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Abstract—In this paper, we address a key issue of de-
signing architectures and algorithms which generate op-
timal demand response in a decentralized manner for a
smart-grid consisting of several stochastic renewables and
dynamic loads. By optimal demand response, we refer to the
demand response which maximizes the utility of the agents
connected to the smart-grid. By decentralized we refer to
the desirable case where neither the independent system
operator (ISO) needs to know the dynamics/utilities of the
agents, nor do the agents need to have a knowledge of the
dynamics/utilities of other agents connected to the grid. The
communication between the ISO and agents is restricted
to the ISO announcing a pricing policy and the agents
responding with their energy generation/consumption bids
in response to the pricing policy.

We provide a complete solution for both the deterministic
and stochastic cases. It features a price iteration scheme
that results in optimality of social welfare. We also provide
an optimal solution for the case where there is a common
randomness affecting and observed by all agents. This
solution can be computationally complex, and we pose
approximations. For the more general partially observed
randomness case, we exhibit a relaxation that significantly
reduces complexity. We also provide an approximation strat-
egy that leads to a model predictive control (MPC) approach.
Simulation results comparing the resulting optimal demand
response with the existing architectures employed by the
ISO illustrate the benefit in social welfare utility realized by
our scheme. To the best of the authors’ knowledge, this is
the first work of its kind to explicitly mark out the optimal
response of dynamic demand.

I. INTRODUCTION

Traditionally, given demand (or a demand forecast),

generation (or the planned generation) has been dis-

patched so as to balance demand in power systems. Since
there are many generators capable of producing power at

different cost curves, it is desirable to allocate the total
power generation among the generators so that the total

cost of generating the required power is minimized. This

role of determining which generators are selected, and
how much power they produce, has been played by the

Independent System Operator (ISO).

This economic dispatch of generators is done by so-

liciting production bids (power vs. price curves) from
each generator, and then, given the demand, choosing

the generators such that the overall cost to purchase

the power is minimized. Motivated by the problem of
integrating renewable power generation from sources

such as wind and solar [1], we consider the problem of

demand response, i.e., adjusting demand so that it can be

part of the flexibility to match the intermittent generation
[2]. The process of increasing or decreasing demand can

be accomplished by decreasing or increasing the price

of power. Thus the problem becomes one of choosing
the level of demand as well as allocating the required

generation among the various producers of power from
fossil fuel sources such as coal or gas.

An additional consideration is that both power genera-

tors as well as loads are dynamic systems. Generators, for
example, have ramping constraints as well as maximum

power constraints. Similarly, analysis of load data shows

that loads also have certain dynamic constraints [3].
Thus, all variables, including price as well as generator

power outputs as well as loads, are functions of time.
A third consideration is that renewable power pro-

duction is uncertain, which we model as a stochastic

process. Thus, in addressing the dynamic evolution of the
future demand as well as future non-renewable power

generation over time, one needs to take future uncertainty

of renewable power generation into account.
In this paper, we consider the resulting overall problem

faced by the ISO: Given stochastic renewable generation
which is disclosed causally in time, how should an ISO

choose the price causally as a function of time, and

thereby the level of demand response elicited, and then
allocate the net remaining generation among various con-

ventional generators. A further consideration which we

will neglect in this paper is that the network constraints
are satisfied. However, this can be incorporated into the

setup that we develop in this paper.
There are some complexities that are involved in the

problem, and some constraints that a desirable solution

has to satisfy. It is desirable that the communication from
the ISO to the generators or loads contain only the price of

power in each market interval. Also it would be desirable

that the communication from each generator and load to
the ISO, at each time instant only be the resulting power-

price point for desired production and demand response
respectively. In particular, we would not like to require

that each load provide a dynamic model of its behavior

as well as its utility function to the ISO, and similarly for
each generator. Not only is this a lot of information that
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the agents may not want disclose for reasons of privacy or

business, but it also implies that the ISO solve a gigantic
optimization problem encompassing every single agent in

the system with all agents’ utility functions.
Thus we would like the system-wide optimization be

conducted by the agents themselves in a distributed man-

ner, coupled only by the price announced by the ISO.
Additional complexities are introduced by the fact that the

agents are dynamic systems as well as the fact that the

renewable power generation is stochastic. Our approach
attempts to provide a comprehensive solution that takes

into consideration all individual agents’ utility functions.
It has one feature that would be desirable to eliminate.

At each time our approach requires that the ISO interact

with the agents in an extended transaction. The ISO
announces a tentative price, and the agents respond with

power generation and consumption levels. Based on these

responses, the ISO again announces a tentative price, and
so on. This process continues till the price converges. We

see no way to eliminate this bidding process, and wonder
if it is well nigh impossible in general since the agents

need to somehow convey to the other agents how they

respond to prices. At any rate, this is a significant open
problem.

We examine a sequence of models, a determinis-

tic model, a common completely observed randomness
model, and a partially observed randomness model. For

the deterministic model our solution is complete and
leads to social welfare optimality. Next we consider the

case where there is a common randomness affecting all

agents and observed by each of them. This of course
includes the case where only certain portions of the

overall randomness affect individual agents and in differ-

ent ways. In this case we propose a complete solution,
in principle, which leads to social welfare optimality

of the utility. In this case, we also propose a scheme
to reduce complexity that leads to a model predictive

approach. In the most general case where the different

agents experience differing randomness not observable
by other agents, we propose a relaxation that leads to

a significant reduction in complexity. We also show that

our MPC approach extends to this case. We also represent
simulations comparing our algorithms with the approach

used presently by the ISO and illustrate the improvement
in utility that can be realized.

Overall, our approach provides a theory for the oper-

ation of the ISO in an environment where it is needed
to integrate stochastic renewables, demand response,

and dynamic and other constraints as well as uncer-

tainties in both generation and loads. The solution re-
quires communication only of prices and energy produc-

tion/consumption responses, as is desirable. Specifically
it is not necessary for the ISO to be aware of the dynam-

ics of producers or consumers or their individual utility

functions. Similarly, the various agents need only know
their own dynamic system models and states and utility

function, and need not be aware of any attributes of other

users, or even the existence of other users. We hope our
approach leads to a firm foundation for the operation of

the next generation ISO.

One approach to procure Demand Response is direct

load control, where based on an agreement between
customers and the aggregator or utility, remote control of

certain devices (e.g., air conditioners, pumps etc.) is used

to manage their energy consumption [4]. The lack of user
privacy is a major barrier to large scale implementation.

The alternative is an incentive based approach such as
real-time pricing where users voluntarily manage their

consumption in response to a time-varying retail tariff

[5]. The challenge with this approach is the difficulty
faced by customers to manually respond to time-varying

prices. We envision a scenario where an intelligent agent

automatically manages the energy consumption schedul-
ing of the customer based on certain cost and comfort

settings selected by the user. The key issue in this case is
of designing an architecture which yields optimal demand

response in a decentralized manner while maintaining

user privacy. From the system operator point of view
the challenge is to optimally balance the system when

uncertainty arises both in supply and demand, without

resorting to the brute force and expensive option of
procuring large amounts of reserve and/or energy storage

[6].

We realize that the current smart grid suffers from the

key issues of renewable penetration and electricity price
fluctuations. Our approach of modeling the users by a dy-

namical system in lieu of following a ”static-optimization”

is the key to generate demand response that plays the
dual role of mitigating renewable penetration and price

fluctuation via utility optimization. Thus our goal is to
provide a framework in which Demand Response could

participate in both energy and ancillary service markets

[7], [8]. Of course, this demand response needs to be
optimized in order to achieve our pre-set goals. This

is done via utilization of the computational power and

latent energy storage that is present in the smart users
connected to the smart grid.

The paper is organized as follows: we begin with a

survey of some related works in Section II and give a

complete description of the problem in Section III. This is
followed by a discussion on iterative bidding schemes and

the ensuing optimal demand response in a deterministic

setting (Section IV) and stochastic setting (Section V).
Finally simulation results are shown (Section VI), which

support our theory.

II. LITERATURE SURVEY

There have been many efforts since the deregulation
of the electricity sector on a market-based framework to

clear the system. Ilic et al. [9] proposed a two-layered ap-

proach that internalizes individual constraints of market
participants while allowing the ISO to manage the spatial



complexity. The approximated MPC algorithm is shown to

work in many realistic cases.

In order to analyze the strategic interactions between

the ISO and market participants, game theoretical ap-
proaches have been proposed in a number of paper.

Zhu et al. [10] use a Stackelberg game framework for
economic dispatch with demand response. The approach

uses a two person game with ISO as leader and users

aggregated into second player. The users change their
demand based on price signal so as to maximize their

payoff function. The ED problem considered is a single

time interval conventional dispatch without transmission
line constraints. Bu and Yu [11] models the interactions

between electricity retailers and customers as a Stackel-
berg game. This work considers the case of a monopoly

retailer where information about customers’ utility and

consumption pattern is available. Jia and Tong [12] uses
Stackelberg to study the energy consumption scheduling

problem for customers who are subjected to a time-

varying price which is determined one day ahead of
time. The trade-off between consumer surplus and retailer

profit under different pricing schemes is investigated.

Song et al. [13] applies a Markov decision process

(MDP) model to the bidding problem for generators
participating in electricity market. Gajjar et al. [14] ex-

tends this approach and uses actor-critic learning. Gao

et al. [15] presents a method for obtaining the bidding
strategy of market participants using parametric linear

programming. However, it assumes that market partic-

ipants have complete information on system conditions
and competitor strategies.

Wang et al. [16] formulates the trading of energy by

storage units as a noncooperative game. Under certain

assumptions for the strategy space and utility functions
a Nash equilibrium is shown to exist. An iterative al-

gorithm is used to reach equilibrium following which a

double auction is conducted. Mohsenian-Rad et al. [17]
proposes a distributed algorithm to obtain the optimal

energy consumption schedule for each user. The problem

of determining the user energy consumption schedule for
the whole day is formulated as a deterministic linear

program. Two problems are considered with two different
objectives: (i) minimize energy cost, and (ii) minimize the

peak to average ratio of demand.

One of the major challenges in the above approaches is

how to elicit optimal demand response without revealing

the inherent dynamic nature of the loads to the ISO. In
this paper, we model the users as stochastic dynamical

systems and generate the optimal demand response in a
decentralized and adaptive manner, thus maximizing the

sum total of the utilities of the users, which in-turn allows

for maximum renewable penetration and in controlling
price fluctuations.

III. NOTATION

Throughout the paper ω, ωi etc. will be used to denote
random variables. Also, random variables will be in cap-

itals, while their realizations in small letters, eg. random

variable X , and event {X = x}, etc.

IV. PROBLEM FORMULATION

We consider a smart-grid in which there are a total
of N agents. Each agent may be either a consumer or

a producer of electricity. We model time as consisting
of discrete periods. At each discrete time t each agent

i obtains or supplies ui(t) units of energy (equivalently

power since it is proportional to it given the fixed period)
to the grid, with ui(t) > 0 signifying that user i supplies

energy to the grid at time t, while ui(t) < 0 signifying

an energy consumption from the grid by the i-th user. We
will suppose that there is net energy balance at each time

over the whole grid:
∑N

i=1 ui(t) = 0 for all t. This model
does allow for storage too, since each storage device can

be considered as an agent.
We model each agent as a dynamic system. The mo-

tivation in the case of an agent which is a generator

is that it has ramp up constraints, thus necessitating a

dynamic system model, or in the case of a load it may
have similar ramp down constraints as well as delay in

demand response. The state of the user i at time denoted

by xi(t) ∈ Xi evolves as,

xi(t+ 1) = f t
i (xi(t), ui(t)), t = 1, 2, . . . , T − 1. (1)

Thus the state of the grid resides on the space ⊗Xi.
We suppose that each agent i has a utility function

Fi(·) : Xi 7→ R, with the understanding that the user

prefers a state having higher utility. The total utility of
user i over the horizon {1, 2, . . . , T } is

∑T
t=1 Fi(xi(t)).

(The theory can be generalized in a straightforward way

to utilities that are time-dependent.) The model (1) can
incorporate constraints on inputs, for example reflecting

bounds on ramp rates, such as ui(t) ∈ Ui. In that case,
these constraint sets Ui are not dualized, but simply carry

over to the dual in (3). For simplicity of exposition we will

not explicitly consider this case in the treatment here, but
will consider such constraints in the numerical examples

in Section VII.
With the above set-up, we are led to the follow-

ing deterministic social welfare optimization problem

(DSWOP):

max

N
∑

i=1

T
∑

t=1

Fi(xi(t))

subject to
∑

i

ui(t) = 0, ∀t = 1, 2, . . . , T

xi(t+ 1) = f t
i (xi(t), ui(t)), for

t = 1, 2, . . . , T − 1, i = 1, 2, . . . , N. (DSWOP)

Subsequently we will consider the stochastic version of
the problem caused by uncertainties due to weather, etc.



V. OPTIMAL DEMAND RESPONSE AND DECENTRALIZED

SOLUTION VIA BIDDING

The above problem can be interpreted as giving the
ISO the task of determining the T -dimensional vectors

ui := (ui(1), ui(2), . . . , ui(T )), for i = 1, 2, . . . , N , so as to

maximize the social welfare
∑N

i=1

∑T

t=1 Fi(xi(t)). In this

section, we will derive an easy-to-implement algorithm
that does so, while satisfying information and action

decentralization, with all communication between agents

restricted simply to being either price announcements or
purchasing or supply of energy decisions in response to

prices. The ISO simply determines the appropriate prices

causally, while each user optimizes its response causally.

The Lagrangian for the problem DSWOP is,

L(u1,u2, . . . ,uN ,λ)

:=

N
∑

i=1

T
∑

t=1

Fi(xi(t))−

T
∑

t=1

λ(t)

(

N
∑

i=1

ui(t)

)

, (2)

where λ(t), t = 1, 2, . . . , T are the Lagrangian multipli-

ers associated with the constraints
∑

i Ui(t) = 0, t =
1, 2, . . . , T respectively. The Lagrange dual function is,

D(λ) = max
u1,u2,...,uN

L(u1,u2, . . . ,uN ,λ)

= max
u1,u2,...,uN

N
∑

i=1

(

T
∑

t=1

Fi(xi(t))− λ(t)ui(t)

)

, (3)

The objective function (3) can be decomposed agent
by agent since they are only coupled by price. Hence

we consider the optimal problem for agent i as one of

maximizing the objective

max
ui

T
∑

t=1

Fi(xi(t)) − λ(t)ui(t). (4)

for the dynamic system (1). The optimal cost is a func-

tion of the initial condition and the Lagrange multi-
plier sequence λ = (λ(1), . . . , λ(T ))., and we denote it

Vi(xi(0),λ). Therefore,

D(λ) =

N
∑

i=1

Vi(xi(0),λ).

We thus observe that the consideration of the dual prob-

lem has led us to a decentralized problem. Its solution
involves the ISO first announcing the price vector λ, and

then each agent i simply optimizing its own objective (4)

by determining its vector ui. Thus neither the ISO, nor the
other agents need to know the utility function of agent i.

The dual problem is to,

minD(λ) subject to

λ(1), . . . , λ(T ) ≥ 0. (5)

We will suppose that strong duality holds, i.e., the op-
timal values of DSWOP and (5) are equal. There are

several sufficient conditions for strong duality. For ex-

ample a sufficient condition is for the utility functions
∑T

t=1 Fi(xi(t)) to be convex and the feasibility region

of the problem DSWOP to be non-empty. Denoting the
optimal solution of the Dual problem by λ

⋆, we will

suppose that,

D(λ⋆) =

N
∑

i=1

Vi(xi(0),λ
⋆)

= max
ui,i=1,2,...,N :∑

i
ui(t)=0,

∀t=1,2,...,T

N
∑

i=1

T
∑

t=1

Fi(xi(t)).

The issue faced by the ISO is how to determine the
optimal price vector λ⋆. Since D(λ) as well as Vi(xi(0),λ)
are all concave functions of λ, will consider the use of the

sub-gradient method for iterating on the price-vector λ so
as to converge to the optimal price-vector λ

⋆. Denoting

the sub-gradient by ∂D
∂λ

, we note that,

∂D

∂λ
=

N
∑

i=1

∂Vi

∂λ

=

(

N
∑

i=1

uλ
i (1),

N
∑

i=1

uλ
i (2), . . . ,

N
∑

i=1

uλ
i (T )

)

,

where u
λ

i :=
(

uλ
i (1), u

λ
i (2), . . . , u

λ
i (T )

)

is the vector that

achieves the optimal utility for the i-th user for the price
vector λ in (4).

We see that the iterations on the price vector λ generate

the corresponding demand response (According to the
Federal Energy Regulatory Commission, demand response

(DR) is defined as: “Changes in electric usage by end-

use customers from their normal consumption patterns in
response to changes in the price of electricity over time, or

to incentive payments designed to induce lower electricity

use at times of high wholesale market prices or when
system reliability is jeopardized.”) [18]–[21],

DR(λ) =
∂uλ

∂λ
, (6)

where u
λ contains the vectors u

λ
i for agents i which are

consumers. DR is a useful quantity because the social

welfare of the grid depends upon it.

Based on the sub-gradient algorithm, we obtain the
following price iteration algorithm. Set k, the iteration

index to 0. The ISO declares a price vector λ
0 (which is

chosen arbitrarily, but of course preferably close to the

true price vector).

• The users i for i = 1, 2, ..., N solve their individual

optimal control problems and calculate the u
λ(0)
i .

Then they separately submit their bids u
λ(0)
i .

• The ISO then updates the price vector as: λ
k+1 =

λ
k−α (

∑

i ui), where α > 0 is a step size. Increment
k by one and go to step i.



There are several choices for the step size α, and

several convergence results for the resulting sub-gradient
method [22].

VI. BIDDING WITH STOCHASTIC RENEWABLES AND

DEMANDS

In the previous section, the dynamics of the users
were assumed to be deterministic, i.e., the exact value

of the system state at the next instant was completely

determined by (1). This might be unrealistic keeping in
mind the stochastic nature of renewable energy as well as

user demands, etc. We begin our discussion with a special
case in which the theory can be fully developed. In this

case, which we call the Common Completely Observed

Case, the sources of stochastic uncertainty are known to
all the agents and observed causally by all of them. This

could include for example the cloud cover in Denver or

wind speed and direction in Brazos County in Texas.

A. Common Observed Randomness Case

in which Let ω = ω(1), ω(2), . . . , ω(T ) be T primitive
random variables. They can be independent and identi-

cally distributed or Markov. For simplicity, let suppose that
each ω(t) assumes value in a finite set. The state of the

i-th agent evolves as,

Xi(t+ 1) = f t
i (Xi(t), Ui(t), ω(t+ 1)),

and it is assumed that each agent observes ω causally in
time, i.e. has access to ω(1), ω(2), . . . , ω(t) at time t. Also

everybody knows the probability law P of ω. That is why
we call this the Common Observed Randomness Case. The

primitive random variables could model the wind speed in

Texas or sunlight in Denver, which everybody has access
to causally, and for which they have a dynamic model.

The problem of interest is then to, maximize the utility
function

maxE

{

N
∑

i=1

T
∑

t=1

Fi(Xi(t))

}

(Common Known Randomness Problem)

for the N stochastic dynamic systems

Xi(t+ 1) = f t
i (Xi(t), ω(t)) (7)

Each Ui(t) is required to be Ft-measurable, where Ft =
σ(ω(1), ω(2), . . . , ω(t)) is the sigma-algebra generated by

the random variables ω(1), ω(2), . . . , ω(t). The inputs

Ui(t), for i = 1, 2, ..., N at each t have to satisfy the
constraint

∑

i

Ui(t) = 0, for each t = 1, 2, . . . , T. (8)

We consider the following ISO based approach to solving
this problem. Let ωt = (ω(1), ω(2), . . . , ω(t)) be the past of

ω (= ωT ) until time t. The ISO announces a price random

variable λ(ω) =
(

λ(1, ω1), λ(2, ω2), . . . , λ(T, ωT )
)

for each
ω.

Note that the price announcement by the ISO is ac-

tually a policy announcement. (Much like the Federal
Reserve saying that interest rates will rise if there is a

hurricane). The ISO is saying that if the disturbances
ω(1), ω(2), . . . , ω(t) hit the system by time t, then the price

will be λ(t+ 1, ωt).
Based on this policy announcement, the individual

agents also respond with a policy. Agent i announces a

policy Ui(1, ω
1), Ui(2, ω

2), . . . , Ui(T, ω
T ). The agents de-

termine their policies individually simply by dynamic

programming since each knows the probability law for

the stochastic process ω, and their own dynamic system
model.

Now we can see that this system is amenable to

the same iteration for prices λ(w) as before, with the

only modification that the iteration process is repeated
at each time t to determine future policies. To elabo-

rate, at each time t, the ISO first announces the fu-

ture price policy as its first iterate, λ0(t, ωt), λ0(t +
1, ωt+1, . . . , λ0(T, ωT ). Each agent i then responds with

future consumption/generation policy Ui(t, ω
t), Ui(t +

1, ωt+1), . . . , Ui(T, ω
T ). The ISO computes whether there

is a net surplus or deficit of energy at each future time ,

sumN
i=1Ui(t), sum

N
i=1Ui(t+ 1), ..., sumN

i=1Ui(T ). based on
this it iterates to produce a new iterate λ1(t, ωt), λ1(t +
1, ωt+1, . . . , lambda1(T, ωT ). This iteration can be based

on a sub-gradient method where the increment is pro-
portional to the energy surplus/deficit vector. Then

the users again respond with the next iterate of the
future consumption/generation policy Ui(t, ω

t), Ui(t +
1, ωt+1), . . . , Ui(T, ω

T ). This continues until there is con-

vergence.

This is a solution of the prob-

lem Common Known Randomness Problem which
leads to optimal utility. The only issue is complexity,

since ω lies in a huge cardinality set |Ω|. Thus, we next

propose an approximation algorithm.

Approximation Algorithm with k-step Look-ahead
At each time 0 ≤ s ≤ T , the ISO announces the

prices λ(s + 1), . . . , λ(s + k) for the next k time periods,

freezing the prices after k periods. Iteration then takes
place over the k-dimensional space, and at each step

the iteration tries to achieve energy balance over the

next k time periods via bids. The idea is similar to the
Model Predictive Control (MPC), so that optimization is

performed only for k horizon look-ahead instead of entire

T horizon, thus giving us a reduction in complexity. This
policy will not approach the optimal policy even as k → ∞
since it is what is called an “open loop feedback policy”.
At each time the future price sequence is assumed to

be deterministic, not a fully uncertainty state-dependent

policy.

B. The Partially Observed Randomness Case

As opposed to the assumption in the previous section,
we consider a more general case where each agent i has a



separate “private” stochastic process ωi = ωi(1), . . . , ωi(T )
affecting only his system via the equation

Xi(t+ 1) = f t
i (Xi(t), Ui(t), ωi(t+ 1)),

The stochastic process ωi is not completely observed by

the other agents, and only agent i knows the law of pro-

cess ωi. The objective function, and the constraints remain
the same as in Common Known Randomness Problem.

However the assumption that an agent does not have

access to the randomness of other agents makes it difficult
to achieve the co-operation amongst the agents.

If the goal is to optimize the utility over all decen-

tralized policies, then the ISO has to know much more

about each individual agent’s system. It needs to play a
more active role so as to induce co-operation amongst

the agents. More concretely, the ISO needs to much more
about each individual agent and its dynamic system. It

needs to know their value of the states Xi(t), utility

functions Fi(·) and their dynamics f t
i (Xi(t), Ui(t), ωi(t))

and the probability distributions of their uncertainties ωi

of each agent i. Under this assumption, the ISO can decide

the optimal allocations U(t) for each t, as a function
of the state of the system via dynamic programming.

This procedure suffers from the curse of dimensionality
as the number of users is increased, since it amounts to

nothing less than an optimal solution of the decentralized

problem.

An optimal decentralized solution, where the solution
is itself computed in an iterative decentralized manner to

this is an interesting and open problem to pursue. What

we have done above in the Common Completely Observed
Randomness case, is demarcated a problem for which the

solution is precisely known in principle.

We now present another approach, a relaxation, that

also provides very interesting approximation algorithms
with much reduced complexity.

Free Storage Relaxation for The Relaxed Partially
Observed Randomness Problem

Let us assume that the ISO has access to a subset

of the randomness {ωi}
N
i=1, which is denoted by ωISO,

knows the law of ωISO, and assume ωISO to be a positive

recurrent Markov process. This is the same as assuming
that the ISO of a city has knowledge to the weather of

the city, or has knowledge of events which might alter

the electricity consumption in a big way, and knows the
probability laws governing them. However ISO doesn’t

have knowledge of the utility functions Fi of the agents,

their dynamics fi, nor the entire randomnesses ωi. Also it
is assumed that ωISO and its law are known to each agent.

The key idea for producing a tractable approximation is
to relax the constraint of energy supply equal to energy

consumption at each time t, and along each sample

path of the stochastic uncertainty, i.e., almost surely. We
replace this almost sure equality constraint at each time

t by a conditional expectation of the net power being in

balance:

lim sup
T→∞

1

T
E

(

T
∑

t=1

N
∑

i=1

Ui(t)1
(

ωISO(t) = w
)

)

= 0,

where w is any element of the state space of ωISO.

Intuitively it means that the power-balance constraint
∑N

i=1 Ui(t) is allowed to be violated, however the fluc-

tuation should balance out over time, conditioned on the

ISO’s observations.

It can be shown that the optimal policy for this case is

for the ISO to declare the price at time t based on the
value of ωISO(t), with users then choosing the quantities

Ui(t) based on the value of their state Xi(t), and the

process ωISO(t). That is, an agent i need not know the
value of the state Xj(t), j 6= i, nor their utility functions

to decide the quantity Ui(t). The analysis and the proof of
optimality in the case of large number of agents is anal-

ogous to the treatment of multi-armed bandits problems

and activity allocation problems [23]–[26] and uses the
technique of large-deviations for Markov process. We note

that the relaxation provides a precise upper bound on

utility, which is the utility that can be realized in case
there is free storage. It decouples temporal constraints on

energy balance.

The Limited Lookahead Approach for the Partially
Observed Randomness Case The Limited Lookahead can
also be applied to the Partially Observed case to yield

an approach that resembles the Model Predictive Control

approach. We would like to mention in passing that
the MPC approach discussed in the Section VI-A can be

applied in order to develop an approximation algorithm

for The Partially Known Randomness Case.

At each time t, the ISO fixes a k-step random price

vector λ0 for the next k time instants. This vector will
depend only upon the ωISO in a causal way. The agents

respond to this vector via calculating optimal bids Ui for

the future time periods. Then the ISO iterates the price
upon receiving the agents’ bids. The iterations continue

till the changes in the iterates become small enough.

VII. NUMERICAL RESULTS

We illustrate the above algorithms by a simple example.

We start with a deterministic case, followed by a stochas-
tic case. Throughout this section, we assume that the N

users are divided into two groups: user i ∈ {1, ...,M} act

as residential consumers and users i ∈ {M+1, ..., N} acts
as power suppliers.

A. Deterministic case

We first define the state equations. For consumers, Xi(t)
denotes the room temperature for i-th user at time t and
Xi(t) evolves as,

Xi(t+ 1) = aiXi(t) + hi − βiUi(t), i ∈ {1, ...,M}
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Fig. 1. Convergence of the price vector for deterministic case

where ai’s and βi’s are constant and hi denotes ambient

heating. For suppliers, Xi(t) denotes the power produc-

tion level for the i-th user at time t, and it evolves as,

Xi(t+ 1) = aiXi(t) + Ui(t), i ∈ {M + 1, ..., N}

with the ai’s being constants.
There are natural constraints associated with the state

equations. For consumers, Ui(t) ≤
1
βi

(hi+ ci), where ci is

the maximal cooling rate. For suppliers, Ui(t) ≤ ri, where

ri is the maximal ramp rate allowed.
We now define the utility functions Fi. For consumers,

let

Fi(Xi(t)) = −

(

Xi(t)−
φ1i + φ2i

2

)2

+mi − λ(t)Ui(t)

where [φ1i,φ2i] is i-th user’s “comfort bounds” for temper-

ature, mi’s are constant and λ(t) is the price. For suppliers,

Fi(Xi(t)) = λ(t)Xi(t)−
(

C1iX
2
i (t) + C2iXi(t) + C3i

+C4iUi(t)) .

where C1i, C2i, C3i and C4i are cost coefficient for i-th
user.

In this case, the state equations and constraints are
linear, and the objective functions are quadratic, thus we

use QCQP (Quadratic Constrained Quadratic Program-

ming) to solve the problem. For simplicity, we let M = 5,
N = 10, hi = βi = 1, mi = 2, ai = 1 and choose φ1i

uniformly from [20, 21], φ2i from [24, 25], ri from [0.5, 1.5],
C1i from [0.9, 1.1], C2i from [0.1, 0.3], C3i from [0.5, 1.0]
and C4i from [0.1, 0.5].

Fig. 1 plots the evolution of the price vector and for

legibility of display, we only plot 4 components of λ. It

is easy to see that λ converges quite fast, in than 20
iterations.

Fig. 2 shows the demand response value as a function
of iterations. For the deterministic case, this is simply the

norm of matrix U , where U is a M × T matrix with
uij = Ui(j). Here we use Frobenius norm defined by:

||U ||F =
√

∑

i

∑

j u
2
ij . Here we can see that demand

response approaches a constant as iteration goes on.
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Fig. 2. Demand Response for deterministic case

B. Stochastic case

We adopt the same notation as in the deterministic

case, but modify the state equations by adding a ran-
dom variable influencing the availability of renewable or

stochasticity of demand. For consumers,

Xi(t+ 1) = aiXi(t) + hi − βiUi(t) +W (t), i ∈ {1, ...,M}

where W (t) is not necessarily i.i.d. because of geograph-

ical and temporal correlation. Similarly, for suppliers,

Xi(t+ 1) = aiXi(t) + Ui(t) + V (t), i ∈ {M + 1, ..., N}

where V (t) is not necessarily i.i.d. either.

In our simulation, for simplicity, we let W (t) assume

two values drawn uniformly from [−0.5, 0.5], each with

probability 0.5; and let V (t) also take two values drawn
uniformly from [−0.2, 0.2], each with probability 0.5.

For each step in the model predictive control approach,

the price vector λ converges within 20 iterations, just as
it does in the deterministic case. Fig. 3 plots the demand

response value as a function of the iterations. Let Q(t) be

the vector containing only the Ui’s for i ∈ {1, ...,M}. For
display purpose, we only plot the first 4 steps and adopt

the L2 norm. As the optimization window moves, ||Q||
converges faster; whether it converges from the above or
below depends on the initial value.

C. Comparison with current ISO

The current ISO sets the price as follows: At time t,

it assumes that the demand D(t) is given, and based on

the previous step’s production level Xi(t − 1), and the
marginal cost of each producer, it assigns the production

level Xi(t) for each producer so as to minimize the

total production cost at time t. The associated Lagrange
multiplier will then be the price at time t. We set ai = 3
for i ∈ {1, ..., N}, and keep the same value for the other
parameters. Each consumer tries to keep Xi(t) =

φ1i+φ2i

2
for all t, and the resulting Ui(t) will be used to calcu-

late the demand input D(t) to the ISO scheme, where
D(t) :=

∑

i Ui(t) for i ∈ {1, ...,M}.
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Fig. 4 summarizes the results. By fixing the uncertainty

magnitude ||W || = 0, the figure on the left shows that
λISO, which is generated by the ISO scheme, has a bigger

variance σ2
ISO than λ, which is obtained by our iterative

approach. Moreover the difference in variance becomes
even larger as ai increases. The figure on the right fixes

|ai| = 1 and plots changes in the variance of price as a
function of ||W ||. Similarly in the left figure, the difference

in variance increases as ||W || increases.

Next we compare the total utility of the entire system

obtained by the two approaches. Notice that in our case
the total utility is,

u =

T
∑

t=1

N
∑

i=1

Fi(Xi(t)) =

T
∑

t=1





∑

i∈{1,...,M}

−

(

Xi(t)−
φ1i + φ2i

2

)2

+mi

−
∑

i∈{M+1,...,N}

C1iX
2
i (t) + C2iXi(t) + C3i + C4iUi(t)





as the λ terms cancel out. We calculate the total utility

incurred by the two schemes; the results are shown in

Table I. It can be seen that the total utility obtained by
our dynamic iterative approach is roughly three times the

TABLE I
TOTAL UTILITY OBTAINED BY ISO SCHEME AND THE ITERATIVE APPROACH

Name The iterative approach ISO scheme
Value 427.1932 142.8451

TABLE II
TOTAL EXPECTED UTILITY OBTAINED BY ISO SCHEME AND THE ITERATIVE

APPROACH

Name The MPC approach ISO scheme
Value 500.2578 159.2198
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Fig. 5. Changes in total utility as |ai| or ||W || varies

total utility obtained by the greedy ISO scheme. (Note
that this coincides with the setting of ai = 3.)

The above considers the case where demand is deter-

ministic. When there is randomness from the demand

side, the ISO scheme aims at minimizing the expected
production cost at each time t. We assume for simplicity

that the added noise term W (t) is i.i.d. and takes values

0.5 and −0.5 each with probability 0.5. Similarly, as in
the deterministic case, we calculate the total expected

utility incurred by the two schemes and present the
results in Table II. It can be seen that the total expected

utility obtained by the MPC approach is more than three

times the expected utility obtained by the ISO scheme.
We conclude that in both deterministic and stochastic

cases, our approach provides greater total utility than the

current ISO scheme.
We also compare the change in total utility obtained as

a function of ai for the two schemes. We fix |ai| = 1
and let W (t) be i.i.d. taking values ||W || and −||W ||
with probabilities 0.5 and 0.5 respectively. We observe
the change in total utility while increasing the noise

magnitude ||W ||. The result is shown in the left plot in

Fig. 5. It can be seen that as ||W || increases, the total
utility obtained by the MPC is not a strict linear function

of the utility obtained by the ISO scheme. The plot on the
right fixes ||W || = 0, and shows that as |ai| increases, the

difference in utility obtained increases as well.

VIII. CONCLUDING REMARKS

We have formulated the problem of allocating the
power demands and generations over the heterogeneous



energy consuming or producing agents or prosumers,

connected to a smart-grid in a dynamic fashion, both
under a deterministic setting and a stochastic setting

when there are underlying uncertainties affecting both
generation as well as consumption. We have proposed

decentralized iterative algorithms to solve this problem.

These algorithms work under the assumption of local
knowledge, i.e., an agent needs to keep track of only its

own randomness and its own system dynamics. We have

shown that the ISO can play a central role in inducing
co-operation amongst the agents by declaring policies. A

possibly significant theoretical contribution is that in the
common completely observed randomness case, there is

an ISO strategy that achieves social welfare optimality.

It incorporates decentralized dynamics where there is no
need for agents to be aware of each others’ dynamics or

states. The only communication from the ISO is price

policy and from the agents their energy consumption
or generation in response to the price. We have also

proposed more computationally tractable policies for this
case. For the case of Partially Observed Randomness case,

we have further indicated a relaxation that significantly

reduces complexity, as well as an MPC approach that is
tractable. Some simulation results showing that the pro-

posed algorithms appear to outperform the current ISO

practices in terms of the net social welfare are provided.

REFERENCES

[1] L. Xie, P. M. S. Carvalho, L. A. F. M. Ferreira, J. Liu, B. H. Krogh,
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