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Time minimum synthesis for a kinematic drone model

Marc-Aurèle Lagachea,b, Ulysse Serresb and Vincent Andrieub,c

Abstract— In this paper, we consider a (rough) kinematic
model for a UAV flying at constant altitude moving forward
with positive lower and upper bounded linear velocities and
positive minimum turning radius. For this model, we consider
the problem of minimizing the time travelled by the UAV
starting from a general configuration to connect a specified
target being a fixed circle of minimum turning radius. The
time-optimal synthesis, presented as a partition of the state
space, defines a unique optimal path such that the target can
be reached optimally.

I. INTRODUCTION

The purpose of this study is to determine the fastest
way (in time) to steer a kinematic UAV (or drone) flying
at a constant altitude from some starting point to a fixed
horizontal circle of minimum turning radius.

The problem is only described from a kinematic point
of view. In particular, we do not take into account the
inertia of the drone. We consider that the drone velocities
are controlled parameters. In consequence, they are allowed
to vary arbitrarily fast.

From the kinematic point of view, a rough drone that flies
at a constant altitude is governed by the standard Dubins
equations (see e.g. [2], [7]):

ẋ = v cos θ

ẏ = v sin θ

θ̇ = u

, (1)

with (x, y, θ) ∈ R2 × S1 being the state (where (x, y) ∈ R2

is the UAV’s coordinates in the constant altitude plane, and
θ the yaw angle), and u ∈ [−umax, umax], v ∈ [vmin, vmax]
being the control variables. Note that the yaw angle θ is the
angle between the aircraft direction and the x-axis.

These equations express that the drone moves on a perfect
plane (perfect constant altitude) in the direction of its velocity
vector and is able to turn right and left.

We assume that the controls on the drone kinematics are
its angular velocity u and its linear velocity v.

Moreover, we make the assumptions that the linear veloc-
ity v has a positive lower bound vmin and a positive upper
bound vmax and that the time derivative u of the drone yaw
angle is constrained by an upper positive bound umax.
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LAGEP, UMR CNRS 5007, 43 bd du 11 novembre 1918, 69622
Villeurbanne Cedex, France marc-aurele.lagache &
ulysse.serres at univ-lyon1.fr & vandrieu at
lagep.univ-lyon1.fr

cBergische Universität Wuppertal, Arbeitsgruppe Funktionalanalysis,
Gaußstraße 20, 42097, Wuppertal, Germany

The above assumptions imply in particular that no station-
ary or quasi-stationary flights are allowed and that the drone
is kinematically restricted by its minimum turning radius
rmin = vmin/umax > 0.

A similar problem with a constant linear velocity has
already been addressed in [8]. The purpose of this paper
is to study the influence of a non-constant linear velocity.

Due to space limitations, most of the proofs of the results
will be reported elsewhere.

II. MINIMUM TIME PROBLEM UNDER CONSIDERATION

A. Optimal control problem

We aim to steer a UAV driven by system (1) in minimum
time from any given initial position point to the target man-
ifold C which is defined to be the counterclockwise-oriented
circular trajectory of minimum turning radius centered at the
origin. In the (x, y, θ)-coordinates, C is given by

C = {(x, y, θ) | x = rmin sin θ, y = −rmin cos θ} .

More precisely, we consider the following optimal control
problem :
(P0) For every (x0, y0, θ0) ∈ R2 × S1 find a pair trajectory-

control joining (x0, y0, θ0) to C, which is time-optimal
for the control system (1).

B. Existence of solutions

The following two propositions are well-known and stated
without proof (see, e.g. [1]).

Proposition 2.1 (Controlability): System (1) is control-
lable provided that u ∈ [−umax, umax] and v ∈ [vmin, vmax]
for any choice of 0 < umax 6 +∞ and 0 < vmin 6 vmax 6
+∞.
Also, Filippov’s theorem gives:

Proposition 2.2 (Existence of minimizers): For any point
(x0, y0, θ0) ∈ R2×S1, there exists a time-optimal trajectory
joining (x0, y0, θ0) to C.

C. Reduction of the system

To solve problem (P0) it is convenient to work with a
reduced system in dimension two. Indeed, in dimension two,
a complete theory for finding time-optimal synthesis exists
and will be described in Section III.

For this purpose, we introduce the UAV-based coordinates
(x̃, ỹ, θ) with x̃ and ỹ defined by the transformation (in
SO(2)): (

x̃
ỹ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
.



We also define the control set U = [−umax, umax] ×
[vmin, vmax] ⊂ R2.

The main advantage of this UAV-based coordinate system
is that it decouples the variable θ and projects the final mani-
fold C to the point X̃0 = (0,−rmin) so that the original time-
optimal control problem can be equivalently reformulated in
the reduced state space (x̃, ỹ) as the following minimum-time
problem :

(P1) For every (x̃0, ỹ0) ∈ R2 find a pair trajectory-control
joining (x̃0, ỹ0) to X̃0 = (0,−rmin), which is time-
optimal for the control system{

˙̃x = v + uỹ

˙̃y = −ux̃
, (u, v) ∈ U . (2)

Remark 2.3: One can read, in equation (2) that (0,−rmin)
is an equilibrium point corresponding to the control values
u = umax and v = vmin.

The collection of all solutions to problem (P1) for every
(x̃0, ỹ0) is called the time-optimal synthesis.

Following a standard approach for time optimal control
syntheses, it is convenient to rephrase problem (P1) back-
ward in time. Hence, the sign of the dynamics is changed and
the equivalent problem of finding the time-optimal synthesis
issued from X̃0 is considered:

(P2) For every (x̃f , ỹf ) ∈ R2 find a pair trajectory-control
joining X̃0 = (0,−rmin) to (x̃f , ỹf ), which is time-
optimal for the control system{

˙̃x = −v − uỹ
˙̃y = ux̃

, (u, v) ∈ U . (3)

Once problem (P2) is solved, then the time-optimal synthesis
(solution of problem (P1)) is obtained simply by following
the travelled trajectories backward.

Remark 2.4: Note that up to a dilation in the (x, y)-
plane and a dilation of time (a time-reparametrization with
constant derivative), we may assume that [−umax, umax] ×
[vmin, vmax] = [−1, 1] × [1, µ] (µ = vmax/vmin). This
normalization could be used to simplify the treatment. We
do this in Sections IV and V.

III. TIME-OPTIMAL SYNTHESIS ON R2

In this section, following the same ideas as those de-
veloped by Boscain, Bressan, Piccoli and Sussmann in [4],
[5], [6], [9], [10] for optimal syntheses on two-dimensional
manifolds for single input control systems, we introduce
important definitions and develop basic facts about optimal
syntheses on R2 for control-affine systems with two bounded
controls of the form (4) (which are different from those
studied in [3]). This part is widely inspired by the book [5]
and extends some of its results.

The definitions and results given in the next Subsections
III-A, III-B and III-C are given in Rn.

A. Pontryagin Maximum Principle

Let F and G be two smooth and complete vector fields on
Rn. Define the control variable U = (u, v) and the control
set U = [−umax, umax] × [vmin, vmax] ⊂ R2, with umax,
vmin, vmax assumed to be positive real numbers. Consider
the following general control-affine time-optimal problem:

(P) For every X0 and Xf in Rn find the pair trajectory-
control joining X0 to Xf , which is time-optimal for
the control system

Ẋ = vF (X) + uG(X), X ∈ Rn, (u, v) ∈ U . (4)

Definition 3.1 (admissible control/trajectory): An admis-
sible control for system (4) is an essentially bounded function
U(·) : [t0, t1] → U . An admissible trajectory is a solution
to Ẋ(t) = v(t)F (X(t)) + u(t)G(X(t)) a.e. for some
admissible control U(·).
Thanks to the compactness of the set of controls, the convex-
ity of the set of velocities, and the completeness of the vector
fields, Filippov’s theorem (see, for instance, [1]) gives:

Proposition 3.2: For any pair of points in Rn, there exists
a time-optimal trajectory joining them.

The main tool to compute time-optimal trajectories is the
Pontryagin Maximum Principle (PMP). A general version of
PMP can be found in [1]. The following theorem is a version
of PMP for control systems of the form (4) that we state in
our own context only.

Theorem 3.3 (PMP): Consider the control system (4). For
every (P,X,U) ∈ Rn × Rn × U , define the Hamiltonian
function

H(P,X,U) = v 〈P, F (X)〉+ u 〈P,G(X)〉 . (5)

Let U(·) be a time-optimal control and X(·) the correspond-
ing trajectory defined on [t0, t1]. Then, there exist a never
vanishing Lipschitz covector (or adjoint vector) P (·) : t ∈
[t0, t1] 7→ P (t) ∈ Rn and a non negative constant λ such
that for almost all t ∈ [t0, t1]:

i. Ẋ(t) =
∂H

∂P
(P (t), X(t), U(t)),

ii. Ṗ (t) = −∂H
∂X

(P (t), X(t), U(t)),

iii. H(P (t), X(t), U(t)) = max
W∈U

H(P (t), X(t),W ),

iv. H(P (t), X(t), U(t)) = λ > 0.

A pair trajectory-control (X(·), U(·)) (resp. a triplet
(P (·), X(·), U(·))) satisfying the conditions given by the
PMP is said to be an extremal trajectory (resp. an extremal).
An extremal corresponding to λ = 0 is said to be an
abnormal extremal, otherwise we call it a normal extremal.

Remark 3.4: Notice that, up to change U(·) on a set of
measure zero, an extremal control can always be chosen so
that the function t 7→ H(P (t), X(t), U(t)) is continuous.
Consequently, we may always assume (without loss of gen-
erality) that condition iv of PMP is valid everywhere.



B. Basic definitions

Definition 3.5 (Switching functions): Let X(·) be an ex-
tremal trajectory. The corresponding u-switching and v-
switching functions are (the C1 functions) respectively de-
fined as

φu(t) = 〈P (t), G (X(t))〉 and φv(t) = 〈P (t), F (X(t))〉 .

Switching functions are very important since their analysis
determines when the corresponding control may change.

In the following three definitions (Definions 3.6-3.8), X(·)
is an extremal trajectory defined on the time interval [t0, t1]
and U(·) : [t0, t1]→ U is the corresponding control.

Definition 3.6 (Bang): U(·) is said to be a u-bang (resp.
v-bang) control if, for a.e. t ∈ [t0, t1], u(t) = −umax (or
u(t) = umax) (resp. v(t) = vmin (or v(t) = vmax)). U(·)
is a bang control if, for a.e. t ∈ [t0, t1], it is u-bang and
v-bang. A finite concatenation of bang controls is called a
bang-bang control.

Definition 3.7 (Singular): We say that U(·) is a u-
singular control (resp. v-singular) if the corresponding
switching function φu (resp. φv) vanishes identically on
[t0, t1]. If φu and φv both vanish identically on [t0, t1], we
say that U(·) is totally singular.

Definition 3.8 (Switching times): A u-switching time of
U(·) is a time τ ∈ (t0, t1) such that, for a sufficiently small
ε > 0, u(t) = umax for a.e. t ∈ (τ−ε, τ ] and u(t) = −umax

for a.e. t ∈ (τ, τ + ε] or vice-versa. Similarly, we define a
v-switching time. A (u, v)-switching time is a time that is
both a u- and a v-switching time. If τ is a switching time, the
corresponding point X(τ) on the trajectory X(·) is called a
switching point.

C. Abnormal trajectories

The following lemma characterizes abnormal extremals of
system (4).

Lemma 3.9: Let γ(·) = (P (·), X(·), U(·)) be an abnormal
extremal defined on [t0, t1]. Let τ ∈ [t0, t1]. Then, there
exists ε > 0 such that in restriction to each (non empty)
interval (τ, τ + ε)

⋂
[t0, t1] and (τ − ε, τ)

⋂
[t0, t1], γ(·) is

either totally singular or bang with v(t) = vmin.
Remark 3.10: According to Remark 3.13, generically, on

R2, an abnormal extremal is not totally singular.

D. Singular trajectories

First, let us introduce the functions1

∆A(X) = det (F (X), G(X)) ,

∆Bu(X) = det (G(X), [F,G](X)) ,

∆Bv(X) = det (F (X), [F,G](X)) ,

whose zero sets are fundamental loci (see [5]) in the con-
struction of the optimal synthesis.

The following lemma which is a direct generalization of
[5, Theorem 12 page 47].

Lemma 3.11: u-singular (resp. v-singular) trajectories are
contained in the set ∆−1Bu(0) (resp. ∆−1Bv(0)).

1If F1 and F2 are two vector fields, [F1, F2] denotes their Lie bracket.

Lemma 3.12 ((u, v)-singular trajectories): (u, v)-
singular trajectories are contained in the set
∆−1A (0)

⋂
∆−1Bu(0)

⋂
∆−1Bv(0).

Remark 3.13: Although it is not addressed here, it can be
proved that the intersection ∆−1A (0)

⋂
∆−1Bu(0)

⋂
∆−1Bv(0) is

generically empty. In other words, generically, on R2, there
is no totally singular trajectories.

The next lemma describes the kind of switches that may
occur along singular arcs.

Lemma 3.14: Along a u-singular trajectory which is not
totally singular, v is a.e. equal to vmax. Along a v-singular
trajectory which is not totally singular, a u-switching cannot
occur.

Remark 3.15: When a trajectory enters or exits a u-
singular piece v is equal to vmax. In a similar way, the control
u is the same at the entrance and the exit of a v-singular piece
which is not totally singular.

E. Switchings

1) u-switchings:
Lemma 3.16: Along a normal extremal trajectory, a u-

switching can occur only if v = vmax.
Remark 3.17: The previous lemma implies in particular

that, along a normal trajectory, a v-switching from vmax to
vmin is necessarily followed by another v-switching from
vmin to vmax before a u-switching can occur.

2) (u, v)-switchings:
Lemma 3.18 ((u, v)-switchings): A (u, v)-switching can-

not occur along an extremal trajectory.

F. Special domains

Using the sets ∆−1A (0), ∆−1Bu (0) and ∆−1Bv (0) defined in
Section III-D we can define domains in which a control can
switch at most one time. Consider a point X /∈ ∆−1A (0).
Then F (X) and G(X) are linearly independent and form a
basis. An easy computation shows that

[F,G] (X) = f(X)F (X) + g(X)G(X), (6)

with

f(X) = −∆Bu(X)

∆A(X)
and g(X) =

∆Bv(X)

∆A(X)
.

Lemma 3.19: A normal and non-singular trajectory along
which f > 0 (resp. f < 0) admits at most one u-switching
and necessarily from −umax to umax (resp. from umax

to −umax). Similarly, a normal and non-singular trajectory
along which g > 0 (resp. g < 0) admits at most one v-
switching and necessarily from vmax to vmin (resp. from vmin

to vmax).

IV. CONSTRUCTION OF TIME OPTIMAL SYNTHESIS FOR
THE REDUCED SYSTEM

In this section, we apply the results obtained in the previ-
ous sections to solve problem (P2). Although this application
is similar to the work done in [8], the resolution is more
complicated.

In this section, for the sake of clarity and without loss
of generality, we assume that U = [−1, 1] × [vmin, vmax].



According to Remark 2.4, it is even possible to rewrite this
set with only one parameter µ = vmax/vmin, however we
preferred to keep vmin and vmax to facilitate the reading.
Note moreover that, in this case, rmin = vmin.

A. Pontryagin Maximum Principle

First of all, notice that system (3) is of the form (4) with

X̃ =

(
x̃
ỹ

)
, F (X̃) =

(
−1
0

)
and G(X̃) =

(
−ỹ
x̃

)
.

We apply the PMP to (P2). The Hamiltonian function of
PMP is

H
(
X̃, P, U

)
= −vp+ u (qx̃− pỹ) ,

with P = (p, q) ∈ R2 being the covector. The adjoint system
is thus given by {

ṗ(t) = −u(t)q(t)

q̇(t) = u(t)p(t)
(7)

and the switching functions are

φu(t) = q(t)x̃(t)− p(t)ỹ(t),

φv(t) = −p(t).

The maximality condition of the PMP reads :

H
(
X̃(t), P (t), U(t)

)
= max

(u,v)∈U

(
uφv(t) + vφu(t)

)
= λ

and leads to the controls

u(t) =

{
−1 if φu(t) < 0

1 if φu(t) > 0
, v(t) =

{
vmin if φv(t) < 0

vmax if φv(t) > 0
.

Remark 4.1: The cases where the switching functions
vanish identically is addressed in the next subsection.

B. Singular trajectories

Let us compute the quantities

∆A(x̃, ỹ) = −x̃, ∆Bu(x̃, ỹ) = ỹ ∆Bv(x̃, ỹ) = 1,

f(x̃, ỹ) =
ỹ

x̃
, g(x̃, ỹ) = − 1

x̃
.

Lemmas 3.11, 3.12 and 3.14 imply that
• there exists no v-singular trajectory (and consequently

no totally singular trajectory) since ∆−1Bv(0) = ∅;
• u-singular trajectories are contained in the set2

∆−1Bu(0) =
{

(x̃, ỹ) ∈ R2 | ỹ = 0
}
.

To compute the corresponding control, we differentiate
w.r.t. t the function φu (which is identically zero). A
straightforward calculation yields

φ̇u(t) = vmax 〈P (t), [F,G] (X(t))〉 = −vmaxq(t) = 0,

φ̈u(t) = u(t) 〈P (t), [G, [F,G]] (X(t))〉 = u(t)p(t) = 0,

which implies that, along u-singular trajectories, u(·)
vanishes identically. Note that this is quite intuitive
since u = 0 is the only control that allows the trajectory
to stay on the x-axis.

2According to [5], the set {(x̃, ỹ) ∈ R2 | ỹ = 0} is a turnpike

(−1, vmin)

(−1, vmax)

(1, vmax)

x̃

ỹ

Fig. 1. Candidate extremal trajectories of problem (P2) issued from X̃0

C. Optimal synthesis algorithm

Since X̃0 is an equilibrium point for the control (1, vmin)
and since X̃0 /∈ ∆−1Bu(0), there are, a priori, three possible
candidates as optimal starting trajectories corresponding to
the bang controls (1, vmax), (−1, vmax) and (−1, vmin) (see
Fig. 1).

The time-optimal synthesis is constructed following the 3
steps :

1) For each bang trajectory starting from X̃0, compute the
last time at which the trajectory is extremal (or has lost
its optimality by intersecting itself) and study which
kind of extremal trajectories can bifurcate from it.

2) For each bang or u-singular trajectory bifurcating from
one of the starting trajectories, compute the last time at
which it is extremal. If there are intersections among
trajectories, we cancel those parts that are not optimal
(among trajectories already computed up to this step).

3) For each trajectory computed at the previous step that
did not loose its optimality, prolong it with the next
bang or singular trajectory up to the last time at which
it is extremal. If there are intersections among trajec-
tories, cancel those parts that are not optimal (among
trajectories already computed up to this step).

Then, the synthesis is built recursively, repeating step 3)
until no new trajectories are generated. In our case, four
applications of step 3) are necessary.

D. Expression of the adjoint vector

The starting control u being either 1 or −1, the solution
to system (7) with the normalization |P (0)| = 1 is{

p(t) = cos (α+ t)

q(t) = ± sin (α+ t) , for u = ±1
(8)

where α is defined by P (0) = (cosα,± sinα). The condi-
tion PMP iv written at the initial point implies that

(−v(0) + u(0)vmin) p(0) > 0.

Since (u(0), v(0)) 6= (1, vmin) , (−v(0) + u(0)vmin) is neg-
ative. Hence, p(0) = cosα 6 0 and α ∈

[
π
2 ,

3π
2

]
.



The following study consists in analyzing the behaviour
of the trajectories depending on the value of α.

E. Starting trajectories

This section details the first step (and only this one) of the
algorithm described in Section IV-C.

1) Starting with the control (−1, vmax): The trajectory
starting from X̃0 with the control (−1, vmax) has coordinates{

x̃(t) = − (vmax + vmin) sin t

ỹ(t) = vmax − (vmax + vmin) cos t,

and from (8), the coordinates of the adjoint vector are{
p(t) = cos (t+ α)

q(t) = − sin (t+ α) ,

with α ∈
[
π
2 ,

3π
2

]
. It follows that the switching functions are

φu(t) = (vmax + vmin) cosα− vmax cos (t+ α) ,

φv(t) = −p(t) = − cos (t+ α) .

Recall that the sign of each of these functions determines
the value of the corresponding control. It is thus fundamental
to study when does a switching function change sign. The
analysis of the switching functions yields the following.
• The cases α = π/2 and α = 3π/2 cannot occur.
• For αsing = arccos (−vmax/(vmax + vmin)), the tra-

jectory reaches the x̃-axis at time t = π − αsing and
becomes u-singular.

• For every α ∈ (π/2, αsing), φu vanishes before φv
and there is a u-switching at time tusw(α) = −α +
arccos (cosα(vmax + vmin)/vmax).

• For every α ∈ (αsing, 3π/2), φv vanishes before φu and
there is a v-switching at time tvsw(α) = −α+ 3π/2.

The three possible cases in the previous analysis give three
different families of trajectories to study at step 2) of the
algorithm.

2) Starting with control (1, vmax): A similar analysis to
the previous one shows that there is no optimal trajectory
starting from X̃0 with the controls (u, v) = (1, vmax).

3) Starting with the controls (−1, vmin): The trajectory
starting from X̃0 with the control (−1, vmin) has coordinates{

x̃(t) = −2vmin sin t

ỹ(t) = vmin − 2vmin cos t,

and from (8), the coordinates of the adjoint vector are{
p(t) = cos (t+ α)

q(t) = − sin (t+ α) .

It follows that the switching functions are

φu(t) = 2vmin cos (α)− vmin cos (t+ α) ,

φv(t) = − cos (t+ α) .

The maximization condition PMP iv implies

φu(0) = vmin cos (α) 6 0,

φv(0) = − cos (α) 6 0.

TABLE I
COLOR CODE OF THE OPTIMAL SYNTHESIS

(−1, vmin)-bang arc Blue
(1, vmin)-bang arc Orange
(−1, vmax)-bang arc Purple
(1, vmax)-bang arc Red

u-singular arc Black
u-switching curves Dashed black
v-switching curves Gray

Cut Locus Green
Abnormal Cut Locus Cyan

It follows that α ∈
{
π
2 ,

3π
2

}
(in particular, the trajectory is

abnormal). Note that φu and φv must be negative on a (small)
open interval of the form (0, ε) since the starting control
is the bang control (−1, vmin). Moreover, since φu(0) =
φv(0) = 0 and

φ̇u(0) = vmin sinα,

φ̇v(0) = sinα,

φu and φv will be both negative on (0, ε) if and only
if α = 3π/2. Consequently, there is only one extremal
(corresponding to α = 3π/2) starting from X̃0 with control
(−1, vmin). The two switching functions along this extremal

φu(t) = −vmin sin t,

φv(t) = − sin t,

change their sign at t = π and since a (u, v)-switching cannot
occur (see Lemma 3.18) the trajectory loses its optimality at
time π.

V. NUMERICAL SIMULATIONS

A. Synthesis in the UAV-based coordinates

For the numerical simulations, vmin = 1 and vmax = 2
and for the sake of brevity, the whole construction of the
synthesis is not detailed.

During the construction of the optimal synthesis some
special curves appears, namely
• switching curves, i.e., curves made of switching points;
• the cut locus, i.e., the set of points where the extremal

curves of problem (P2) lose global optimality)
In practice, these points can be very difficult to compute. In
the following, some of them were computed numerically.
Following the algorithm described in Section IV-C, the
time-optimal synthesis corresponding to the problem (P1)
has been solved. The corresponding (discontinuous) state-
feedback is given in Fig. 2 and Table I as a partition of the
reduced state space.

Remark 5.1: Notice that the minimum time function (as
a function of x̃ and ỹ) is not continuous along the abnormal
trajectory.

B. Correspondence with problem (P0)
The solutions of problem (P0) can be deduced from the

solutions of problem (P1). In this section, we display pairs
of figures (Fig. 3 and 4) showing two solutions of problem
(P1) (that start from the same point in the cut locus) and the



ỹ

x̃

X̃0

Fig. 2. Time-optimal synthesis for the problem (P1)

corresponding lifted solutions of problem (P0). Notice that
the singular trajectory go straight to the center of the target.

x̃

ỹ

C
x

y

X̃0

Fig. 3. Two bang-bang-singular-bang optimal trajectories. Two optimal
trajectories solutions of problem (P1) starting from the same point in the cut
locus (left) and the corresponding optimal trajectories solutions of problem
(P0) (right)

VI. CONCLUSION

In this paper we have solved a time-minimal problem
modeling a UAV flying at constant altitude with controls
on the steering angle and on the linear velocity. Thanks to
a change of coordinates applied to the three-dimensional
Dubins system, we could simplify our problem and use
(and extend) the existing theory of time-optimal syntheses
for two-dimensional single input affine control systems to
two-dimensional affine control systems with two inputs. We

C

ỹ

x̃

X̃0

C

y

x

Fig. 4. Two bang-bang-bang-bang-bang optimal trajectories. Two optimal
trajectories solutions of problem (P1) starting from the same point in the cut
locus (left) and the corresponding optimal trajectories solutions of problem
(P0) (right)

gave the time-optimal synthesis as a state-feedback law such
that the target is reached optimally in finite time. Although
the state-feedback law is not written explicitly as analytic
expressions of the form u(x̃, ỹ) and v(x̃, ỹ), such formulas
can be straightforwardly deduced from the partition of the
reduced state space given by the optimal synthesis. Following
this study, we could implement in simulation a controller
based on our results.
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