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Output agreement in networks with
unmatched disturbances and algebraic constraints

Nima Monshizadeh Claudio De Persis

Abstract— This paper considers a problem of output agree-
ment in heterogeneous networks with dynamics on the nodes
as well as on the edges. The control and disturbance signals
entering the nodal dynamics are “unmatched” meaning that
some nodes are only subject to disturbances, and are deprived of
actuating signals. To further enrich our model, we accommodate
(solvable) algebraic constraints in a subset of nodal dynamics.
We show that appropriate dynamic feedback controllers achieve
output agreement on a desired vector. We also investigate the
case of an optimal steady-state control over the network. The
proposed results are applied to a heterogeneous microgrid.

I. I NTRODUCTION

Agreement on a certain quantity of interest plays a central
role in cooperative control. The most notable instances
are distributed optimization [16], consensus [13], formation
control [12], and synchronization, see e.g. [14], [11], [15].

The study of output agreement/regulation problem in the
presence of disturbances has been motivated by numerous
applications in balancing demand and supply, power net-
works, and hydraulic networks. In this framework, the de-
mands/loads are interpreted as external disturbances affecting
the network dynamics, see e.g. [6], [4], [7].

In this paper, we consider agents with non-identical non-
linear port-Hamiltonian dynamics; see [18] for more infor-
mation on port-Hamiltonian systems. The nodal dynamics
is subject to constant disturbances. In addition, we consider
that a subset of nodal dynamics is governed by algebraic
constraints. These constraints could be the result of mismatch
in the dynamic order of the agents, or an approximation of
fast subdynamics in singularly perturbed models [10]. The
algebraic constraints we consider here are solvable meaning
that they can be expressed in terms of other state variables
of the network. However, obviously, the presence of such
constraints adds to the heterogeneity of the network, and
complicates the analysis.

We consider the physical coupling to be “undamped”, and
given by a single integrator with a nonlinear output map. We
first show that an equilibrium of the network, if exists, is at-
tractive and thus output agreement is locally achieved for the
network. Next, we include controller dynamics on the nodes
to guarantee output agreement on a prescribed set point, in
the presence of physical coupling and disturbance signals.
Another important feature here is that we treat anunmatched
control-disturbance scheme, meaning that control signalsand
disturbances may act on different subsets of nodes. As a

Nima Monshizadeh and Claudio De Persis are with the Engineer-
ing and Technology Institute, University of Groningen, TheNetherlands,
n.monshizadeh@rug.nl, c.de.persis@rug.nl

case study, we consider a heterogeneous microgrid consisting
of synchronous generators, droop-controlled inverters, and
frequency dependent loads, where the goal is to guarantee a
zero frequency deviation for all the nodes of the grid.

Note that the main contribution of the current manuscript
is to consider simultaneously i) multivariable nonlinear nodal
dynamics, ii) dynamic physical coupling, iii) algebraic con-
straints, and iv) unmatched disturbances in the output agree-
ment problem. Our analysis is implicitly based on passivity
and incremental passivity property inspired by [1], [2], [5],
[3], [17].

The analysis of output agreement problem is carried out
in Section II, whereas the control design is treated in Section
III. Section IV is devoted to the case study of microgrids.
Conclusions are provided in Section V. The formal proofs of
the proposed results are collected in the appendix in Section
VI.
Notation Apart form the standard notation, we use the
following conventional notation. We use superscripts for
vectors and matrices to indicate their domain of definition.
In particular, letxj with j ∈ I be a set of vectors. Then,
by xi we meanxi = col(xj) with j ∈ Ii ⊆ I. For a set of
matrices, we defineAi = blockdiag(Aj) with j ∈ Ii ⊆ I.
We remove the superscript in caseIi = I.

II. ANALYSIS

We define a dynamical network on a connected undirected
graphG = (V , E). We partition the vertex set ofG into two
distinct subsets,V := I = I1 ∪ I2. To each vertex ofG, we
associate the following port-Hamiltonian types of dynamics:

ẋi = (Ji −Ri)∇Hn,i(xi) +Gi(σi + di) i ∈ I1 (1a)

0 = (Ji −Ri)∇Hn,i(xi) +Gi(σi + di) i ∈ I2 (1b)

yi = GT
i ∇Hn,i(xi) i ∈ I (1c)

where xi ∈ Rn, Ji is a skew symmetric matrix,Ri is a
positive definite matrix,σi ∈ R

m amounts for the physical
coupling,di ∈ Rm is a constant vector, and the Hamiltonian
Hn,i : Rn → R is strictly convex in an open convex set
Ωn ⊆ R

n for eachi.
To each edge ofG, we associate the following dynamics:

η̇k = vk (2a)

µk = ∇He,k(ηk) (2b)

where ηk ∈ Rm, the HamiltonianHe,k : Rm → R is
strictly convex in an open convex setΩe ⊆ Rm, and
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k = 1, 2, . . . ,M . The interconnection law is given by

v = (BT ⊗ Im)y, σ = −(B ⊗ Im)µ (3)

whereB is the incidence matrix ofG, v = col(vk), y =
col(yi), and σ = col(σi) with k = 1, 2, . . . ,M and i =
1, 2, . . . , N .

Then, the edge dynamics (2), the nodal dynamics (1), and
the interconnection law (3) can be written compactly as

η̇ = (BT ⊗ I)GT∇Hn(x) (4a)

µ = ∇He(η) (4b)

ẋ1 = (J1 −R1)∇H1
n(x

1)

−G1(B1 ⊗ I)∇He(η) +G1d1 (4c)

0 = (J2 −R2)∇H2
n(x

2)

−G2(B2 ⊗ I)∇He(η) +G2d2 (4d)

y = GT∇Hn(x) (4e)

whereB1 andB2 denote the submatrices obtained fromB
by collecting the rows indexed byI1 andI2, respectively. Let
x = col(x1, x2) andd = col(d1, d2). Suppose that(x̄, η̄) ∈
(Ωn)

N × (Ωe)
M is an equilibrium of system (4) witḣ̄x = 0

and ˙̄η = 0. Then, we have

0 = (BT ⊗ I)GT∇Hn(x̄) (5a)

0 = (J1 −R1)∇H1
n(x̄

1)

−G1(B1 ⊗ I)∇He(η̄) +G1d1 (5b)

0 = (J2 −R2)∇H2
n(x̄

2)

−G2(B2 ⊗ I)∇He(η̄) +G2d2. (5c)

Observe that the equation (5a) yields an output agreement
condition

GT
i ∇Hn,i(xi) = GT

j ∇Hn,j(xj), ∀i, j ∈ I. (6)

Hence, we obtain thatGT∇Hn(x̄) = 1N ⊗ y∗ for some
constant vectory∗ ∈ Rn. The other two equations can be
written together as

0 = (J −R)∇Hn(x̄)−G(B ⊗ I)∇He(η̄) +Gd. (7)

This implies that

1N ⊗ y∗ = GT (J −R)−1G((B ⊗ I)∇He(η̄)− d). (8)

In case the matrixG is equal to the identity matrix, by
multiplying both hand sides of (8) from the left by(1T

N ⊗
In)(J −R), we obtain that

N
∑

i=1

(Ji −Ri)y
∗ = −

N
∑

i=1

di. (9)

Hence,y∗ = ∇Hn,i(x̄i) is computed as

y∗ = −(
N
∑

i=1

(Ji −Ri))
−1

N
∑

i=1

di. (10)

Then, noting that1N ⊗ y∗ = ∇Hn(x̄), the constant vector
x̄ ∈ (Ωn)

N is unique in this case. It is worth mentioning that

in the casen = 1, we haveJ = 0, and (10) is simplified to
y∗ = 1

T d
1TR1

.

By replacing (10) in (8) withG = I, the term (B ⊗
I)∇He(η̄) is explicitly computed. Hence,̄η ∈ (Ωe)

M

in general is not unique. However, in case the graphG
is acyclic, the incidence matrixB has full column rank,
and thusη̄ is unique. Note that an equilibrium(x̄, η̄) ∈
(Ωn)

N × (Ωe)
M does not always exist, and in particular the

feasibility conditions(6) and (7) must hold. The following
theorem investigates stability/attractivity propertiesof such
an equilibrium, assuming that it exists.

Theorem 1 Suppose that(x̄, η̄) ∈ (Ωn)
N × (Ωe)

M is an
equilibrium of (4). Then there exists a region of state
space, which includes(x̄, η̄), such that any solution(x, η)
of (4) starting in this region asymptotically converges to an
equilibrium of (4), and the output agreement condition(6)
holds.

Proof. See Appendix.

Note that Theorem 1 implies that the network (4) reaches
an output agreement providing that there exist constant
vectors(x̄, η̄) ∈ (Ωn)

N ×(Ωe)
M satisfying (6), (7), and thus

(8). As the vectory∗ resulting from this agreement may be
not the desired one, due to the dependency on the disturbance
d, next we investigate the possibility to influence this vector
by an appropriate control scheme.

III. CONTROL

In this section, we treat certain control problems related
to network dynamics (4). To capture the heterogeneous role
of the nodes, we further partition the nodal dynamics (1) as

ẋi = (Ji −Ri)∇Hn,i(xi) +Gi(σi + ui + δi) i ∈ I11

ẋi = (Ji −Ri)∇Hn,i(xi) +Gi(σi + δi) i ∈ I12

0 = (Ji −Ri)∇Hn,i(xi) +Gi(σi + ui + δi) i ∈ I21

0 = (Ji −Ri)∇Hn,i(xi) +Gi(σi + δi) i ∈ I22

yi = GT
i ∇Hn,i(xi) i ∈ I

(11)

whereI1 = I11∪I12, I2 = I21 ∪I22, I11 6= ∅, andGi has
a full column rank for eachi. Here, theui components are
treated as control signals which are applied to the nodes, and
the δis are constant disturbance signals affecting the nodal
dynamics. Note that the nodes inI12 andI22 are not directly
controlled, and therefore our treatment here incorporatesthe
case of anunmatchedcontrol-disturbance scheme.

Now, the overall network dynamics can be written as

η̇ = (BT ⊗ I)GT∇Hn(x) (12a)

ẋ11 = (J11 −R11)∇H11
n (x11)

−G11(B11 ⊗ I)∇He(η)

+G11u11 +G11δ11 (12b)

ẋ12 = (J12 −R12)∇H12
n (x12)

−G12(B12 ⊗ I)∇He(η) +G12δ12 (12c)

0 = (J21 −R21)∇H21
n (x21)



−G21(B21 ⊗ I)∇He(η)

+G21u21 +G21δ21 (12d)

0 = (J22 −R22)∇H22
n (x22)

−G22(B22 ⊗ I)∇He(η) +G22δ22 (12e)

y = GT∇Hn(x). (12f)

Our goal here is to design dynamic feedback controllers
u11 and u21 such that output agreement (6) is guaranteed
for the network, for a prescribed vectory∗, in the presence
of network coupling and disturbance signals. If suchu11

andu21 exist, we say that the output agreement problem is
solvable. Obviously, this may not be always plausible, and
by (12) we obtain the following feasibility condition

1⊗ y∗ = GT∇Hn(x̄) (13a)

0 = (J11 −R11)∇H11
n (x̄11)

−G11(B11 ⊗ I)∇He(η̄)

+G11ū11 +G11δ11 (13b)

0 = (J12 −R12)∇H12
n (x̄12)

−G12(B12 ⊗ I)∇He(η̄) +G12δ12 (13c)

0 = (J21 −R21)∇H21
n (x̄21)

−G21(B21 ⊗ I)∇He(η̄) (13d)

+G21ū21 +G21δ21

0 = (J22 −R22)∇H22
n (x̄22)

−G22(B22 ⊗ I)∇He(η̄) +G22δ22 (13e)

Clearly, this boils down to the following condition.
Feasibility condition: there exist constant vectors̄x ∈
(Ωn)

N , η̄ ∈ (Ωe)
M , d11, d21 such that

1⊗ y∗ = GT∇Hn(x̄) (14a)

0 = (J11 −R11)∇H11
n (x̄11)

−G11(B11 ⊗ I)∇He(η̄) +G11d11 (14b)

0 = (J12 −R12)∇H12
n (x̄12)

−G12(B12 ⊗ I)∇He(η̄) +G12δ12 (14c)

0 = (J21 −R21)∇H21
n (x̄21)

−G21(B21 ⊗ I)∇He(η̄) +G21d21 (14d)

0 = (J22 −R22)∇H22
n (x̄22)

−G22(B22 ⊗ I)∇He(η̄) +G22δ22 (14e)

Note that we have used the fact thatη̄ is constant, andG11

andG22 are full column rank. Now, we have the following
result.

Theorem 2 Consider the decentralized controller

ξ̇i = y∗ −GT
i ∇Hn,i(xi) (15a)

ui = ξi (15b)

with i ∈ I11∪I21. Assume that the feasibility condition(14)
holds, and letξ = col(ξi) and ξ̄ = col(d1, d2). Then, there
exists a region of state space, including(x̄, η̄, ξ̄), such that
any solution(x, η, ξ) of the network asymptotically converges
to an equilibrium of(12)and(15), in whichG∗

i∇Hn,i(x̄i) =
y∗ for eachi ∈ V .

Proof. See Appendix.

Remark 3 Note that in case the controller at a nodei ∈ I11
or i ∈ I21 does not have access to the desired outputy∗, one
can setui to a constant, namely a nominal value, and incor-
porate the nodei in the subdynamics of (11) corresponding
to the nodes indexed byI12 or I22, respectively.

In Theorem 2, the control inputu has been designed such
that output agreement on a prescribed vectory∗ is achieved
for the network. Observe that the “steady-state” control
signal ū = ξ̄ is primarily determined by the initialization
of the system/controller. Next, under the constraint of output
agreement (6), we aim to minimize the following quadratic
cost function

min
ū

=
1

2

∑

i∈Ic

ūT
i Qiūi (16)

whereQi ∈ Rm ×Rm is a positive definite matrix for each
i, and Ic = I11 ∪ I21. Note that the optimization above
determines the steady-state distribution of the control effort
over the agents of the network. This is particularly relevant
in applications involving demand and supply balancing,
including power as well as hydraulic networks; see e.g. [4],
[6].

To make the analysis more concise, we restrict our atten-
tion to the case whereGi = I for eachi. Then, similar to
(9), we obtain the following constraint

N
∑

i=1

(Ji −Ri)y
∗ +

∑

i∈Ic

ui +

N
∑

i=1

δi = 0. (17)

By standard Lagrange multipliers method, the vectorū which
minimizes (16) subject to (17) is obtained as

ūi = Q−1
i λ (18)

whereλ ∈ Rn is given by

λ = −(
∑

i∈Ic

Q−1
i )−1(

N
∑

i=1

(Ji −Ri)y
∗ +

N
∑

i=1

δi). (19)

It is easy to observe that, by (13) and (18), we obtain the
following feasibility condition in this case.
Feasibility condition with optimality: For a giveny∗ ∈ Ωn,
there exists a constant vectorη̄ ∈ (Ωe)

M such that

0 = (J11 −R11)(1⊗ y∗)− (B11 ⊗ I)∇He(η̄)

+ (Q11)−1(1⊗ λ) + δ11 (20a)

0 = (J12 −R12)(1⊗ y∗)− (B12 ⊗ I)∇He(η̄) + δ12

(20b)

0 = (J21 −R21)(1⊗ y∗)− (B21 ⊗ I)∇He(η̄)

+ (Q21)−1(1⊗ λ) + δ21 (20c)

0 = (J22 −R22)(1⊗ y∗)− (B22 ⊗ I)∇He(η̄) + δ22

(20d)

whereλ is as in (19).



To achieve output agreement problem with an optimal
“steady state” control input, we propose a distributed con-
troller at the nodes. The communication among the con-
trollers takes place over a communication graph, sayGC =
(Vc, Ec), which is undirected and connected.

Theorem 4 Assume that the feasibility condition(20) holds.
Consider the distributed controller

ξ̇i =
∑

{i,j}∈Ec

(ξj − ξi) +Q−1
i (y∗ −∇Hn,i(xi)) (21a)

ui = Q−1
i ξi (21b)

with i ∈ I11 ∪ I21. Let ξ = col(ξi), and let the constant
vector ξ̄ be chosen as̄ξ = 1⊗ λ whereλ is given by(19).
Then, there exists a region of state space, including(x̄, η̄, ξ̄),
such that any solution(x, η, ξ) of the network starting in
this region asymptotically converges to an equilibrium of
(12) and (21), in which ∇Hn,i(x̄i) = y∗ for each i ∈ V .
Moreover, in this region,ui asymptotically converges to the
optimal ūi given by(18).

Proof. See Appendix.

IV. CASE STUDY

We consider a (fairly) general heterogeneous microgrid
which consists of synchronous generators, droop-controlled
inverters, and frequency dependent loads. We partition the
buses, i.e. the nodes ofG, into three sets, namelyVG, VI ,
andVL, corresponding to the set of synchronous generators,
inverters, and loads, respectively.

The dynamics of each synchronous generator is governed
by the so-calledswing equation, and is given by:

Miθ̈i = −Aiθ̇i + ui − Pi + δi, i ∈ VG, (22)

where
Pi =

∑

{i,j}∈E

Im(Yij)ViVj sin(θi − θj) (23)

is the active nodal injection at nodei. Here,Mi > 0 is the
moment of inertia,Ai > 0 is the damping constant,ui is
the local controllable power generation, andδi is the local
load at nodei ∈ VG . The value ofYij ∈ C is equal to the
admittance of the branch{i, j} ∈ E , and θi is the voltage
angle at nodei. Also, Vi is the voltage magnitude at nodei,
and is assumed to be constant.

For the droop-controlled inverters, we consider the follow-
ing first-order model

Aiθ̇i = ui − Pi + δi , i ∈ VI (24)

whereAi is known as the droop coefficient,ui is the injection
power at node (inverter)i, δi is the local load at inverteri,
and θ̇i indicates the frequency deviation from the nominal
frequency of the network,i ∈ VI . The termPi has the same
expression as in (23).

As for nodal dynamics corresponding to the loads, we
consider frequency dependent loads given by the first-order
system

Aiθ̇i = δi − Pi , i ∈ VL (25)

Again, hereθ̇i is the frequency deviation,Ai > 0 is the
damping coefficient,Pi is given by (23), andδi is the
constant power consumption at nodei ∈ VL.

To write the system in a compact form, we need the
following nomenclature. For eachi = 1, 2, . . . , k, let γk be
defined asγk = (Im Yij)ViVj with {i, j} being thekth edge
of the graph, where the edge numbers are in accordance
with the incidence matrixB. We define the diagonal matrix
Γ as Γ = diag(γj), with j = 1, 2, . . . , k. Let the matrices
BG, BI , and BL be obtained fromB by collecting the
rows indexed byVG, VI , and VL, respectively. We define
the vectors and matricesMG, AG, θG, anduG, asMG =
diag(Mi), AG = diag(Ai), θG = col(θi), uG = col(ui),
and δG = col(δi) where i ∈ VG. The vectors and matrices
AI , θI , anduI are defined asAI = diag(Ai), θI = col(θi),
uI = col(ui), and δG = col(δi) with i ∈ VI . In addition,
let AL = diag(Ai), θL = col(θi) and δL = col(δi) where
i ∈ VL. Finally, let P = col(Pi), θ = col(θG, θI , θL), and
sin(x) := col(sin(xi)) for a given vectorx. Then, it is easy
to observe that the dynamics of the synchronous generators,
the inverters, and the loads can be written compactly as:

MGθ̈G +AGθ̇G = −BGΓsin(B
⊤θ) + uG − δG (26a)

AI θ̇I = −BIΓsin(B
⊤θ) + uI − δI (26b)

ALθ̇L = −BLΓsin(B
⊤θ) + δL (26c)

Note that this is the same model as [8], see also [19]. By
definingη = BT θ, ωG = θ̇G, ωI = θ̇I , ωL = θ̇L, and θ̇ =
ω = col(ωG, ωI , ωL), the network dynamics (26), admits the
following representation

η̇ = BTω (27a)

MGω̇G +AGωG = −BGΓsin(η) + uG + δG (27b)

AIωI = −BIΓsin(η) + uI + δI (27c)

ALωL = −BLΓsin(η) + δL (27d)

Now, let pG = MGωG, HG = 1
2p

T
GM

−1
G pG, HI = 1

2ω
T
I ωI ,

HL = 1
2w

T
LwL, andHe = −1TΓcos(η). Then, (27) can be

written as

η̇ = BT∇HT (p) (28a)

ṗG = −AG∇HG(pG)−BG∇He(η) + uG + δG (28b)

0 = −AI∇HI(ωI)−BI∇He(η) + uI + δI (28c)

0 = −AL∇HL(ωL)−BL∇He(η) + δL (28d)

where p = col(pG, ωI , ωL) and HT = HG + HI + HL.
Note that (28) has a similar structure/properties as (12), with
Ωn = R, Ωe = (−π

2 ,
π
2 ), andI12 = ∅. The primary control

goal here is to achieve a zero frequency deviation for the
power network. As∇HT = w, this is in accordance with
our definition of output agreement withy∗ = 0. Moreover,
we would like to achieve an optimal steady-state distribution
of the power in the sense of (18). In this case, (18) reads as

ūi = q−1
i λ (29)

where

λ = −(
∑

i

qi)
−1(1T δG + 1

T δI + 1
T δL).



Observe that the feasibility condition (20) in this case
amounts for the existence of a constant vectorη̄ ∈ (−π

2 ,
π
2 )

M

such that

0 = −BG∇He(η̄) + ūG + δG (30a)

0 = −BI∇He(η̄) + ūI + δI (30b)

0 = −BL∇He(η̄) + δL (30c)

whereūi is given by (29) for eachi ∈ VG∪VI . Now, assume
that the feasibility condition (30) holds. Then, by Theorem
4, the controller

ξ̇i =
∑

{i,j}∈Ec

(ξj − ξi)− q−1
i ωi (31a)

ui = q−1
i ξi, i ∈ VG ∪ VI (31b)

achieves zero frequency deviation , and moreoverui asymp-
totically converges to the optimal̄ui given by (29).

Now, consider the case where a proper subset of genera-
tors, sayVF ⊂ VG, encounter some failures. In particular,
assume thatui is not appropriately actuated, and is equal to
some unknown constant vector for eachi ∈ VF . Then, for
the nodes in thefail mode, subdynamics (28b) reads as

ṗF = −AF∇HF (pF )−BF∇He(η) + δF (32)

where we have used the index “F” to distinguish the subdy-
namics above from the nominal subdynamics (28b). Assume
that there existsη ∈ (−π

2 ,
π
2 )

M such that (30) and

0 = −BF∇He(η̄) + δF

are satisfied. Note that (30a) has to be modified accordingly
to exclude the faulty generators. Observe that (32) has the
same structure as (12c). Then, by Theorem 4, we conclude
that the controller (31) achieves a zero frequency deviation,
and we have optimal steady state distribution of the power,
given by (29), despite the failures in the nodal dynamicsVG.

Note that, similarly, absence or failure of actuation in
inverters can be incorporated in our design, as this results
in a similar dynamics to that of the loads.

V. CONCLUSIONS

We have investigated the problem of output agreement
in heterogeneous networks with port-Hamiltonian nodal
dynamics, dynamic physical coupling, and algebraic con-
straints. We have considered the case where control and
disturbance signals may act on different subset of nodes. We
have observed that the equilibrium of the network, if exists,
is locally attractive, and thus output variables asymptotically
converges to a same vector. As discussed, this vector can be
steered to a desired one by applying decentralized dynamic
controllers at the nodes, upon the satisfaction of certain
feasibility conditions imposed by the physics of the problem.
We have also studied the case in which we are interested in
an optimal steady-state distribution of control signals over the
network. As observed, this goal can be achieved by exploit-
ing distributed controllers at the nodes. We have applied the
proposed results on a heterogeneous microgrid. Extending
the analysis to incorporate time-varying disturbances is a
subject of future research.

VI. A PPENDIX

Poof of Theorem 1:From (4a), we have

η̇ = (B1⊗I)T (G1)T∇H1
n(x

1)+(B2⊗I)T (G2)T∇H2
n(x

2)
(33)

By (4d), we obtain that

η̇ = (B1 ⊗ I)T (G1)T∇H1
n(x

1)

+ (B2 ⊗ I)T (G2)T (J2 −R2)−1G2

· ((B2 ⊗ I)∇He(η)− d2)

Next, we study the asymptotic behavior of the following
subdynamics of (4)

η̇ = (B1 ⊗ I)T (G1)T∇H1
n(x

1)

+ (B2 ⊗ I)T (G2)T (J2 −R2)−1G2(B2 ⊗ I)∇He(η)

− (B2 ⊗ I)T (G2)T (J2 −R2)−1G2d2) (34a)

ẋ(1) =(J (1) −R(1))∇H(1)
n (x(1))

−G1(B(1) ⊗ I)∇He(η) +G(1)d(1) (34b)

Let Wn andWe be defined as

Wn(x
1, x̄1) = H1

n(x
1)−H1

n(x̄
1)− (∇H1

n(x̄
1))T (x1 − x̄1)

(35)
and

We(η, η̄) = He(η)−He(η̄)− (∇He(η̄))
T (η − η̄) (36)

where(x̄1, η̄) is an equilibrium of (34). Following [9],Wn

identifies a positive definite map with a strict local minimum
at x1 = x̄1. Also We defines a positive definite map with a
strict local minimum atη = η̄. Noting that ˙̄x = 0, we have

Ẇn =(∇H1
n(x

1))T ẋ1 − (∇H1
n(x̄

1))T (ẋ1 − ˙̄x1)

=(∇H1
n(x

1)−∇H1
n(x̄

1))T (ẋ1 − ˙̄x1)

=(∇H1
n(x

1)−∇H1
n(x̄

1))T

· (J1 −R1)(∇H1
n(x

1)−∇H1
n(x̄

1))

− (∇H1
n(x

1)−∇H1
n(x̄

1))T

·G1(B1 ⊗ I)(∇He(η) −∇He(η̄))

In addition, noting thaṫ̄η = 0 we have

Ẇe =(∇He(η))
T η̇ − (∇He(η̄))

T (η̇ − ˙̄η)

=(∇He(η)−∇He(η̄))
T (η̇ − ˙̄η)

=(∇He(η)−∇He(η̄))
T (B1 ⊗ I)T

· (G1)T (∇H1
n(x

1)−∇H1
n(x̄

1))

+ (∇He(η)−∇He(η̄))
T (B2 ⊗ I)T (G2)T

· (J2 −R2)−1G2(B2 ⊗ I)(∇He(η)−∇He(η̄))

(37)

Let WT := Wn +We. Then, we have

ẆT = (∇H1
n(x

1)−∇H1
n(x̄

1))T (J1 −R1)

· (∇H1
n(x

1)−∇H1
n(x̄

1))

+ (∇He(η)−∇He(η̄))
T (B2 ⊗ I)T (G2)T

· (J2 −R2)−1G2(B2 ⊗ I)(∇He(η)−∇He(η̄))



where we have used the fact thatd1 andd2 are constant.
Now, note that for any skew-symmetric matrixJ and a

positive definite matrixR, we have−2R = (J −R) + (J −
R)T < 0, and thus(J − R)−1 + (J − R)−T < 0. Hence,
zT (J − R)z < 0 and zT (J − R)−1z < 0 for any nonzero
vectorz. Therefore, we conclude thaṫWT 6 0.

Observe thatWT has a strict local minimum atx = x̄1

and η = η̄, and hence one can construct a compact level
setΩc ⊆ (Ωn)

|I1|× (Ωe)
M around(x̄1, η̄) which is forward

invariant. This implies that on the interval of definition ofa
solution to system (4), the variablesx1 andη are bounded.
Hence, by (4d), the variables∇H2

n(x
2) are also bounded,

and a solution to (4) exists for allt.
Then by invoking LaSalle invariance principle, on the

invariant setẆT = 0, we have

∇H1
n(x

1)−∇H1
n(x̄

1) = 0 (38a)

G2(B2 ⊗ I)(∇He(η)−∇He(η̄)) = 0. (38b)

Due to the strict convexity ofH1
n, (38a) yieldsx1 = x̄1.

Besides, (34a) admits the following incremental model

η̇ = (B1 ⊗ I)T (G1)T (∇H1
n(x

1)−∇H1
n(x̄

1))

+ (B2 ⊗ I)T (G2)T (J2 −R2)−1

·G2(B2 ⊗ I)(∇He(η)−∇He(η̄))

Therefore, by (38), we obtain thatη = η̃ on the invariant set
for some constant vector̃η, and thus output agreement (6)
holds. Note that, by (4d),x2 asymptotically converges to a
constant vector identified by

∇H2
n(x̄

2) = (J2 −R2)−1G2((B2 ⊗ I)∇He(η̃) + d2) (39)

This completes the proof. �

Proof of Theorem 2: By the algebraic equation (12d), the
controller (15) can be written as

ξ̇11 = 1⊗ y∗ − (G11)T∇H11(x11) (40a)

ξ̇21 = 1⊗ y∗ − (G21)T (J21 −R21)−1G21

· ((B21 ⊗ I)∇He(η)− ξ21 − δ21) (40b)

u11 = ξ11 (40c)

u21 = ξ21. (40d)

Moreover, by (12a), (12d), and (12e), we have

η̇ = (B11 ⊗ I)T (G11)T∇H11(x11)

+ (B12 ⊗ I)T (G12)T∇H12(x12)

+ (B21 ⊗ I)T (G21)T (J21 −R21)−1G21

· ((B21 ⊗ I)∇He(η)− ξ21 − δ21)

+ (B22 ⊗ I)T (G22)T (J22 −R22)−1G22

· ((B22 ⊗ I)∇He(η)− δ22) (41)

The equation above together with (12b), (12c), and (40) de-
fines a dynamical system with ordinary differential equations,

the solution of which exists and is unique. Moreover, this
system admits the following incremental model.

η̇ − ˙̄η = (B11 ⊗ I)T (G11)T (∇H11(x11)−∇H11(x̄11))

+ (B12 ⊗ I)T (G12)T∇(H12(x12)−H12(x̄12))

+ (B21 ⊗ I)T (G21)T (J21 −R21)−1G21

· (B21 ⊗ I)(∇He(η)−∇He(η̄))

− (B21 ⊗ I)T (G21)T (J21 −R21)−1G21(ξ21 − ξ21)

+ (B22 ⊗ I)T (G22)T (J22 −R22)−1G22

· (B22 ⊗ I)(∇He(η)−∇He(η̄)) (42a)

ẋ11 − ˙̄x11 = (J11 −R11)(∇H11
n (x11)−∇H11

n (x̄11)

−G11(B11 ⊗ I)(∇He(η)−∇He(η̄))

+G11(ξ11 − ξ̄11) (42b)

ẋ12 − ˙̄x12 = (J12 −R12)(∇H12
n (x12)−∇H12

n (x̄12))

−G12(B12 ⊗ I)(∇He(η)−∇He(η̄)) (42c)

ξ̇11 − ˙̄ξ11 = − (G11)T (∇H11(x11)−∇H11(x̄11)) (42d)

ξ̇21 − ˙̄ξ21 = − (G21)T (J21 −R21)−1G21

· (B21 ⊗ I)(∇He(η)−∇He(η̄))

+ (G21)T (J21 −R21)−1G21(ξ21 − ξ̄21)
(42e)

whereξ̄11 = d11−δ11, ξ̄21 = d21−δ21, and constant vectors
x̄ and η̄ are such that (14) is satisfied. Note that, due to the
feasibility condition,(x̄, η̄, ū) is a valid solution for (12),
whereū = col(ū11, ū21), ū11 = ξ̄11, and ū21 = ξ̄21.

Now consider the Lyapunov functionV = Wn+We+Wc

where

Wc =
1

2
(ξ11 − ξ̄11)T (ξ11− ξ̄11)+

1

2
(ξ21− ξ̄21)T (ξ21− ξ̄21)

(43)
andWn andWe are given by (35) and (36), respectively. By
the use of incremental model (42), we obtain

Ẇn =(∇H11
n (x11)−∇H11

n (x̄11))T (ẋ11 − ˙̄x11)

+ (∇H12
n (x12)−∇H12

n (x̄12))T (ẋ12 − ˙̄x12)

=(∇H11
n (x11)−∇H11

n (x̄11))T (J11 − R11)

· (∇H11
n (x11)−∇H11

n (x̄11))

− (∇H11
n (x11)−∇H11

n (x̄11))T (G11)

· (B11 ⊗ I)(∇He(η) −∇He(η̄))

+ (∇H11
n (x11)−∇H11

n (x̄11))TG11(ξ11 − ξ̄11)

+ (∇H12
n (x12)−∇H12

n (x̄12))T (J12 −R12)

· (∇H12
n (x12)−∇H12

n (x̄12))

− (∇H12
n (x12)−∇H12

n (x̄12))TG12

· (B12 ⊗ I)(∇He(η) −∇He(η̄)) (44)



and

Ẇe = (∇He(η)−∇He(η̄))
T (B11 ⊗ I)T

· (G11)T (∇H11(x11)−∇H11(x̄11))

+ (∇He(η) −∇He(η̄))
T (B12 ⊗ I)T

· (G12)T (∇H12(x12)−H12(x̄12))

+ (∇He(η) −∇He(η̄))
T (B21 ⊗ I)T (G21)T

· (J21 −R21)−1G21(B21 ⊗ I)(∇He(η)−∇He(η̄))

− (∇He(η) −∇He(η̄))
T (B21 ⊗ I)T (G21)T

· (J21 −R21)−1G21(ξ21 − ξ̄21)

+ (∇He(η) −∇He(η̄))
T (B22 ⊗ I)T (G22)T

· (J22 −R22)−1G22(B22 ⊗ I)(∇He(η)−∇He(η̄))
(45)

Then,Ẇc is computed as

Ẇc =− (ξ11 − ξ̄11)T (G11)T (∇H11(x11)−∇H11(x̄11))

− (ξ21 − ξ̄21)T (G21)T (J21 −R21)−1G21

· (B21 ⊗ I)(∇He(η)−∇He(η̄))

+ (ξ21 − ξ̄21)T (G21)T (J21 −R21)−1G21(ξ21 − ξ̄21)

Hence, we have

V̇ = Ẇn + Ẇe + Ẇc

=(∇H11
n (x11)−∇H11

n (x̄11))T (J11 −R11)

· (∇H11
n (x11)−∇H11

n (x̄11))

+ (∇H12
n (x12)−∇H12

n (x̄12))T (J12 −R12)

· (∇H12
n (x12)−∇H12

n (x̄12))

+ (∇He(η)−∇He(η̄))
T (B22 ⊗ I)T (G22)T

· (J22 −R22)−1G22(B22 ⊗ I)(∇He(η)−∇He(η̄))

+ zT (J21 −R21)−1z

where

z = G21(B21 ⊗ I)(∇He(η)−∇He(η̄))−G21(ξ21 − ξ̄21)

Consequently,̇V 6 0. Note that

(x11, x12, η, ξ11, ξ21) = (x̄11, x̄12, η̄, ξ̄11, ξ̄21)

is a strict local minimum ofV , and thus one can construct
a compact level set around this point which is forward
invariant. This implies that on the interval of definition of
a solution to system (4), the variablesx11, x12, η, ξ11, and
ξ21 are bounded. Therefore, by (12d) and (12e), the variables
∇H21

n (x21), ∇H22
n (x21) are also bounded, and a solution to

(12) exists for allt. Now by invoking LaSalle invariance
principle, one the invariant seṫV = 0, we have

∇H11(x11) = ∇H11(x̄11),∇H12(x12) = ∇H12(x̄12),

G22(B22 ⊗ I)(∇He(η) −∇He(η̄)) = 0

and

G21(B21 ⊗ I)(∇He(η) −∇He(η̄))−G21(ξ21 − ξ̄21) = 0

Hence, by (42a), we obtain thatη̇ = ˙̄η = 0. In addition, by
(42d), we havėξ = ˙̄ξ = 0. Consequently, by (40a), we obtain

that (G11)T∇H11(x11) = (G11)T∇H11(x̄11) = 1⊗ y∗ on
the invariant set. This together witḣη = 0 implies thatyi =
y∗ for eachi ∈ V . Again note that, by (12d)-(12e),x21 and
x22 asymptotically converge to constant vectorsx̄21 andx̄22

with similar expressions as in (39), where the superscripts
are modified accordingly. This completes the proof. �

Proof of Theorem 4: The controller (21) can be written in
compact as

[

ξ̇11

ξ̇21

]

=− (Lc ⊗ I)

[

ξ11

ξ21

]

+Q−1

[

1⊗ y∗ −∇H11(x11)
1⊗ y∗ −∇H21(x21)

]

(46a)
[

u11

u21

]

=Q−1

[

ξ11

ξ21

]

(46b)

where Lc denotes the Laplacian matrix ofGc, Q =
blockdiag(Qi) with i ∈ Ic = I11 ∪ I21, and in this case

∇H21(x21) =(J21 −R21)−1

· ((B21 ⊗ I)∇He(η)− (Q21)−1ξ21 − δ21)

The controller above admits the following incremental model
[

ξ̇11 − ˙̄ξ11

ξ̇21 − ˙̄ξ21

]

=− (Lc ⊗ I)

[

ξ11 − ξ̄11

ξ21 − ξ̄21

]

−Q−1

[

∇H11(x11)−∇H11(x̄11)
∇H21(x21)−∇H11(x̄21)

]

(47a)
[

u11 − ū11

u21 − ū21

]

= Q−1

[

ξ11 − ξ̄11

ξ21 − ξ̄21

]

(47b)

where

∇H21(x21)−∇H21(x̄21)

= (J21 −R21)−1(B21 ⊗ I)(∇He(η)−∇He(η̄))

− (J21 −R21)−1(Q21)−1(ξ21 − ξ̄21)

The incremental system dynamics in this case is given by

η̇ − ˙̄η = (B11 ⊗ I)T (∇H11(x11)−∇H11(x̄11))

+ (B12 ⊗ I)T (∇H12(x12)−∇H12(x̄12))

+ (B21 ⊗ I)T (J21 −R21)−1(B21 ⊗ I)

· (∇He(η)−∇He(η̄))

− (B21 ⊗ I)T (J21 −R21)−1(Q21)−1(ξ21 − ξ21)

+ (B22 ⊗ I)T (J22 −R22)−1(B22 ⊗ I)

· (∇He(η)−∇He(η̄)) (48a)

ẋ11 − ˙̄x11 = (J11 −R11)(∇H11
n (x11)−∇H11

n (x̄11))

− (B11 ⊗ I)(∇He(η)−∇He(η̄))

+ (Q11)−1(ξ11 − ξ̄11) (48b)

ẋ12 − ˙̄x12 = (J12 −R12)(∇H12
n (x12)−∇H12

n (x̄12))

− (B12 ⊗ I)(∇He(η)−∇He(η̄)) (48c)

Now, let

ξ̄11 = 1⊗ λ, ξ̄21 = 1⊗ λ (49)



whereλ is given by (19). By (49), we havēui = Q−1
i λ

which coincides with̄ui given by (18). Hence, by (20), it is
easy to observe that(x̄, η̄, ξ̄) defines a valid solution to (12).

Now consider again the Lyapunov functionV = Wn +
We +Wc whereWn, We, andWc are given by (35), (36),
and (43), receptively. Then it is straightforward to investigate
that

V̇ = (∇H11
n (x11)−∇H11

n (x̄11))T (J11 −R11)

· (∇H11
n (x11)−∇H11

n (x̄11))

+ (∇H12
n (x12)−∇H12

n (x̄12))T (J12 −R12)

· (∇H12
n (x12)−∇H12

n (x̄12))

+ (∇He(η)−∇He(η̄))
T (B22 ⊗ I)T (J22 −R22)−1

· (B22 ⊗ I)(∇He(η)−∇He(η̄))

− ξ̃T (Lc ⊗ I)ξ̃ + zT (J21 −R21)−1z

whereξ̃ = col(ξ11 − ξ̄11, ξ21 − ξ̄21) and

z = (B21 ⊗ I)(∇He(η)−∇He(η̄))− (Q21)−1(ξ21 − ξ̄21)

Hence, we obtain thatV̇ 6 0. Note that boundedness,
existence, and uniqueness of solution is guaranteed in
the same vein as in the proof of Theorem 2. Now by
constructing a forward invariant compact level set around
(x̄11, x̄12, η̄, ξ̄11, ξ̄21), and invoking LaSalle invariance prin-
ciple, on the invariant set we have

∇H11(x11)−∇H11(x̄11) = 0 (50a)

∇H12(x12)−∇H12(x̄12) = 0 (50b)

(B22 ⊗ I)(∇He(η)−∇He(η̄)) = 0 (50c)

(Lc ⊗ I)ξ̃ = 0 (50d)

(B21 ⊗ I)(∇He(η)−∇He(η̄))− (Q21)−1(ξ21 − ξ̄21) = 0
(50e)

Therefore, by (48a), we havėη = ˙̄η = 0. Moreover, by
(47a), (50a), and (50d), we obtain thatξ̇11 = ˙̄ξ11 = 0
on the invariant set. In addition, (50d) implies thatξ̃ =
1 ⊗ α for some vectorα. Replacing this into (46a) yields
∇H11(x11) = ∇H11(x̄11) = 1 ⊗ y∗. This together with
η̇ = 0 results inyi = y∗ for eachi ∈ V . Note that on the
invariant set,ξ11 = ξ̄11 + 1⊗ α = 1 ⊗ (α + λ). Similarly,
we haveξ21 = 1⊗ (α+λ), and, hence the system dynamics
takes the form

0 = (J11 −R11)(1⊗ y∗)− (B11 ⊗ I)∇He(η̃)

+ (Q11)−1
1⊗ (λ+ α) + δ11

0 = (J12 −R12)(1⊗ y∗)− (B12 ⊗ I)∇He(η̃) + δ12

0 = (J21 −R21)(1⊗ y∗)− (B21 ⊗ I)∇He(η̃)

+ (Q21)−1
1⊗ (λ+ α) + δ21

0 = (J22 −R22)(1⊗ y∗)− (B22 ⊗ I)∇He(η̃) + δ22

where η̃ is a constant vector. By multiplying each of the
equalities above from the left by1T ⊗ I and taking the sum
over all the resulting equalities, we conclude that

λ+ α = −(
∑

i∈Ic

Q−1
i )−1(

N
∑

i=1

(Ji −Ri)y
∗ +

N
∑

i=1

δi)

By comparing the equality above to (19), we obtain that
α = 0. Consequently, on the invariant setui is equal to the
optimal ūi given by (18). �
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