arxXiv:1503.07511v4 [math.OC] 22 Mar 2016

Bounding the Greedy Strategy in Finite-Horizon String Optimization

Yajing Liu, Edwin K. P. Chong, and Ali Pezeshki

Abstract— We consider an optimization problem where the objective function. But how does the greedy strategy compar
decision variable is a string of bounded length. For some tim  ith the Optima| strategy in terms of the Objective funcfion

there has been an interest in bounding the performance of the The above question has attracted widespread interest, with

greedy strategy for this problem. Here, we provide weakened ) . )
sufficient conditions for the greedy strategy to be bounded ¥ some key results in the context aftring-submodularity

a factor of (1 — (1 — 1/K)*), where K is the optimization ~ (see, e.g., [3], [4], [5], and [6]). These papers extend the
horizon length. Specifically, we introduce the notions of K- celebrated results of Nemhausetr al. [7], [8], and some

submodularity and K-GO-concavity, which together are suffi- further extensions of them (see, e.g., [9], [10], [11], and
cient for this bound to hold. By introducing a notion of curvature [12]), on bounding the performance of greedy strategies in

n € (0,1], we prove an even tighter bound with the factor A .
(1/m)(1—e"). Finally, we illustrate the strength of our results ~Maximizing submodular functions over sets, to problgm (1)

by considering two example applications. We show that our that involves maximizing an objective function over stsng
results provide weaker conditions on parameter values in tase  In particular, Streeter and Golovin [3] show that if, [d (1),

applications than in previous results. the objective functionf is prefix and postfix monotone
and has the diminishing-return property, then the greedy
|. INTRODUCTION strategy achieves at least(a — e~!)-approximation of the

In a great number of problems in engineering and applieePtimal strategy. Zhangt al. [S], [6] consider a weaker

science, we are faced with optimally choosing a string ginit"otion of the postfix monotoneity and provide sufficient
sequence) of actions over a finite horizon to maximize afonditions for the greedy strategy to achieve a factor of at

objective function. The problem arises in sequential degis '€@St(1—(1—1/K)™), wherek is the optimization horizon
making in engineering, economics, management science, df§9th. of the optimal objective value. They also introduce
medicine. To formulate the problem precisely, lebe a set several notions of curvature, with which the performance
of possible actions. At each stagewe choose an action Pound for the greedy strategy can be further sharpened.
a; from A. Let A = (aj,as,...,a;) denote astring of But all the sufficient conditions obtained so far involve
actions taken ovet consecutive stages, whenie ¢ A for  Strings of length greater thaf(, even thoughl{1) involves
i=1,2,...,k Let A* denote the set of all possible stringsCNly Strings up to lengttk’. This motivates a weakening of
of actions (of arbitrary length, including the empty stringthese sufficient c_ondmons_to involve only strings of ldmgt
). Finally, let f : A* — R be an objective function, where & MOStA’, but still preserving the bounds here. _

R denotes the real numbers. Our goal is to find a string !N this paper, we introduce the notionsigtsubmodularity
M € A*, with a length| M| not larger thark (prespecified), and K-GO-concavity, which together are sufficient for the

to maximize the objective function: (1 - (1—1/K)*) bound to hold. By introducing a notion
of curvaturen € (0, 1], we prove an even tighter bound with
maximize f (M) the factor(1/7n)(1 —e~"). Finally, we illustrate the strength

subject toM € A*, |M| < K. (1) of our results by considering two example applications. We

show that our results provide weaker conditions on paramete
The solution to[{ll), which we call theptimal strategyis  Vvalues in these applications than in previous results tegor
hard to compute in general. One approach is to use dynaniic[5] and [6].
programming via Bellman'’s principle (see, e.g., [1] and[2]
However, the computational complexity of this approach
grows exponentially with the size @f and the horizon length  In this section, we first introduce some definitions related
K. On the other hand, ttgreedy strategythough suboptimal to strings and curvature. We then review the main results
in general, is easy to compute because at each stage, we dimyn [5] and [6]. Specifically, the results there provide

have to find an action to maximize the step-wise gain in theufficient conditions on the objective functighin (I) such
that the greedy strategy achievegla- (1 —1/K)%)-bound.
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asM © N = (ai",ay',...,a},a},ay,...,ay,). If M and show that these weakened sufficient conditions also lead to
N are two strings inA*, we write M < N if we have weaker requirements than in [5] and [6] for two application
N = M & L for someL € A*. In this case, we also say thatexamples.

M is aprefixof N.

A function from strings to real numberg,: A* — R, is Il. M AIN RESULTS
string submodulaif Before stating our main results, we first introduce some
i. f has theprefix-monotoneproperty: VM, N € A*  definitions onf : A* — R.
f(M®N) > f(M). i fis K-monotondf VM, N € A*, and|M|+|N| < K,
ii. f has thediminishing-returnproperty:VM < N € f(M @ N)> f(M).
A*Vae A, f(M&(a))—f(M) > f(N&(a))—f(N). ii. fis K-diminishingif VM < N € A* and|N| < K —1,
A function from strings to real numberg,: A* — R, is Va € A, f(M @ (a)) — f(M) > f(N @ (a)) — f(N).
postfix monotoné iii. fis K-submodularif it is both K-monotone andx-
. diminishing.
VM, N € A" f(M @ N) = f(N). iv. Let G; = (g1,...,9:) (as before) andOx_; =
The total backward curvature of is defined as (0it1,...,0k) fori = 1,..., K. Then, f is K-GO-
concavef for 1 <: < K —1,
g = max
) = Gi® Oxc-) = 216 + (1- ) f(Ox)
{(f((a))—f(@))—(f((a)@M)—f(M))}' F(Gi ® Ok—i) 2 2= f(Gi K e
f((a)) — f(0) Notice that these definitions involve only strings of length
B. Bounds for the Greedy Strategy at most K. Moreover, it is clear that iff is string sub-
We now define optimal and greedy strategies for problefodular, prefix monotone, and has the diminishing-return
(@ and some related notation. property, thenf is string K-submodular/-monotone, and

(1) Optimal strategy Any solution to [1) is called an K—dimin?shing. Under these weaker conditions,_we show that
optimal strategy. If f is prefix monotone, then there the previous bound_s on the greedy strategy still hold.
exists an optimal strategy with lengf, denoted) = Theorem 3:If f is K-submodular andiK'-GO-concave,
(01,...,01(). Let O; = (01,...,Oi) fori= 1,..., K. then

(2) Greedy strategy A string Gr, = (91,92,---,9k) iS 1\ X .
called agreedystrategy ifVi = 1,2,...,k, f(Gr)= (1 <1 - E) f(Ok) > (1 —e)f(Oxk).
gi € argmax f((g1,92,---,9i-1,9))- Proof: Becausef is K -diminishing, we have that for
geA 1< <K,
Let Gl = (917 A 791) for i = 1, ey K. f(Ol) > f(OZ) — f(Olfl)

The following two theorems summarize the performancg definition of the areedv strateqy. far< i < K
bounds in [5] and [6]. y aetinit greedy gy, far<i < K,

Theorem 1:If f is string submodular anf(G; ® Ok ) > F(G1) > f(o:) = f(O;) — fF(Oi-1).
f(Ok) holds for alli = 1,..., K — 1, then any greedy

strategyG satisfies Summing the inequality above ovéfrom 1 to K produces

K K K
f(Gr)>(1- (1 -~ %) ) fOR) > (1 —e ) f(Ok). D (G =D (f(0:) = £(Oi-1))
i=1 i=1
Theorem 2:If f is string submodular and postfix mono- = Kf(Gy) > f(Ok)
tone, then any greedy strate@yy satisfies B 1
: ok = (G1) = 2 (Ok).
f(GK>z—(1—(1——) )f(om | AR
o K For1l <i < K — 1, becausef is K-diminishing, we have
1
= ;(1 — ¢ ?)f(Ox) f(Gi® oK) — f(Gi)
> (1 —e N f(Ok). > f(Gi @ (0i41,-++ ,0K)) = f(Gi @ (041, ,0K-1)),

Under additional assumptions on the curvataref f, [5] F(Gi ®ox_1) — f(Gy)
and [6] provide even tighter bounds. Notice that the sufficie ‘ o B ‘ o
conditions above involve strings of length greater th&n = J(Gi & (01, 0x-1)) = F(Gi @ (061, 0 -2)),
even though the probleni](1) involves only strings up to:
length K. This motivates a weakening of these sufficient, N ‘
conditions to involve only strings of length at makt, but F(Gi® 0iv2) - f(Gi)
still preserving the bounds here. In the next section, we = f(Gi @ (0i41,0i42)) — f(Gi ® (0i41)),
present our main results along these lines. In Se€fion IV, WG, @® 0,+1) — f(G:) > f(Gi @ (0i+1)) — f(Gy)).



Summing the inequalities above, we have which implies thatn < 1. The following theorem gives a

K bound related to the curvature
Z (F(Gi ®0;) — f(Gi) > f(Gi® Ok ) — f(Gy). Theorem 4:If f is K-submodular andk-GO-concave,
j=it+1 then
—_— . 1 K
?{y definition of the greedy strategy, we have for1 < j < F(Gr) > = <1 _ (1 _ %) ) F(Ox)
) n
o f(-C:H-l)_f(Gi)Zf(Gi@Oj)_f(Gi)a > l(l—e_n)f(OK).
which implies that Proof: By definition of the curvature), we have
K .
_ K —
(K =i)(f(Giy1) = f(Gi) = (f(Gi @ 05) = f(Gi))- f(Gi® Ok—i) = f(Gi) = “(£(Ox) = nf(Gy)-
K

j=i+1

Hence, we have fof < i< K — 1, By definition of the greedy strategy and inequallfy (2),

. we have
F(Gipr) = f(Gi) =2 m(f(Gi ®© Ok—i) = f(Gi)). (2 F(Gis1) — f(Gy) > Kl— z'(f(Gi @ Ox_;) — f(Gy))
By K-GO-concavity, forl <i: < K — 1 we have - 1 K — i(f(O ) H(G)
f(Giv1) = f(Gi) _[f_i K DG
> (/G ® Ox ) ~ f(G) = g0 /(@)
_ i from which we get
> o (S 00 + 1206 - 1(60) 1 \
X J(Gin) 2 2 £0x) + (1= ) (G
B ?(f(OK) — (&), Therefore,
from which we get 1 "
' . F(Gr) 2 £ (0x) + (1= 3) £(Gr-)
f(Giy1) > ?f(OK) + (1 - §> f(Gy).
Therefore, . 1 K—1 ,
il _ oy
f(GK) > %f(OK) + <1 - %) f(GKr-1) = /oK) ; (1 K)
1 n\E
-~ <1— (1— E) >f(OK).
> lf(OK)K_l (1 _ l)l Because; (1 -(1- %)K) No(l—e ) asK — oo, we
K i=0 K also have
1
Becausel — (1—£)" \, 1 — e~ as K — oo, we also > ;(1 — ¢ ") f(Oxk).

have
1\"* _ Remarks
Gg)>[1-(1-= Ok) > (1—e M) f(Ok).
1Gr) ( ( K) ) 10} > ( 11(0r) e The term%(l — e~ ") is decreasing im € (0,1].
- « Wheny = 1, 2(1 —¢77) = 1—¢', which is the

Next, we introduce a new notion of curvatures follows: bound in Theorerfil3. Moreover, for< n < 1, %(1 -
- N e~ ") >1—e~'. Hence, Theoreml 4 is a generalization
T <itR-1 of TheorenB and gives a tighter bound.
Kf(G) — (Kf(G; ®Ox_i) — (K —i)f(Oxk)) o« Whenn — 0, we have%(l — e M) — 1, making the
(K —i)f(G) : greedy strategy asymptotically optimal.
If fis K-GO-concave, then for <7 < K — 1 we have IV. APPLICATIONS
Kf(G)—(Kf(G; ® Og—;) — (K —i)f(Ok)) In this section, weconsider two example applications,

< Kf(Gi) —if(Gy) namely task assignment and adaptive measurement design, to
- ! ! illustrate the strength of our results. In each case, weveeri
= (K =) f(Ga), sufficient conditions, on the parameter values of the prable



for the greedy strategy to achieve the — (1 — 1/K)¥X)  Thus, a sufficient condition fof to be K-diminishing is
bound. These sufficient conditions are weaker than those we

previously reported in [5]. L>01-1L)U. 4)

A. Task Assignment Problem

As our first example application, we consider the task
assignment problem that was posed in [3] and was further (K
analyzed in [5]. In this problem, we hawesubtasks and a set

Now, let us rearrange th& -GO-concavity condition as

— ) (f(Ok) — f(G; & Ok_3))

A of K agents. At each stage, we get to assign a subtask to < /(G © Ok—) = f(Gh))-
an agent who accomplishes the task with some probabili ; ; T

Let p!(a) denote the probability of accomplishing subtasltfzéeplacIng forf from () gives (after simplifying)

i at stagej when it is assigned to ageat € A. Assume K Hi. (1= pi (o))
that pl(a) € [Li(a),Ui(a)], 0 < Li(a) < Uila) < (K—i) J] @=p (o)) l1 - = -
1, and that the limits of the interval are independent of j=it1 H;:1(1 —p(95))
the stage in which subtaskis assigned to agent. Let K

X;(a1,az,...,ax) denote the random variable that describes <i {1 _ H (1— pj(oi))] )

whether or not subtask has been accomplished after the =it

sequence of assignmerits, as, . . .,

%Z?:l Xi(al,ag, ey

complished by employing agentg,as,...,a;) over k

steps. The objective functiorf for this problem is the

expected value of this fraction, which can be written as

f((alw--,ak))Z%i( (1—pZ aj)).

u:j»

. . _ K
We wish to derive sufficient conditions on the set of pa- (K — i) H (1= p (o))
rameters{(L(a),U(a)) |a € A} so thatf is K-monotone, PRod) =

K-diminishing, andK-GO-concave.

For simplicity, we consider the case of = 1. But our
results can easily be generalized to the case where 1.
Forn = 1, the objective functiory reduces to

k

va)) =1—= [T =pia), 3)

J=1

f((al, e

and from here on we simply ug€ (a;) in place ofp](a;).
It is easy to check thaf is K-monotone. Forf to be
K-diminishing, it suffices to have

f(M & (a)) = f(M) = f(M & (0) & (a) — f(M & (b)),
for anya,b € A and for anyM € A* with |[M| < K — 2.

Let M = (a1, ...,a), then we have
P a) > (1= p™ T (B)p™ 2 (a).
Suppose thatl(a) < pi(a) < U(a) for all a € A,j =
1,2,...,K. Let A
U =maxU(a)
a€cA
and R
L = min L(a).
acA

Then, we can write
p™ Y (a) > L(a) > L
and

(1= p™ " 0)p™(a) < (1 - L(b))U(a) < (1 = L)U.

ay) overk steps. Then,
ay) is the fraction of subtasks ac- Becausef (Ox) > f(

G; ® OKfi), we have

H;zl(l — (1))
[T— (1 = pi(g;))

Therefore, to havd(-GO-concavity it suffices to have

<1

K .
<i {1 11 <1p-7<oz->>] 7

J=i+1 Jj=i+1

or equivalently

T a-re) <+ ©)

for 1 <i < K—1. If we assume that(o;) > 1 for2 <i <
K, then it is easy to sethat [B) holds for1l <i < K — 1.
Thus, a sufficient condition foK-GO-concavity is

L> (6)

N | =

If (B) holds then[(%) also holds. Thu§] (6) is sufficient foe th
greedy strategy to achieve tfie — (1 — £)%) bound.
Remark 1:The sufficient condition in [5] requireEl(4) and

p'(g1) >1—cX, @)
where
¢ = min 1_7[](60
~ aeh 1—L(a)’

When allp’(a;) > 1/2, then [6) and[{4) automatically hold,
but (7) is not necessarily satisfied. In that sense, &khe
monotone,K -diminishing, andK-Go concavity conditions
are weaker sufficient conditions for achieving tfie— (1 —
+)%) bound than the prefix monotone, diminishing-return,
and postfix monotone conditions of [5].



B. Adaptive Measurement Problem

As our second example application, we consider the
adaptive measurement design problem posed in [13] and
[5]. Consider a signal of interest € R? with normal prior

distribution N'(0, ), where [ is the2 x 2 identity matrix;

our analysis easily generalizes to dimensions larger than
: e €[0.5,1]}. At each stage

Let A = {Diag (v/e,v1—¢)

i, we make a measurememt of the form

yi = Aiz + w;,

Becausef (Ox) > f(G; @ Ox_;), we have
(S + Sk_i)(ex — (87 + Sk_,))
> (i + Sc_i)(ex — (Si+ S ).
It is easy to check that
Si(ai = 8i) < (Si+ Sk_i)(cx — (Si +S%_;)).
Therefore, we have

Si(ai = 8i) < (8] + Sk _i)(ex — (S7 + Sk ) (10)

where 4; € A and w; is a Gaussian measurement noise Let

vector with mean zero and covarianeg!.

g(i) = (87 + 85 )" T ex = (S7 + 85 ) 'S} (ai = Si)".

The objective is to choose a string of measurement ma-
trices {A;}*_, with k& < K to maximize the information Then,

gain:

f((al, .. .,ak)) = H() — Hk.

g(i + 1) o Si(ai — Sl)
g(i)

(87 + Sq_i)ex — (7 + S5_y)

HereH, = %Iog(%e) is the entropy of the prior distribution By (I0), ¢(i) is non-increasing. Hencd, suffices to have

of x and Hy, is the entropy of the posterior distribution of

given {y;}%_,; that is,
Hy = %Iog de{P:) + %Iog(%e),

where

1 —1
P = <Pk_11 + _2A£Ak>
Ok
is the posterior covariance af given {y;}*_, [13].

We wish to derive sufficient conditions on the set of pa-

rameters{c?}X | so thatf is K-monotone K -diminishing,

and K-GO-concavelt is easy to see that is K-monotone
is a non-

by form, and it is K-diminishing if {o?}X;
decreasing sequence, that is,
oy =07, fori=12,...,K—1. (8)

Let A7 = Diag(yei,vVI—¢;) and A! =

Diag(\/e}, /1 — €}) be the greedy and optimal actions at We now show thaf{13) always holds, given the action set

stagei, respectively; that isg; = A ando, = A}. Then,
the K-GO-concavity condition for this problem is thé&ir
1 <i< K —1, we must have

(Sf + Sic_ )X i (ex — (Sf + Se_ )X Si(a; — Sy’
< (Si+ i) (ex — (Si + Sie_ )X, )
where

(81 +Sk—1)" Hew — (87 + Sk_1) 7 1S1(ar — 81)

< (S1+ S )% (e — (S1+ S )E (11)
in order toget K-GO-concavity.

LetTy = a; — S1, Tf = ay — S, and T} | =

<.
i
L=
-
al
QL
K

Then, we can rewritd (11) as
(ST + Sk ) HIY + Ti )" 71T

<(S1+ S )M+ T ). (12
(ST + Sk )T + T 1))
= (S1+Sx_ )T+ Tx 1)), (13)

that is, to havef(O1) = f(G1), then [12) always holds,
becauses| Tt < (S1+ Sy _ ) (Th +Tj%_1))-

A considered in this example. In other words, theGO-

concavity condition is satisfied and this means that (8) is a

sufficient condition for achieving the — (1 — +)%) bound.
By definition of the greedy strategy, we hayéG,) >
f(O1), which means

1 1
(1 + O'_%el) (1 + 0—%(1 — 61))
1 * 1 *
2 (1“!‘0_—%61) (1“!‘0_—%(1—61))

Simplifying the above inequality gives

(e1 —e)(1 —(e1 +e7)) > 0. (14)
Becausef (Ox) > f(G1 @ Oy_1), we have
K * K
el €j (1—e7) (1 _63)
1+ 5+ 2] 1+ +




which implies that

K
61—61 E

Jj=2

> Ui%(el — D)1= (er +€)).

(4]

-1) (5]

qu| =

(15) 1

The inequality [(T¥) implies that; < e}. From [15) and

(I4), we have that 7]

1
> =2 -1)| >0, [8]

=2

(e1 —e7)

3

which implies thate; = ej. Since ife; # e, thene; < e, (9]

which implies that

K 1 [20]
(ex —€7) Z —(2¢;—1)| <0, "
j=2J
while [12]
—(er—e7) (1= (e1+e7)) >0,
01
(23]

which contradicts[(15). Hence, we have = e}, which
meansG, = Oy, and the inequality(13) holds.

Remark 2:The sufficient condition in [5] for achieving
the (1 — (1 — +)®) bound in this problem requires boffi (8)
and

b2 ., (2K - 2)2
-2 _p-2 = 4

where[a, b] is the interval that contains all thes. Therefore,
the condition derived in this paper is a weaker sufficient
condition than that obtained in [5].

(a2 +b"3H+1, (16)

V. CONCLUSION

We considered an optimization problefd (1) where the
decision variable is a string of length at mdst For this
problem, we reviewed some previous results on bounding
the greedy strategy. In particular, the results of [5] and
[6] provide sufficient conditions for the greedy strategy to
be bounded by a factor oft — (1 — 1/K)¥). We then
presentedveakenedufficient conditions for this same bound
to hold, by introducing the notions df -submodularity and
K-GO-concavity. Next, we introduced a notion @frvature

€ (0,1], which furnishes an even tighter bound with the
factor %(1 — e~ ). Finally, we illustrated our results by
considering two example applications. We showed that our
new results provide weaker conditions on parameter values
in these applications than in [5] and [6].
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