is infected at time t if xi(t) = 1. In
this paper, we model the evolution of xi as a continuous-time
stochastic process taking values in {0,1}. We also assume
that the structure of the network in which the spreading
process is taking place evolves over time. In particular, we
model the network G as a continuous-time random graph
process taking values in the set of undirected graphs with n
nodes. In other words, we model the dynamics of spreading
as a stochastic process taking place over a random graph
process. We denote by Ni(t) the set of neighbors of node i
in the graph G(t), i.e., Ni(t) = { j ∈ V : {i, j} ∈ G(t)}, and
by A(t) = [ai j(t)]i, j the adjacency matrix of G(t).

The spreading models over adaptive networks studied in
this paper are formally introduced as the class of pairs
(x,G) = ({xi}n

i=1,G) satisfying the following definition:
Definition 2.1: Let G0 = (V ,E0) be an undirected graph

with adjacency matrix A0 = [ai j(0)]i, j. The pair (x,G) is said
to be an adaptive susceptible-infected-susceptible model over
G0 (ASIS model for short) if there exist nonnegative numbers
βi, δi, φi, and ψi j (i, j = 1, . . . ,n) such that the following
conditions hold:
a) G(0) = G0;
b) The process (x,G) is Markov;
c) For every i, the transition probabilities of xi are given by

P(xi(t +h) = 1 | xi(t) = 0) = βi ∑
k∈Ni(t)

xk(t)h+o(h), (1)

P(xi(t +h) = 0 | xi(t) = 1) = δi h+o(h), (2)

where o(h) is a function such that limh→0 o(h)/h = 0.
d) For all i, j, the transition probabilities of ai j are given by

P(ai j(t +h)=0 |ai j(t)=1) = (φixi(t)+φjxj(t))h+o(h), (3)
P(ai j(t +h)=1 |ai j(t)=0) = ai j(0)ψi jh+o(h). (4)

e) ψi j = ψ ji for all i and j.
The constants βi, δi, φi, and ψi j are respectively called
infection, recovery, cutting, and rewiring rates.

We can interpret the above model as follows. Item b)
indicates that the future evolution of the spread, given the
present state, does not depend on the past. The probabilities
in c) describe how nodal states evolve. Notice that, if G(t)
were a static network, these probabilities would coincide
with those of the NIMFA model [4] with heterogeneous
infection and recovery rates. Eqn. (1) indicates that, if node i
is susceptible and its neighbor j is infected, then i becomes
infected with the instantaneous infection rate βi. Moreover,
the rate is proportional to the number of infected neighbors.
Eqn. (2) implies that, once node i becomes infected, it will
become susceptible with an instantaneous recovery rate δi.

Item d) describes an adaptation mechanism of the net-
work to the state of the disease. Eqn. (3) indicates that,
whenever a node i is infected, the node adaptively removes
edges connecting the node and its neighbors according to a
Poisson process with rate φi. This mechanism is designed
to contain the spread through edges connected to infected
nodes. Moreover, (4) describes a mechanism for which ‘cut’
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Fig. 1: Adaptively switching network.

edges are ‘rewired’ or added back to the network. We assume
that edge {i, j} is added to the network with a rewiring
rate ψi j. See Fig. 1 for a schematic picture of these transition
probabilities. Finally, Item e) follows from the assumption
that G(t) is undirected, although this is not an essential
restriction and could be relaxed to account for directed
contact networks. Also, notice that we have included the
term ai j(0) in (4) to guarantee that only those edges that
were present at the initial time t = 0 can be added later on
by the rewiring process.

Remark 2.2: A model similar to the ASIS model proposed
in this paper was studied in [16], where it was assumed that
the initial graph G0 is the complete graph. A major difference
between our model and the one in [16] is the information
available to each node. In the model in [16], it is assumed
that nodes know the states of their neighbors. In contrast,
we do not assume to have access to this knowledge in our
model. This difference has a direct implication in the link-
breaking process. For example, in [16], an infected node does
not break the edge between itself and its infected neighbors.
On the other hand, in our model, an infected node will break
edges independent of the state of its neighbors.

Once the adaptive network under consideration is de-
scribed, we define the exponential stability of the infection-
free equilibrium pi(t) = 0 of ASIS models, as follows:

Definition 2.3: For t ≥ 0 let pi(t) = P(xi(t) = 1) be the
infection probability of node i. We say that the infection-
free equilibrium pi(t) ≡ 0 of the adaptive SIS model (x,G)
is exponentially stable if there exist K ≥ 0 and α > 0 such
that pi(t)≤Ke−αt for all i, t, and xi(0). We call α the decay
rate.

In many practical situations, there is a cost associated to
the mechanisms of cutting and rewiring edges in a network.
Accordingly, we assume we have two scalar cost functions f
and g, defined on [0,∞), describing the cost associated to the
rates of cutting and rewiring edges, respectively. The main
purpose of this paper is to find the cost-optimal switching
strategy, defined by the values of the cutting and rewiring
rates, to drive the state of the spread towards the disease-
free equilibrium at a given exponential rate. The total cost
of a switching strategy is given by:

C =
n

∑
i=1

f (φi)+ ∑
{i, j}∈E0

g(ψi j).

We also assume the following bounds on the rates:

¯
φ ≤ φi ≤ φ̄ ,

¯
ψ ≤ ψi j ≤ ψ̄ (5)

for some nonnegative numbers
¯
φ , φ̄ ,

¯
ψ , and ψ̄ . Now, we are

ready to state the problem investigated in this paper.1

Problem 2.4: Given α > 0, find the cutting and rewiring
rates φi and ψi j satisfying (5) such that the adaptive SIS
model is exponentially stable with decay rate α and the total
cost C is minimized.

In this paper we solve Problem 2.4 under the following
reasonable assumption:

Assumption 2.5: G0 is strongly connected. Moreover, βi >
0, δi > 0, and ψi j > 0 for all {i, j} ∈ E0.

III. STABILITY ANALYSIS

In this section, we perform a stability analysis of the ASIS
model (x,G) over G0. We begin by representing the model
as a set of stochastic differential equations with Poisson
counters. For γ ≥ 0, we let Nγ denote a Poisson counter
with rate γ . We assume that all Poisson counters appearing
in this paper are stochastically independent. We will use
superscripts for the Poisson counters to distinguish those that
has the same rates but are independent. Then, from (1) and
(2), the evolution of the nodal states can be described as:

dxi =−xi dNδi +(1− xi) ∑
k∈Ni(0)

aikxk dN(k)
βi

. (6)

Similarly, from (3) and (4), the evolution of the edges can
be written as:

dai j =−ai j(xi dN( j)
φi

+ xj dN(i)
φj
)+(1−ai j)dNψi j , (7)

for all i and j such that {i, j} ∈ E0.
Using the stochastic differential equations (6) and (7), we

derive an upper bounding linear model for the infection prob-
abilities pi. To state the linear model, we define the following
variables. Let us define p(t) ∈ Rn by p = col1≤i≤n pi. Also,
for i = 1, . . . ,n and j ∈ Ni(0), define qi j(t) = E[ai j(t)xi(t)]
and let qi = col j∈Ni(0) qi j and q = col1≤i≤n qi. Let di denote
the degree of node i in the initial graph G0 and m the
number of the edges in G0. Then, q has the dimension
∑

N
i=1 di = 2m. We also introduce the following matrices.

Define Ti ∈ R1×(2m) as the unique matrix satisfying:

Tiq = ∑
k∈Ni(0)

qki. (8)

Then define the matrices B1 = col1≤i≤n(βiTi),
B2 = col1≤i≤n(βi1di ⊗ Ti), D1 =

⊕n
i=1 δi, D2 =

⊕n
i=1(δiIdi),

Φ =
⊕n

i=1(φiIdi), Ψ1 =
⊕n

i=1 col j∈Ni(0) ψi j,
Ψ2 =

⊕n
i=1
⊕

j∈Ni(0) ψi j. Now, we can state the following
theorem:

Theorem 3.1: Define M ∈ R(n+2m)×(n+2m) by

M =

[
−D1 B1
Ψ1 B2−D2−Φ−Ψ2

]
. (9)

Then, for all x1(0), . . . , xn(0), it holds that

d
dt

[
p
q

]
≤M

[
p
q

]
. (10)

1Since the design of infection and recovery rates have been previously
studied in [5]–[8], we focus our attention on the design of φi and ψi j only
(although our framework can be easily extended to include βi and δi as
additional design variables).



Proof: Taking the expectations in (6) yields that

d
dt

E[xi] =−δiE[xi]+βi ∑
k∈Ni(0)

E[(1− xi)aikxk].

Since E[(1− xi)aikxk] ≤ E[aikxk] = qki, from the definition
of Ti in (8), we obtain d pi/dt ≤−δi pi +βiTiq. This implies
that d p/dt ≤−D1 p+B1q, which proves the upper half block
of the inequality (10).

Then, let us evaluate dq/dt. The Itô rule for jump pro-
cesses [22] yields that

d(ai jxi) =−ai jxi dN( j)
φi
−ai jxixj dN(i)

φj
+(1−ai j)xi dNψi j

−ai jxi dNδi +ai j(1− xi) ∑
k∈Ni(0)

aikxk dN(k)
βi

.

Taking expectations in this equation, we obtain

dqi j

dt
=−φiE[ai jxi]−φjE[ai jxixj]+

ψi jE[(1−ai j)xi]−δiqi j +βi ∑
k∈Ni(0)

E[ai j(1− xi)aikxk].
(11)

Since ∑k∈Ni(0) E[ai j(1− xi)aikxk] ≤ ∑k∈Ni(0) E[aikxk] = Tiq,
we obtain dqi j/dt ≤ψi j pi−(φi+ψi j +δi)qi j +βi1>di

Tiq from
(11). Stacking the variables qi j for all j ∈ Ni(0) yields
dqi/dt ≤ col j∈Ni(0)(ψi j pi)−(φi+δi)qi−ψ jqi+βi(1di⊗Ti)q,
where ψ j =

⊕
j∈Ni(0) ψ ji. This proves the lower half block

of the inequality (10) and completes the proof.
From Theorem 3.1 we immediately have the following

sufficient condition for exponential stability of the infection-
free equilibrium.

Theorem 3.2: If M is Hurwitz stable, then the infection-
free equilibrium of the adaptive SIS model is exponentially
stable with a decay rate −η(M).

Before closing this section, we prove the following propo-
sition that plays an important role in the rest of the paper.

Proposition 3.3: The matrix M is irreducible.
Proof: Define

L =

[
O T
J S

]
,

where

J =
n⊕

i=1

1di , T = col
1≤i≤n

Ti, S = col
1≤i≤n

(1di ⊗Ti). (12)

Since βi and ψi j are positive by Assumption 2.5, if Mi j = 0,
then Li j = 0 for all distinct i and j. From this we see that,
to show the irreducibility of M, it is sufficient to show that
L is irreducible.

In order to show that L is irreducible, we shall show
that the directed graph H, defined as the graph having
adjacency matrix L, is strongly connected. We identify the
nodes 1, . . . ,n+ 2m of H using the variables p1, . . . , pn,
q1 j ( j ∈ N1(0)), . . . , qn j ( j ∈ Nn(0)). Then, the upper-
right block T of the matrix L shows that the graph H has
directed edge (pi,q ji) for all i = 1, . . . ,n and j ∈ Ni(0).
Similarly, from the matrices J and S, we see that H has
the edges (qi j, pi) and (qi j,qki) for all i = 1, . . . ,n and

j,k ∈ Ni(0). Then, let us show that H has a directed path
from pi to p j for all i, j ∈ {1, . . . ,n}. Since G0 is strongly
connected, it has a path (i0, . . . , i`) such that i0 = i and
i` = j. Therefore, from the above fact, we can see that
H contains the directed path (pi,qi1,i0 ,qi2,i1 , . . . ,qi`,i`−1 , p j).
In the same way, we can show that H also contains the
directed path (pi,q ji,qi j, pi) for every {i, j} ∈ E0. These two
observations show that H is strongly connected and, hence,
L is irreducible.

IV. HOMOGENEOUS CASE

Based on the stability analysis presented in the previous
section, we study the optimal design problem stated in
Problem 2.4. We start our analysis by assuming that the ASIS
model is homogeneous, as defined below (this restriction is
relaxed in the next section):

Definition 4.1: We say that the adaptive SIS model is
homogeneous if there exist nonnegative constants β , δ , φ ,
and ψ such that βi = β , δi = δ , φi = φ , and ψi j = ψ for all
i and j.

In the homogeneous case, the stability criterion in Theo-
rem 3.2 reduces to the next simple condition.

Theorem 4.2: Assume that the adaptive SIS model is
homogeneous. Let ρ = η(A0). Then, the infection-free equi-
librium of the adaptive SIS model is exponentially stable if

δ >
βρ−φ −ψ

2
+

√
(βρ +φ +ψ)2−4βρφ

2
. (13)

Proof: Assume that the model is homogeneous. Then,
the matrix M defined in (9) takes the form

M =

[
−δ I βT
ψJ βS− (δ +φ +ψ)I

]
,

where the matrices J, T , and S are defined by (12). We prove
the theorem under the assumption that βρ 6= φ . Since G0
is strongly connected by Assumption 2.5, A0 is irreducible
and therefore has a positive eigenvector v corresponding
to the eigenvalue ρ (see [23]). Define the positive vec-
tor w = col1≤i≤n(vi1di). Then, the definition of Ti shows
Tiw = ∑k∈Ni(0) wki = ∑k∈Ni(0) vk = (Av)i = ρvi and therefore
Tw = λv. In the same manner, we can show Sw = ρw. Since
we have Jv = w, for a nonnegative number c it follows that

M
[

cv
w

]
=

[
(βρ− cδ )v

(cψ +βρ− (δ +φ +ψ))w

]
. (14)

Hence, if a real number λ satisfies the following equations:

βρ− cδ = cλ , cψ +βρ− (δ +φ +ψ) = λ , (15)

then, by (14), we see that the nonnegative vector col(cv,w)
is an eigenvector of the irreducible and Metzler matrix M
corresponding to the eigenvalue λ . This implies that η(M) =
λ (see [23, Theorem 17]). Therefore, the condition λ < 0 is
sufficient for exponential stability of the adaptive SIS model
by Theorem 3.2.

To find such λ , we solve (15) with respect to λ and obtain
λ 2 +(2δ +φ +ψ−βρ)λ +δ (δ +φ +ψ)−βρ(δ +ψ) = 0.



This equation is satisfied by λ = λ+, where

λ+ =
βρ−2δ −φ −ψ +

√
(βρ +φ +ψ)2−4βρφ

2
.

Then, the pair (c,λ ) = (βρ/(λ+ + δ ),λ+) satisfies (15).
We remark that λ+ + δ is positive because of the initial
assumption βρ 6= φ . Therefore, c ≥ 0 and hence the above
argument shows that

η(M) = λ+. (16)

Therefore, by Theorem 3.2, the infection-free equilibrium of
the adaptive SIS model is exponentially stable if λ+ < 0,
which is equivalent to (13).

Remark 4.3: In the special case when the network does
not adapt to the prevalence of infection, i.e., when φ = 0,
Proposition 4.2 recovers the well-known stability condition
δ > βρ(A0) for the SIS models over static networks [2], [4].

The following theorem provides a solution to Problem 2.4,
in the homogeneous case:

Theorem 4.4: Assume that the adaptive SIS model is ho-
mogeneous. Let φ and ψ be the solutions of the optimization
problem:

minimize
φ ,ψ

n f (φ)+mg(ψ)

subject to φ ≥ (βη−δ +1)(ψ/(δ −α)+1) , (17)

¯
φ ≤ φ ≤ φ̄ ,

¯
ψ ≤ ψ ≤ ψ̄.

Then, the pair (φ ,ψ) gives the solution of Problem 2.4.
Proof: It is sufficient to show that η(M)≤−α if and

only if the (17) holds, but this easily follows from (16).

V. HETEROGENEOUS CASE

In this section, we extend our analysis to non-
homogeneous adaptive SIS models. We will show that
Problem 2.4 can be effectively solved under the following
assumption.

Assumption 5.1:
1) The values of ψi j are given for every {i, j} ∈ E0;
2) There exist constants r > φ̄ and s such that the func-

tion F : [r− φ̄ ,r−
¯
φ ]→R : x 7→ s+ f (r−x) is a posyn-

omial function.
In order to state the main result of this section, we will

need the next proposition.
Proposition 5.2: Let δ̄ = maxi δi and define δ̃i = δ̄ − δi.

Similarly, let ψ̄ = maxi, j ψi j and define ψ̃i j = ψ̄ − ψi j.
Let φ̃1, . . . , φ̃n be real numbers. Define the matrices
D̃1 =

⊕n
i=1 δ̃i, D̃2 =

⊕n
i=1(δ̃iIdi), Φ̃ =

⊕n
i=1(φ̃iIdi), and

Ψ̃2 =
⊕n

i=1
⊕

j∈Ni(0) ψ̃i j. Define the nonnegative matrix

M̃ =

[
D̃1 + ψ̄I + rI B1

Ψ1 B2 + D̃2 + Φ̃+ Ψ̃2

]
.

Then, for a given α > 0, the following statements are
equivalent:
• There exist φ1, . . . ,φn ∈ [

¯
φ , φ̄ ] such that η(M)≤−α .

• There exist φ̃1, . . . , φ̃n ∈ [r− φ̄ ,r−
¯
φ ] such that η(M̃)+

α ≤ ψ0 + δ̄ + r.

Moreover, between {φi}n
i=1 and {φ̃i}n

i=1, there is a one-to-one
correspondence given by the equation

φi = r− φ̃i. (18)

Proof: Assume that there exist φ1, . . . ,φn ∈ [
¯
φ , φ̄ ] sat-

isfying η(M) ≤ −α . Define φ̃i by (18). Then we see that
M̃ = M+(δ̄ + r+ ψ̄)I. This implies η(M̃)+α ≤ δ̄ + r+ ψ̄ .
We also have φ̃i ∈ [r− φ̄ ,r−

¯
φ ]. The other direction can be

shown in the same way and, hence, its proof is omitted.
Using Proposition 5.2, we can reduce Problem 2.4 to a

geometric program under Assumption 5.1, as stated in the
following theorem:

Theorem 5.3: Let φ̃1, . . . , φ̃n be the solutions to the
following geometric program:

minimize
φ̃i,v

n

∑
i=1

F(φ̃i) (19a)

subject to
(
M̃+αI

)
v≤

(
δ̄ + r+ ψ̄

)
v, (19b)

v > 0, (19c)

r− φ̄ ≤ φ̃i ≤ r−
¯
φ . (19d)

Then, {φi}n
i=1, defined in (18) solve Problem 2.4.

Proof: By Proposition 5.2, Problem 2.4 is equivalent
to the optimization problem

minimize
φ̃i

n

∑
i=1

f (r− φ̃i)

subject to η(M̃+αI)≤ δ̄ + r+ ψ̄, (20)

r− φ̄ ≤ φ̃i ≤ r−
¯
φ ,

after the change of variables (18). Minimizing the objective
function in this problem is equivalent to minimizing the one
in (19) by the definition of F , whose constant term s can be
ignored in the optimization. Then, since M̃+αI is irreducible
by Proposition 3.3, we can replace the constraint (20) into
(19b) and (19c) in the same way as in [8] using Perron-
Frobenius lemma. Also, by a similar argument as in [8], we
can show that (19) is a geometric program. This is because
F is a posynomial and each entry of the matrix M̃ +αI is
a posynomial in the variables φ̃1, . . . , φ̃n. The details are
omitted.

Remark 5.4: When ψi j are also design variables, the
above argument reduces Problem 2.4 to a signomial program,
which are (in general) hard to solve [20].

VI. NUMERICAL RESULTS

We illustrate our results with a numerical example. Let G0
be the graph of a social network of n = 247 nodes and m =
940 edges. The adjacency matrix of the graph has spectral
radius ρ = 13.53. We assume that all nodes have identical
recovery rate δ = 0.1 and infection rate β = δ/(1.1ρ) =
6.720× 10−3. Since δ/β = (1.1)ρ > ρ , Theorem 4.2 does
not guarantee the stability of the infection-free equilibrium
when φ = 0, i.e., when the network does not adapt.

Let us design the cost-optimal cutting rates so that the
spread stabilizes towards the disease-free equilibrium in the
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Fig. 2: Cost-optimal cutting rates for stabilization

adaptive network. We assume
¯
φ = 0, φ̄ = 4β , and ψi j = β and

use the following cost function in our numerical simulations:

f (x) =
(r− x)−1− (r−

¯
φ)−1

(r− φ̄)−1− (r−
¯
φ)−1 .

We have chosen this function since it is increasing and
presents diminishing returns. Also, we have normalized it,
so that f (

¯
φ) = 0 and f (φ̄) = 1, and fixed r = 2φ̄ . Let the

desired exponential decay rate be α = 0.005 and solve the
geometric program in Theorem 4.4 to obtain the optimal
cutting rates φi. Fig. 2 shows a scatter plot for the optimal
rates, φi, versus the degrees of the nodes for all i ∈ V . The
resulting switching policy suggests that, in general, nodes
with a larger degree should have higher cutting rates (as
could be naturally expected). However, the relationship be-
tween the optimal cutting rates and the degrees is not trivial.
Alternatively, we have also studied the relationship between
cutting rates and other network centrality measures and K-
scores (though we omit these figures for space limitations).
Our simulations do not show any trivial dependency between
cutting rates and any of the measures considered.

VII. CONCLUSION

In this paper, we have studied the dynamics of spreading
processes taking place in networks that adapt their structure
depending on the state of the dynamics. Our model is
based on a collection of stochastic differential equations
with Poisson jumps that model the joint evolution of the
states of the process taking place in the network, as well
as the evolution of the network structure. To illustrate our
framework, we have focused our attention in a popular model
of spreading dynamics, the SIS model, and study it dynamics
over adaptive, switched networks. For this particular model,
we have derived conditions for the dynamics of the spread
to converge towards the disease-free equilibrium. Using this
stability result, we have then formulated an optimization
program to find the cost-optimal adaptive strategy to achieve
stability. We have also showed that this optimization program
can be efficiently solved using geometric programming. A
numerical example was included to illustrate our results. An
interesting future work is to fully investigate the difference

of information structures in our model and the one in [16]
addressed in Remark 2.2.

REFERENCES

[1] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespig-
nani, “Epidemic processes in complex networks,” Reviews of Modern
Physics, vol. 87, pp. 925–979, 2015.

[2] A. Lajmanovich and J. A. Yorke, “A deterministic model for gonorrhea
in a nonhomogeneous population,” Mathematical Biosciences, vol. 28,
pp. 221–236, 1976.

[3] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos,
“Epidemic thresholds in real networks,” ACM Transactions on Infor-
mation and System Security, vol. 10, 2008.

[4] P. Van Mieghem, J. Omic, and R. Kooij, “Virus spread in networks,”
IEEE/ACM Transactions on Networking, vol. 17, pp. 1–14, 2009.

[5] V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, and G. Pappas,
“Optimal vaccine allocation to control epidemic outbreaks in arbitrary
networks,” in 52nd IEEE Conference on Decision and Control, 2013,
pp. 7486–7491.

[6] V. M. Preciado, F. D. Sahneh, and C. Scoglio, “A convex framework
for optimal investment on disease awareness in social networks,” in
2013 IEEE Global Conference on Signal and Information Processing,
2013, pp. 851–854.

[7] V. M. Preciado and M. Zargham, “Traffic optimization to control
epidemic outbreaks in metapopulation models,” in 2013 IEEE Global
Conference on Signal and Information Processing, 2013, pp. 847–850.

[8] V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, and G. J.
Pappas, “Optimal resource allocation for network protection against
spreading processes,” IEEE Transactions on Control of Network Sys-
tems, vol. 1, pp. 99–108, 2014.

[9] D. Bell, A. Nicoll, K. Fukuda, P. Horby, A. Monto, F. Hayden,
C. Wylks, L. Sanders, and J. Van Tam, “Nonpharmaceutical inter-
ventions for pandemic influenza, national and community measures,”
Emerging Infectious Diseases, vol. 12, pp. 88–94, 2006.
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