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Output agreement in networks with
unmatched disturbances and algebraic constraints

Nima Monshizadeh Claudio De Persis

Abstract— This paper considers a problem of output agree- case study, we consider a heterogeneous microgrid cangisti
ment in heterogeneous networks with dynamics on the nodes of synchronous generators, droop-controlled invertens, a
as well as on the edges. The control and disturbance signals frequency dependent loads, where the goal is to guarantee a
entering the nodal dynamics are “unmatched” meaning that s ’ .
some nodes are only subject to disturbances, and are deprigd®f zero frequency dev.|at|0n fqr aI.I the nodes of the grid. )
actuating signals. To further enrich our model, we accommoste Note that the main contribution of the current manuscript
(solvable) algebraic constraints in a subset of nodal dynaits.  is to consider simultaneously i) multivariable nonlineadal
We show that appropriate dynamic feedback controllers actéve  dynamics, ii) dynamic physical coupling, iii) algebraicneo
output agreement on a desired vector. We also investigate ¢h straints, and iv) unmatched disturbances in the outputeagre
case of an optimal steady-state control over the network. Té ' L i g
proposed results are applied to a heterogeneous microgrid. ment. problem. Our aﬂ§|ySIS Is Impll_CItly. based on passivity

and incremental passivity property inspired by [1], [2]],[5
|. INTRODUCTION (3], [17].

The analysis of output agreement problem is carried out
Sectior1l, whereas the control design is treated in 8acti
Section[IM is devoted to the case study of microgrids.
Conclusions are provided in Sectioh V. The formal proofs of
the proposed results are collected in the appendix in Sectio

Agreement on a certain quantity of interest plays a centrﬁ{
role in cooperative control. The most notable instanc%ﬁ]
are distributed optimization [16], consensus [13], foriomat
control [12], and synchronization, see e.g. [14], [11],][15

The study of output agreement/regulation problem in t
presence of d isturban(_:es has been motivated by NUMETYFtation Apart form the standard notation, we use the
applications in bala_mcmg demand af‘d supply, power ne116Ilowing conventional notation. We use superscripts for
works, and hydraulic networks. In this framework, the de

mands/loads are interpreted sternal disturbancesi vectors and matrices to indicate their domain of definition.
andsrioads are Interpreted as external cisturbanc age In particular, letz; with j € Z be a set of vectors. Then,
the network dynamics, see e.g. [6], [4], [7].

by z* we meanz’ = col(x;) with j € Z; C Z. For a set of

In this paper, we consider agents with non-identical nor .i-os \we defineti — blockdiag(A,) with j € T, C T
linear port-Hamiltonian dynamics; see [18] for more infor-We rem(;ve the superscript in ca’sfg:]I t=

mation on port-Hamiltonian systems. The nodal dynamics
is subject to constant disturbances. In addition, we cemsid Il. ANALYSIS

that a subset of nodal dynamics is governed by algebraic i i _
constraints. These constraints could be the result of migma e define a dynamical network on a connected undirected
in the dynamic order of the agents, or an approximation draPhg = (V,£). We partition the vertex set @ into two

fast subdynamics in singularly perturbed models [10]. Theistinct subsets) := 7 =7, UT,. To each vertex ofj, we
algebraic constraints we consider here are solvable mganissociate the following port-Hamiltonian types of dynasnic
that they can be expressed in terms of other state variables

of the network. However, obviously, the presence of such . _ ,; 5 o o _ .

constraints adds to the heterogeneity of the network, and = (Ji = Bo)VHni(2s) + Giloi + di) Z,G L ()
complicates the analysis. 0= (Ji = Ri)VHni(x;) + Gi(o; +di) i€y (1b)

We consider the physical coupling to be “undamped”, and i = G; VH, i(x;) i€ (1c)
given by a single integrator with a nonlinear output map. We n , . . .
first show that an equilibrium of the network, if exists, is atWherez; € R", J; is a skewmsymmetnc matrixfz; is a
tractive and thus output agreement is locally achievedtfer t posmye deﬁmtemmatrlxm € R™ amounts for the ph_ysmgl
network. Next, we include controller dynamics on the nodegoum'ng;ldi €R sa ponstant vec’gor, and the Hamiltonian
to guarantee output agreement on a prescribed set point,Iilr"ilvi : I% — R IS strictly convex in an open convex set
the presence of physical coupling and disturbance signa@ﬂZ € R* for eact. _ i )
Another important feature here is that we treatiamatched To each edge of, we associate the following dynamics:
control-disturbance scheme, meaning that control sigarads ik = Uk (2a)
disturbances may act on different subsets of nodes. As a

pu = V He 1. (1) (2b)
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M. The interconnection law is given by

= (BT ® Im)yv *(B ® Im),u' ©))
where B is the incidence matrix off, v = col(vk) y =
col(y;), ando = col(o;) with k = 1,2,...,M andi =

1,2,...,N.

in the c;asen =1, we haveJ = 0, and [10) is simplified to
Y= ]1T1g

By replacing [ID) in [(B) withG = I, the term(B ®
I)VH.(77) is explicity computed. Hencejj € (Q.)M
in general is not unigue. However, in case the graph
is acyclic, the incidence matri3 has full column rank,

Then, the edge dynamids (2), the nodal dynaniits (1), afdtd thus# is unique. Note that an equilibriunz, ) €

the interconnection law{3) can be written compactly as

n= (BT @ )GTVH,(z) (4a)
p=VHe(n) (4b)
it = (J' = RHVH}! (z1)
— GYB'®@ I)VH.(n) + G*d* (4c)
0= (J* = RH)VH2(2?)
—G*(B*®I)VH.(n) + G*d*>  (4d)
y=GTVH,(x) (4e)

where B! and B? denote the submatrices obtained frdin
by collecting the rows indexed % andZ,, respectively. Let
x = col(x!,2?) andd = col(d', d?). Suppose thatz,7) €
(Q2,)N x (Q.)M is an equilibrium of systeni{4) witkk = 0
andi = 0. Then, we have

0= (BT @ I)G'VH,(z) (5a)
0=(J'—RHYWH! ("
- GYB'® I)VH,.(7) + G*d" (5b)
0= (J* - R)VH2(z?)
~ G*(B*® I)VH,.(7) + G*d°. (5¢)

()N x (2.)M does not always exist, and in particular the
feasibility conditions(@) and [T) must hold. The following
theorem investigates stability/attractivity propertssuch
an equilibrium, assuming that it exists.

Theorem 1 Suppose thatz,7) € (Q2,)Y x () is an
equilibrium of (@). Then there exists a region of state
space, which includeéz, 7j), such that any solutiorz, n)

of (@) starting in this region asymptotically converges to an
equilibrium of (4), and the output agreement conditi@)
holds.

Proof. See Appendix.

Note that Theorerl1 implies that the netwdrk (4) reaches
an output agreement providing that there exist constant
vectors(z, i) € (2,) x (Q.)M satisfying [6), [7), and thus
(8). As the vector* resulting from this agreement may be
not the desired one, due to the dependency on the disturbance
d, next we investigate the possibility to influence this vecto
by an appropriate control scheme.

In this section, we treat certain control problems related
to network dynamicg{4). To capture the heterogeneous role

CONTROL

Observe that the equatioh {5a) yields an output agreemeaftthe nodes, we further partition the nodal dynamids (1) as

condition

GYVH, (®) =G| VH,;(T;), VijcI. (6)

Hence, we obtain thaG"VH, (z) = 1x ® y* for some
constant vector* € R™. The other two equations can be
written together as

0=(J—R)VH,(z) - GB®I)VH.(7) + Gd. (7)
This implies that
Iy®y* =GT(J—R)G(B®I)VH.(7) —d). (8)

In case the matrbxG is equal to the identity matrix, by
multiplying both hand sides of (8) from the left i % @
I,)(J — R), we obtain that

N

> (Ji - Ri) Zd 9)
=1
Hence,y* = VH, ;(Z;) is computed as
N N
~O" Ui =R . (10)
=1 =1

Then, noting thatl y ® y* = VH,(Z), the constant vector
7 € (2,)" is unique in this case. It is worth mentioning that

—(J R)VHni(zl)ﬁLG( +u;+6;) 1€In
= (J; — R))VHy, i(x;) + Gi(o; + &) 1 €119
= (J; — R)VH, (z;) + Gi(o; + u; + ;) i€ In
07( R,))VH, (x;) + Gi(o; + ;) 1€ Too
= GiTVHm(:ci) i€l
(11)
whereZ; = 711 UTZ1o, To = Io1 UZao, I11 # &, andG; has

a full column rank for each. Here, theu; components are
treated as control signals which are applied to the nodeks, an
the §;s are constant disturbance signals affecting the nodal
dynamics. Note that the nodesZi, andZ,, are not directly
controlled, and therefore our treatment here incorpottiies
case of arunmatchedcontrol-disturbance scheme.

Now, the overall network dynamics can be written as

i = (BT @ NG"VH,(z) (12a)
11 _ (Jll _ Rll)lel(xll)
~ G (B" @ I)VH.(n)
+ Gllull 4 G11511 (12b)
12 — (J12 o R12)VH12($12>
— G (B2 @ I)'VH.(n) + G**6'2 (12c)
0= (J21 _ R21)VH21(x21)



- G*Y(B* ® I)'VH.(n) Proof. See Appendix.
4 G21U21 + 021621 (12d)
0= (J22 _ RQQ)VH,%Q(x”) RemarIk 3dNote thart] in case the conr;tro(ljler _at g no‘dr;e T11
29, 199 99 <29 ori € Z,1 does not have access to the desired ougpubne
Tf GH(BT @ I)VHe(n) + G0 (12€) can setu; to a constant, namely a nominal value, and incor-
y =G VH,(v). (12f)  porate the node in the subdynamics of {11) corresponding

Our goal here is to design dynamic feedback controllef@ the nodes indexed f, or Zo,, respectively.
11 21 H
u™ andu” such that output agreemeif (6) is guaranteed In Theoreni 2, the control input has been designed such

for the network, for rescri Y t, in the presen . . :
or the network, for a prescribed vectgr, in the presence that output agreement on a prescribed vegtois achieved

of network coupling and disturbance signals. If such
91 o ping g for the network. Observe that the “steady-state” control
andu" exist, we say that the output agreement problem is,

solvable Obviously, this may not be always plausible anoSlgnal @ = ¢ is primarily determined by the initialization
N 4 . " " 7 “of the system/controller. Next, under the constraint opatit
by (I2) we obtain the following feasibility condition agreement{6), we aim to minimize the following quadratic

1®y* =GT'VH,(z) (13a) cost function
0=(J — RY)VHI (1) min = % Z al Qi (16)
— GYY(B"Y @ I)VH,(7) i€Z.
+ Gttt + gttt (13b) whereQ; € R™ x R™ is a positive definite matrix for each
0= (J'2 - R®2)VHI2(3'2) i, andZ. = Zy; U Zy;. Note that the optimization above

determines the steady-state distribution of the contraref

12 12 = 12512
—GE(BT ®I)VH.(n) + G0 (13¢) over the agents of the network. This is particularly relévan

0= (J* — R*)VH ! (z*') in applications involving demand and supply balancing,
— G (B* @ I)'VH.(7) (13d) including power as well as hydraulic networks; see e.g. [4],
1G22t 4 g2t [6].

To make the analysis more concise, we restrict our atten-
_ 22 p22 2222 ’
0=(J o R22 JVH,(z7) v <29 tion to the case wheré&'; = I for each:. Then, similar to

- G*(B* @ I)VH.(77) + G*¢ (13e) (@), we obtain the following constraint

Clearly, this boils down to the following condition. N N
Feasibility condition: there exist constant vectorgs € (J; — Ry)y* + u; + 5; =0. (17)
()N, 7 € (Qe)M, dtt, d*' such that ; lezz ;
1®y* =G 'VH,(z) (14a) By standard Lagrange multipliers method, the veatarhich
0=(J" = R"MVH!! (z" minimizes [(16) subject td_(17) is obtained as
—GN(B" @ I)VH(7) + G"d" (14b) 4= Q1A (18)
0= (J12 _ R12)VH7112(£12

— G(B2 @ D)VH. () + G'26™ (140) where\ € R™ is given by

N N
U B e DVH.() - P ad) T (22 @)UV Ry 6). (19)

i€l =1 =1
22 22 22 (=22
0=u 29 RQQ)VH" (@ )_ 99 29 It is easy to observe that, by {13) arid](18), we obtain the
—GE(BT @ I)VHe() + G4 (14e) following feasibility condition in this case.
Note that we have used the fact thais constant, and:;'!  Feasibility condition with optimality: For a giveny* € Q,,,
and G22 are full column rank. Now, we have the following there exists a constant vectpre (€2.)" such that

result. 11 11 * 11 _
. . 0=(J"-RHA®y")— (B ®@I)VH.(7)
Theorem 2 Consider the decentralized controller

+(@MH MM @A) o (20a)

. * T

&=y —G; VH, ;(x;) (15a) 0= (J12 _ R12)(]l ®y) — (312 ® DV H. (7)) + 512

u =& (15b) (20b)
with i € 711 UZ,1. Assume that the feasibility conditigid) 0= (J?' =R (1 @y*) — (B* @ I)VH.(7)
holds, and lett = col(¢;) and { = col(d', d?). Then, there + (M) TT 1 @A) + 6 (20c)
exists a region of state space, includifig, 77,_5), such that 0=(J2 - R®)(1®y") — (B2 @ [)VH.(7) + 622
any solution(z, n, £) of the network asymptotically converges (20d)

to an equilibrium of(I2) and (I5), in whichG;VH,, ;(Z;) =
y* for eachi € V. where )\ is as in [19).



To achieve output agreement problem with an optimahgain, hered; is the frequency deviationd; > 0 is the
“steady state” control input, we propose a distributed cordamping coefficient,P; is given by [2B), and§; is the
troller at the nodes. The communication among the corconstant power consumption at node V.
trollers takes place over a communication graph, Gay= To write the system in a compact form, we need the
(Ve, &), which is undirected and connected. following nomenclature. For each=1,2,...,k, let v, be

defined asy, = (Im Y;;)V;V; with {i, j} being thek'" edge
Theorem 4 Assume that the feasibility conditi§®0) holds.  of the graph, where the edge numbers are in accordance
Consider the distributed controller with the incidence matrib3. We define the diagonal matrix
: 1/ % I" asT' = diag(~;), with j = 1,2,... k. Let the matrices
& = Z (& = &)+ Qi (¥ = VHni(:))  (213) Be, Bj, and J(B,;])be obtained fromB by collecting the
{l’i}leg“‘ rows indexed byVg, V7, and Vi, respectively. We define
u; = Q; & (21b)  the vectors and matricedlc, Ag, O, andug, as Mg =
With i € Zy; U Ty, Let € = col(¢;), and let the constant diag(M;), Ag = diag(A;), g = col(0;), ug = col(us),
vectoré be chosen ag = 1 ® A where ) is given by@3). anddc = col(d;) wherei € V. The vectors and matrices
Then, there exists a region of state space, includingj, £), A1, 01, andu; are defined asl; = diag(A;), 01 = col(6;),
such that any solutiorfz, 7, ¢) of the network starting in w1 = col(u;), anddg = col(d;) with i € Vr. In addition,
this region asymptotically converges to an equilibrium ofet Az = diag(4;), 01, = col(0;) andé, = col(d;) where
@2) and @1), in which VH,, ;(z;) = y* for eachi € V. @ € V. Finally, let P = col(F;), 6 = col(0,0r,0L), and
Moreover, in this regiony; asymptotically converges to the sin(z) := col(sin(z;)) for a given vector:. Then, it is easy
optimal @; given by(T8). to observe that the dynamics of the synchronous generators,
the inverters, and the loads can be written compactly as:

Mgle + Agle = —BaTsin(B'0) + ug — 6 (26a)

q (f | ) h q A[é] = 7B[FSi_Il(BT9) +uy — o5 (26b)

We consider a (fairly) general heterogeneous microgri _ T

which consists of synchronous generators, droop-cogtioll Apfr = —BrTsin(B0) +dr (26¢)
inverters, and frequency dependent loads. We partition thdote that this is the same model as [8], see also [19]. By
buses, i.e. the nodes f, into three sets, namelys, V;, definingn = BT9, wg = 0g, w; = 0;, wy, = 0, andf =
andVy, corresponding to the set of synchronous generators,= col(wg, wr,wr,), the network dynamic§ (26), admits the

Proof. See Appendix.

IV. CASE STUDY

inverters, and loads, respectively. following representation
The dynamics of each synchronous generator is governed n=BTw (27a)
by the so-calledwing equationand is given by: Mg + Agwe = —BeTsin(n) + ug + ¢ (27D)
M;0; = —Ai0; +u; — Py + 65, i€ Vg, (22) Ajwr = —ByT'sin(n) + us + 01 (27¢)
where Arpwy, = —BLFSi_ﬂ(ﬁ) +4r (27d)

Py = Z Im(Yij)ViVjSin(ai o 9j) (23) Now, |eth = Mgwg, Hg = %ngélpg, H; = %w?w;,

{i.j}ee Hy, = $wlw;, andH, = —17Tcos(n). Then, [27) can be

is the active nodal injection at nodeHere, M; > 0 is the written as
moment of inertia,A; > 0 is the damping constant,; is ) T
the local controllable power generation, afidis the local .77 = B VHr(p) (282)
load at nodei € Vg. The value ofY;; € C is equal to the ~ Pc¢ = —AcVHa(pe) — BaVHe(n) + uc + ¢ (28b)
admittance of the brancki,j} € £, and¥; is the voltage 0=—-A;VH(wr) — BfVH.(n) +ur + 61 (28c)
angle at nodé. Also, V; is the voltage magnitude at node 0=—ALVH(w) — BLVH.(n) + 6L (28d)
and is assumed to be constant.

For the droop-controlled inverters, we consider the folowWhere p = col(pg, wr,wr) and Hy = Hg + Hp + Hy.

ing first-order model Note that[(2B) has a similar structure/proper_tie@ (12h w
. _ Q2 =R, Q. =(-%,%), andZ;, = @. The primary control
Al =u; — P+ 9; 1 €Vr (24) goal here is to achieve a zero frequency deviation for the

whereA, is known as the droop coefficient, is the injection POWer network. AsVHr = w, this is in accordance with
power at node (inverter), §; is the local load at inverter, Our definition of output agreement wigit = 0. Moreover,
and §; indicates the frequency deviation from the nominalVe would like to achieve an optimal steady-state distrdmuti
frequency of the network, € V;. The termP; has the same of the power in the sense df (18). In this cage] (18) reads as
expression as if_(23). ;= q; '\ (29)

As for nodal dynamics corresponding to the loads, we
consider frequency dependent loads given by the first-ordéfere

system j A=—0 q) ' T6c + 1765 +176;).
Aif; =6, — P; i€V (25) (; )7 (10 1 L)



Observe that the feasibility conditiof {20) in this case VI. APPENDIX
amounts for the existence of a constant vegter (—Z, 2)™  pgof of Theorem[d: From [43), we have
such that '

_ Bl ITGl TVHl 1 B2 ITG2 TVH2 2
0= —BoVHL(T) + i+ i o 1= (B EDN @)V (B e (G VH )

(33)
0= —B;VH(n)+ us + 0r (30b) By (@d), we obtain that
0= —BLVH.(7)+dL (30c) i = (B'® )T(GY)TVH ()
whereu; is given by [29) for each € Vs UV;. Now, assume (B2 DTG (J? - R)\G?
that the feasibility condition (30) holds. Then, by Theorem ) )
@, the controller (B°®@ I)VHe(n) - d°)
& = & — &) —q; tws (31a) Next, we study the asymptotic behavior of the following
{1._%;56( )~ subdynamics of[{4)
ui=q; "%, i€VeUV; (31b) 0= (B'@ NT(GHTVH.(z")
achieves zero frequency deviation , and moreayeasymp- +(B* o NT(GHT(J? - RH™'G*(B* @ I)VH.(n)
totically converges to the optimal; given by [29). — (B2 DT (GHT(J? — R)'G2d?) (34a)

Now, consider the case where a proper subset of generas, ~(J = ROy ()
tors, sayVr C Vg, encounter some failures. In particular,” n
assume that; is not appropriately actuated, and is equal to - GYBY @ I)VH.(n) + GHal) (34Db)
some unknown constant vector for eack Vr. Then, for ,
the nodes in thdail mode subdynamicd (28b) reads as Let W, and W, be defined as

1 =1y 1/,..1 1/51 1/=1\\T/,.1 =1
pF:*AFVHF(pF)fBFVHe(n)+5F (32) Wn(x » & )an("E )7Hn($ )7(VHn("E )) (‘T 7("1’;’5))

where we have used the index “F” to distinguish the subdygnd
namics above from the nominal subdynamics [28b). Assume - - o -
that there exists) € (—Z, Z)M such that[(30) and We(n,0) = He(n) — He() — (VHe(7))" (n — 1) (36)

272

0= —BprVH.(7)+op where (z!,7) is an equilibrium of [34). Following [9]WV,,

f f h local
are satisfied. Note thdt (30a) has to be modified accordmglde;“lez a pACIJSS(I)tI$ dje:(?r:tgsn;agové::l\/: Zterflfrfngcr?]ar:w:;u;n

to exclude the faulty generators. Observe that (32) has t &i
t local = 7. Noting thatz = h
same structure ag (12c). Then, by Theofém 4, we conclude ict local minimum at = 7. Noting thatz = 0, we have

that the controller[(31) achieves a zero frequency deviatio W, =(VH! (z")Tz! — (VHL(z')T (&' — z1)
a_nd we have optim_al steady state distribution of the power, —(VHL (1) — VHLE)T (3! — 31)
given by [29), despite the failures in the nodal dynamigs 1,1 11

Note that, similarly, absence or failure of actuation in =(VH,(z") = VH,(z")"

inverters can be incorporated in our design, as this results (J' = RYVH}(2') - VHL(ZY))
in a similar dynamics to that of the loads. — (VH 2" = vHL ()T
V. CONCLUSIONS .Gl(Bl @ I)(VH(n) — VH(7))

We have investigated the problem of output agreemeﬁﬁ addition, noting thatj — 0 we have
in heterogeneous networks with port-Hamiltonian nodal ’
dynamics, dynamic physical coupling, and algebraic conW, =(VH.(n))Tn — (VH.(7))T (n —7)

straints. We have considered the case where control and _ (v, (y) — VHe(ﬁ))T(ﬁ—ﬁ)

disturbance signals may act on different subset of nodes. We N (B @ 1T

have observed that the equilibrium of the network, if exists =(VH(n) = VHe(n))" (B" ® 1)

is locally attractive, and thus output variables asympéoly (GHT ( M(z') = VH(z"))

converges to a same vector. As discussed, this vector can be (VH,(n) — VH.(7))¥ (B*> @ I)T(G*)T

steered to a desired one by applying decentralized dynamic 2 2 _
controllers at the nodes, upon the satisfaction of certain A ) GH(B* © I)(VH.(n) = VHe(1))
feasibility conditions imposed by the physics of the profle (37)

We have also studied the case in which we are interested in gt 117, .— 17, + W.. Then, we have

an optimal steady-state distribution of control signalerahe

network. As observed, this goal can be achieved by exploitWr = (VH) (z') — VH(z")"(J' — R")
ing distributed controllers at the nodes. We have applied th (VH}(z") — VH}(z))

proposed results on a heterogeneous microgrid. Extending 4 (VH.(n) — VH.(7)T (B2 © )T (G?)T

the analysis to incorporate time-varying disturbances is a > 1oz -
subject of future research. (J7=R)TGH(B*®I)(VHe(n) — VHe(7))



where we have used the fact th#t andd? are constant.  the solution of which exists and is unique. Moreover, this
Now, note that for any skew-symmetric matrikxand a system admits the following incremental model.

positive definite matrixk, we have—2R = (J — R) + (J —

R)T <0, and thus(J — R)~! + (J — R)~T < 0. Hence,

2T(J —R)z < 0andzT(J — R)~'z < 0 for any nonzero 7 —i= (B @ )"(G*")T(VH (z") — vH" (z'!))

vector z. Therefore, we conclude that < 0. + (312 ® I)T(G12)TV(H12(1‘12) _ H12(5€12))
Observe thai¥r has a strict local minimum at = z! (B @ )T (G2 — j2)-LG2

andn = 7, and hence one can construct a compact level

setQ,. C (Q,)7 x (Q.)™ around(z!,7) which is forward (B* @ I)(VHe(n) — VHe(7)))
invariant. This implies that on the interval of definition af — (B o DT(G*HT (7 — RPYHTIGPH (2 - ¢
solution to system{4), the variable$ and» are bounded. + (B2 @ DT (G?)T(J?2 — R2)"1G®

Hence, by [(4d), the variable§ H2(z?) are also bounded,
and a solution to[{4) exists for al

Then by invoking LaSalle invariance principle, on the
invariant setiVy = 0, we have t

(B2 ®I)(VH.(n) — VH,(7)) (42a)

— &= (JU — R (VH (') - VH (2')
— G BYM @ I)(VH.(n) — VH.(7))

. VH(2') - VHL(z!) =0 (38a) LGl (e g (42b)
(B2 I)(VH.n) - VH(1) =0, (80) 12312 _ (g2 pid(YAR ) - VHR(R)
Due to the strict convexity off!, (383) yieldsz! = z!. —GP(B? @ I)(VHe(n) — VH(77)) (42¢)
Besides, [(34a) admits the following incremental model [ ,5*11 = — (GHT(VH" (') — VH' (z'1)) (42d)
7= (B'® DT(GHT(VH:(z)) — VH(z)) - = — (G (J* — RM)” G21
+(B*2 DT(GH)T(J* — R?)™ (B* @ I)(VHe(n) = VH.(7))
-G2(B% @ I)(VH.(n) — VH.(7)) +(GHT (I — R*)” 1G”(&21 - 521)(42 )
e

Therefore, by[(38), we obtain that= 7 on the invariant set
for some constant vectof, and thus output agreemefi (6)
holds. Note that, by[{4d), asymptotically converges to a where¢!! = d'' —¢'1, €21 = ¢2! — 2!, and constant vectors
constant vector identified by 7z and# are such thaf(14) is satisfied. Note that, due to the
feasibility condition, (z,7,u) is a valid solution for [(IR),
VH(7) = (J? = R*) 'GP ((B* @ I)VH.(7]) + d°) (39) wherea = col(a'!,a2), a'' = '1, anda?! = &2
Now consider the Lyapunov functidin = W,, + W, + W,

This completes the proof. |
where

Proof of Theorem[2: By the algebraic equatiol_(1Pd), the
controller can be written as 1 - - 1
m) Wc — 5(é-ll 7§11)T(§11 7511) + 5(§-21 7521)T(§21 7521)
=10y — (GHTVH (z1)) (40a) _ (43)
£ _ 1 gyt — (G2 (J2 — R21)-1G2 andW,, andW, are given by[(35) and_ (36), respectively. By
y the use of incremental modél[{42), we obtain
-(B* @ I)VH,(n) — €* =) (40Db)

1 _ ell (40c)
21 _ 21, (40d) W, Z(VH,lll( - VHll( T(xll )
+(VH,?(@'?) — VH,2(3'))" (a2 *12)
Moreover, by [12a),[(12d), and(12e), we have C(VH (1) - VEI ()T (N — R
7= (B @ NT(GMTVH (1) C(VHI (') — VHY (3'1))
+ (Bl2 ® I)T(G12)TVH12(:L'12) _ (VH}ll(xH) o VH;I(:Z'H))T(GH)
+ (B o TG - BTG (B @ I)(VHe(n) — VHe(7))
(B @ VH, () — €' = 5™ + (VH, (@) = VH @) G e = &)
+(B2g I)T(G22)T(J22 — R2)-1G22 F(VH2(212) - VH2(312))T(J12 — R12)
(B @ I)VHe(n) - 6%%) (41) H(VH,?(2'?) = VH,?(3'?))

C(VH2(212) - VHI2(z12))T 12
The equation above together wifh (121h), (12c), (40) de- v "1(2x )~ VH@)G B
fines a dynamical system with ordinary differential equasio (B ®I)(VHe(n) — VHe(7)) (44)



and that (G*H)TVHY (z1!) = (GIHTVHY (z11) = 1 ® y* on
the invariant set. This together with= 0 implies thaty; =

T 11
= (VH(n 1) r 1(1 ) 1(B ® 11)1 y* for eachi € V. Again note that, by[{12dJ-(IRe);*! and
(GHT(VHY (') - VH (z1)) 222 asymptotically converge to constant vectofs and z22
+ (VH.(n) H.(7)' (B oNT with similar expressions as ifi (39), where the superscripts
(G (V H12(x ) — H'2(312)) are modified accordingly. This completes the proof. B
+ (VHe(n) — ( (B @ DT (EH)T Proof of Theorem[4: The controller[[2l1) can be written in
(T - R21 G*Y(B* @ I)(VH.(n) — VH,(ij)) compact as
— (VHe(n) = VH(7)" (B* @ )T (G*)T €] I3
21 21\—1 21 2 &21 5'21 == (Lc ® I) 521
(J7-R ) G7(E —¢&7) ]
22 22\T _ 1 R * VHll 11
(VI2{2( 22)-1 (22)) (22B o (G : e Ll & z* — VHﬂEing (46)
(I~ B2)TIGR(B2 @ )(VH, (1) — VH.(7) .
(45) {Zﬂ ot E”} (46h)

Then, W, is computed as . .
P where L. denotes the Laplacian matrix of., Q@ =

W, =— (! —eHT( T (VHY (z1Y) — VH Y (zM)) blockdiag(Q;) with i € Z. = Z;; UZ,;, and in this case
(521 521) (G21)T(J21 1) 1G21 VH21($21) :(J21 _ R21)71
(321 ® I)( ( ) VH ( )) . ((321 ® I)VHe(U) _ (QQI)—ngl _ 621)
21 21 _ p21 1,21 21
+(& - ENE) RGP (e - &) The controller above admits the following incremental mode
Hence, we have én 511 gl gn
V=W, + W, +W., [521521‘|(LC®I) [521—521]
=(VH,'(z"") - VH,' (")) (J"' = R™) 1 [VHY (211 — VHY (z1)
. (VH}Ll( ) Hil(xll)) - Q |:VH21($21) _ VHH(:Z'21):|
+ (VH7112($12) _ VH,lf(le) (J12 _ R12) (47a)
11 11 11 11
. (VH7112( 12) o VH7112($12)) |:Zgl : 221] _ Q—l |:§21 : 221:| (47b)
+ (VHe(n) — ( )T (B* @ DT (G*)T
-y B & DV () = V) where
JT(J2 R VH' (2*) - VH* (z*)

= (J* = R*Y)"Y(B* @ I)(VH.(n) — VH.(7))
o (J21 o RQl)_l(Q21)_1(§21 o 521)
The incremental system dynamics in this case is given by
7;] _ 77] _ (Bll ® I)T(VHII( 11) lel(i‘ll))

where
2= G*(B* @ I)(VHe(n) - VHe(i))) — G (€ — )
Consequently})” < 0. Note that

11 12 11 £21\ _ /=11 =212 = #11 £21
(.Z‘ oo, E0, 8 )_(x T, €67 +(B12®I) ( H12( ) VH12(—12))
is a strict local minimum of/’, and thus one can construct + (B o DT (J* — 1) (B* 1)
a compact level set around this point which is forward (VH.(n) — VH.(7))
invariant. This implies that on the interval of definition of o1 o SR ol o
a solution to systeni]4), the variable$', z'2, , £'1, and - (B @ D"(J - R*)7HQM)™ (5 -&7)
£2! are bounded. Therefore, dy (12d) ahd {12e), the variables + (B2 o nT(J?? - 2) Y B2
VH?2 (221), VH?2?(2?!) are also bounded, and a solution to (VH.() — VH.(7)) (48a)
(I2) exists for allt. Now by invoking LaSalle invariance
principle, one the invariant séf = 0, we have #1— F1 = (J1 = RIYVH (M) — VHI (EM1))
VH"(z') = vHE' ('), VH"?(2'?) = VH"?(z'?), — (B @ I)(VH(n) — VH.(7))

G2 (B® @ I)(VHe(n) — VH.(7)) = 0 QM TIE - (48b)
and P12 &12 (J12 o R12)(VH,112($12) o VH7112(1,12))
G21(B21 ®I)(VH ( )7VH (_))*G21(§21 7521) -0 *(B12®I)(VH6(T])7VH6(7_])) (48c)

Now, let

Hence, by[(42a), we obtain that= 7 = 0. In addition, by
(@23), we havé = ¢ = 0. Consequently, by {4Da), we obtain Nl =1®)\, =10\ (49)



where \ is given by [19). By [4D), we hava; = Q; '\

By comparing the equality above t6_{19), we obtain that

which coincides withi; given by [I8). Hence, by (20), it is « = 0. Consequently, on the invariant set is equal to the

easy to observe that, 77, £) defines a valid solution td_(12). optimal @; given by [I8).

Now consider again the Lyapunov functidnh = W,, +
W, + W, whereW,,, W,, and W, are given by[(35),[(36),
and [43), receptively. Then it is straightforward to inigate
that

V:

(1]
(2]
(3]

(VH? (™) — VHM! (2!
(VH, (z) -
+ (VH?(2'?) — VH!?*(z'?
(VH? (') = VH*(z"))
+ (VHe(n) — VHe(7)" (B*? @ I)T (J*
(B* @ T)(VH,(n) — VH.(1))
— M (Le@DE+ 27 (S = R*)™
whereé = col(!t — M, ¢2! — ¢21) and
2= (B* @ I)(VHe(n) — VHe(n)) — (Q°") 71 (* — &)
Hence, we obtain thal’/ < 0. Note that boundedness, [’}
existence, and uniqueness of solution is guaranteed in
the same vein as in the proof of Theordh 2. Now by/(8]
constructing a forward invariant compact level set around

(zt, 212, 7,£11, €2, and invoking LaSalle invariance prin- (g
ciple, on the invariant set we have

))T(Jll _ R”)
VH, (')
))T(le — R?)

[4]
_ R22)—

(5]

(6]

vHY (") - VHY (7' =0 (50a)
VH(212) - H%z 2) 0 s0b)
(B** @ I)(VH.(n) = VH,(7)) = 0 (500) |y,

(L @DE=0 (50d)

(B*' @ I)(VHe(n) — VH(7)) — (Q*)7H(¢* = &) =0
(50e) [12]

Therefore, by[(48a), we havg = ij = 0. Moreover, by
(@73), [50R), and{50d), we obtain thgt! = ¢!t

on the invariant set. In addition[ {50d) implies th@at=
1 ® o for some vector. Replacing this into[(46a) yields [14]
VH'(z1') = VHY(z!!) = 1 ® y*. This together with

7 = 0 results iny; = y* for eachi € V. Note that on the [15]
invariant set&!! = ¢+ 1@ a = 1 ® (a + A). Similarly,

we have¢?! = 1® (a+\), and, hence the system dynamics; 6,
takes the form

0=(J" = RY(I®y*) — (B" @ [)VH.(7)
QY M@\ +a)+ 81

RZ)(1®y") —

) —

(A+

[13]

[17]

0=(J"— (B2 ® I)VH,(j) + 62 [18]
0=(J"'-RMH1 2y (321 ®@ I)VH,.(7)

n (Q21)_1]l @ (A + ) + 621 [19]
0=(J*”-R®)(1oy") - (B22 ® I)VH, () + 6%

where 7; is a constant vector. By multiplying each of the
equalities above from the left by’ @ I and taking the sum
over all the resulting equalities, we conclude that

~Oo et

i€L.

N

O =Ry + Y 6

i=1 i=1

At o=
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