Abstract:
Nonlinear Model Predictive Control is used to solve a multi-objective optimal control problem that minimizes degradation while ensuring desired closed loop performance of...Show MoreMetadata
Abstract:
Nonlinear Model Predictive Control is used to solve a multi-objective optimal control problem that minimizes degradation while ensuring desired closed loop performance of Permanent Magnet Synchronous Motors used for traction in Electric and Hybrid Electric Vehicles. Unlike industrial motors subjected to constant load demands, motors in electric vehicles have to cater dynamic torque and speed demands depending on the drive cycle. Therefore, it is important to have a control technique which will assure minimum degradation of the motor, while delivering the output similar to or better than conventional controllers. The control scheme is tested for extreme transient conditions that would occur in the practical scenario as well as for standard drive cycles. Performance comparison with the state of the art control scheme reveals that the nonlinear model predictive control scheme results in substantially lower degradation. It effectives saves the motor lifetime by 7.6% for NEDC and 15.7% for ARTEMIS drive cycles.
Published in: 2015 54th IEEE Conference on Decision and Control (CDC)
Date of Conference: 15-18 December 2015
Date Added to IEEE Xplore: 11 February 2016
ISBN Information: