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Minimal Reachability Problems

V. Tzoumas, A. Jadbabaie, G. J. Pappas⋆

Abstract— In this paper, we address a collection of state space
reachability problems, for linear time-invariant systems, using
a minimal number of actuators. In particular, we design a zero-
one diagonal input matrix B, with a minimal number of non-
zero entries, so that a specified state vector is reachable from
a given initial state. Moreover, we design a B so that a system
can be steered either into a given subset, or sufficiently close
to a desired state. This work extends the results of [1] and [2],
where a zero-one diagonal or column matrix B is constructed
so that the involved system is controllable. Specifically, we prove
that the first two of our aforementioned problems are NP-hard;
these results hold for a zero-one column matrix B as well. Then,
we provide efficient algorithms for their general solution, along
with their worst case approximation guarantees. Finally, we
illustrate their performance over large random networks.

I. INTRODUCTION

Power grids, transportation systems, brain neural circuits

and social networks are just a few of the complex dynamical

systems that have drawn the attention of control scientists,

[3], [4], [5], [6], since their vast size, and interconnectivity,

necessitate novel control techniques with regard to:

i. tasks that are collective [7], e.g., reaching consensus in

a system of autonomous interacting vehicles [8];

ii. new cost constraints, e.g., with respect to the number of

used actuators and the level of the input and communi-

cation power [9].

In this paper, we consider a set of minimal state reach-

ability problems, for linear time-invariant systems, where

the term ‘minimal’ captures our objective to use the least

number of actuators towards the involved control tasks.

Specifically, we design a zero-one diagonal input matrix B,

with a minimal number of non-zero entries, so that one of the

following (collective) tasks are met: i) the resultant system

can be steered into a subset, or ii) to a state, or iii) sufficiently

close to a state. Therefore, our work relaxes the objective of

[1] and [2], where a zero-one diagonal or column matrix B
is constructed, with a minimal number of non-zero entries,

so that the designed system is controllable.

This is an important distinction whenever we are interested

only in the feasibility of a state transfer, as in power grids

[3]; transportation systems [4]; complex neural circuits [5];

infection processes over large-scale social networks [10]

(e.g., from the infectious state to the state where all the

network nodes are healthy): Consider for example the system
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Fig. 1. A n + 1-node star network: each node represents a state of a
linear time-invariant system of the form dx/dt = Ax + Bu (where x =
(x0, x1, . . . , xn) is the state vector; A is the system’s matrix; B is the
input matrix; and u is the input vector). The state of node ‘0’ depends on
the states of all the nodes in the network.

in Fig. 1 and assume the transfer from the initial state zero to

(1, 0, 0, . . . , 0), where the first entry corresponds to the final

state of node ‘0’, the second to that of ‘1’, and so forth; if

we impose controllability in the design of B, we get a B
with n non-zero elements: B = diag(0, 1, 1, . . . , 1); that is,

states x1 through xn must be actuated so that this system

is controllable. On the other hand, if we impose only state

reachability, we get a B with only one non-zero element, in-

dependently of n; e.g., a solution is B = diag(1, 0, 0, . . . , 0),
where only state x0 is actuated. Thereby, whenever we are

interested in the feasibility of a state transfer and in a B
with a small number of non-zero elements, the objective

of state reachability should not be substituted with that

of controllability: under controllability the number of used

actuators could grow linearly with n, while under state

reachability it could be one for all n. Similar comments carry

through with respect to the rest of our objectives.

At the same time, the task to design a sparsest zero-one

diagonal matrix B is combinatorial, and, as a result, it may

be computationally hard in the worst case. Indeed, we prove

that the first two of our aforementioned problems are NP-

hard — our proofs hold for a zero-one column matrix B as

well. Therefore, we then provide efficient algorithms for their

general solution, along with their worst case approximation

guarantees; to this end, we use an approximation algorithm

that we provide for our third problem, where a sparse zero-

one diagonal matrix B is designed so that a system can be

steered ǫ-close to a desired state.

These hardness results proceed by reduction to the min-

imum hitting set problem (MHS), which is NP-hard [11].

In particular, we prove that the problem of state reachability,

using a minimal number of actuators, is NP-hard, by reducing

it to the controllability problem introduced in [1], which is

at least as hard as the MHS. Moreover, we prove that the

problem of steering a system into a subset is NP-hard by

directly reducing it to the MHS.

Then, we first provide an efficient approximation algo-

rithm so that a system can be steered ǫ-close to a desired

state. This algorithm returns a B with a number of non-zero
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elements up to a multiplicative factor of O(ln(ǫ−1)) from

any optimal solution. Therefore, it allows the designer to

select the level of approximation ǫ, with respect to the trade-

off between the reachability error ǫ and the number of used

actuators (recall that the number of non-zero elements of B
coincides with the number of used actuators). Afterwards,

we use this algorithm to provide efficient approximation

algorithms for the rest of our reachability problems as well.

In addition to [1] and [2], other relevant studies to this

paper are [12], [13], [14] and [15], where their authors

consider the design of a sparse input matrix B so that an

input energy objective is minimized. Moreover, [16] and [17]

address the sparse design of the closed loop linear system,

with respect to its feedback gain, as well as, a set of sensor

placement problems. Other recent works that study sensor

placement problems are the [18] and [19].

Furthermore, [20] considers the decidability of a set of

problems related to ours; for example, it asks whether the

problem of deciding if there exists a control that can drive

a given system from an initial state to a desired one is

decidable or not. The main difference between this set of

problems and ours is that they consider the feasibility of state

transfer given a fixed system, whereas we design a system

so that the feasibility of a state transfer is guaranteed.

The remainder of this paper is organized as follows. The

formulation and model for our reachability problems are

set forth in Section II, where the corresponding integer

optimization programs are stated. In Section III-A, we prove

the intractability of these problems and, then, in Section

III-B, we provide efficient algorithms for their general solu-

tion, along with their worst case approximation guarantees.

Finally, in Section IV, we illustrate our analytical findings,

using an instance of the network in Fig. 1, and afterwards,

we test the efficiency of the proposed algorithms over large

random networks that are commonly used to model real-

world networked systems. Section V concludes the paper.

II. PROBLEM FORMULATION

Notation: We denote the set of natural numbers

{1, 2, . . .} as N, the set of real numbers as R, and we let

[n] ≡ {1, 2, . . . , n} for all n ∈ N. Also, given a set X ,

we denote as |X | its cardinality. Matrices are represented by

capital letters and vectors by lower-case letters. For a matrix

A, AT is its transpose and Aij is its element located at the

i−th row and j−th column. Moreover, we denote as I the

identity matrix; its dimension is inferred from the context.

Additionally, for δ ∈ R
n, we let diag(δ) denote an n × n

diagonal matrix such that diag(δ)ii = δi for all i ∈ [n]. The

rest of our notation is introduced when needed.

A. Model

Consider a linear system of n states, x1, x2, . . . , xn, whose

evolution is described by

ẋ(t) = Ax(t) +Bu(t), t > t0, (1)

where t0 ∈ R is fixed, x ≡ {x1, x2, . . . , xn}, ẋ(t) ≡ dx/dt,
and u ∈ R

n is the input vector. The matrices A and B are of

appropriate dimension. Without loss of generality, u ∈ R
n; in

general, whenever the i-th column of B is zero, ui is ignored.

Moreover, we denote (1) as the duple (A,B) and refer to

the states x1, x2, . . . , xn as nodes 1, 2, . . . , n, respectively;

finally, we denote their collection as V ≡ [n].

In what follows, A is fixed and the following structure is

assumed on B:

Assumption 1: B is a diagonal zero-one matrix: B =
diag(δ), where δ ∈ {0, 1}n.

Therefore, if δi = 1, state xi is actuated, and if δi =
0, is not and ui is ignored. That is, the number of non-

zero elements of B coincides with the number of actuators

(inputs) that are implemented for the control of system (1).

In this paper, we design B so that (A,B) satisfies a control

objective among the following presented in the next section.

B. Minimal Reachability Problems

We introduce two control objectives, the state and subset

reachability, which we use to define the design problems of

this paper. In particular, consider t0, t1 ≥ t0, and x(t0) fixed:

Objective 1 (State Reachability): The state χ ∈ R
n is

reachable by (A,B) at time t = t1 if and only if there exists

input defined over (t0, t1) such that x(t1) = χ.

A parallel notion to the state reachability is the state

feasibility:

Definition 1 (State Feasibility): The transfer from x(t0)
to x(t1) = χ ∈ R

n by (A,B), denoted as x(t0)→ x(t1) =
χ, is feasible if and only if χ is reachable by (A,B) at time

t = t1.

We now present our second objective:

Objective 2 (Subset Reachability): The subset N ⊆ R
n is

reachable by (A,B) at time t = t1 if and only if there exist

χ ∈ N and input defined over (t0, t1) such that x(t1) = χ
is reachable.

The corresponding definition of subset feasibility parallels

that of state feasibility and it is omitted.

Evidently, Objective 2 generalizes Objective 1: According

to it, (A,B) targets from x(t0) a subset, instead of a single

state. Nevertheless, subset reachability of N does not imply

that all states χ ∈ N are reachable. Similarly, although

χ ∈ N may not be reachable by (A,B), N can be; thus,

Objective 1 is not a special case of Objective 2. Overall,

Objectives 1 and 2 define the two separate design problems

that follow.

Problem 1 (Minimal State Reachability): Given x(t0)
and x(t1), design a B with the smallest number of non-zero

elements so that the state transfer x(t0)→ x(t1) is feasible.

Note that Problem 1 is always feasible, since for any A,

(A, I) is controllable.

Therefore, the objective of Problem 1 relaxes that of [1],

[2] where B is designed with the smallest number of non-

zero elements so that the resultant (A,B) is controllable.

Problem 2 (Minimal Subset Reachability): Given x(t0),
N and t1, design a B with the smallest number of non-

zero elements so that the subset N is reachable from x(t0)
at time t1.



We refer to Problem 2 as minimal subset reachability as well.

As with Problem 1, Problem 2 is always feasible, since for

any A, (A, I) is controllable.

Evidently, the ‘minimal’ term in the definition of Problems

1 and 2 captures our objective to design a sparsest1 B.

Finally, all of our results carry through if we consider

the output y(t) = Wx(t) of (1), where W is fixed and of

appropriate dimension, instead of x(t). In particular, denote

as R(W ) the column space of W and consider the following

objectives:

Objective 3 (Output Reachability): The output state y ∈
R(W ) is reachable by (A,B) at time t = t1 if and only if

there exists input defined over (t0, t1) such that y(t1) = y.

Naturally, Objectives 1 and 3 coincide for W = I .

Thereby, a generalized version of Problem 1, where a spars-

est B is designed so that an output transfer is feasible, is

due. Similar comments apply with respect to the objective

below.

Objective 4 (Output Subset Reachability): The N ⊆
R(W ) is reachable by (A,B) at time t = t1 if and only if

there exist y ∈ N and input defined over (t0, t1) such that

y(t1) = y is reachable.

In what follows, we continue with the original Problems

1 and 2.

III. MAIN RESULTS

In the first part of this section, III-A, we prove that

Problems 1 and 2 are NP-hard. The proofs proceed by

reduction to the minimum hitting set problem (MHS), which

is NP-hard [11], and is defined as follows:

Definition 2 (Minimum Hitting Set Problem): Given a fi-

nite set M and a collection L of non-empty subsets of M,

find a smallest cardinality M′ ⊆ M that has a non-empty

intersection with each set in L.

In particular, we prove that Problem 1 is NP-hard provid-

ing an instance that reduces to the controllability problem

introduced in [1], which is at least as hard as the MHS; as

a result, we conclude that Problem 1 is as well. Moreover,

we prove that Problem 2 is NP-hard by directly reducing it

to the MHS.

In the second part of this section, III-B, since Problems

1 and 2 are NP-hard, we provide efficient approximation

algorithms for their general solution. Towards this direction,

we first generalize Definition 1 as follows:

Definition 3 (ǫ-close feasibility): The transfer x(t0) →
x(t1) = χ ∈ R

n by (A,B) is ǫ-feasible if and only if there

exists χ′ ∈ R
n reachable by (A,B) at time t = t1 such that

‖χ− χ′‖2 ≤ ǫ, where ‖ · ‖ denotes the euclidean norm.

For ǫ = 0, Definitions 1 and 3 coincide.

We use Definition 3 to relax the objective Problem 1, by

replacing the feasibility of x(t0)→ x(t1) with that of ǫ-close

feasibility — from a real-world application perspective, and

for small ǫ, this is a weak modification: the convergence of

a system exactly to a desired x(t1) is usually infeasible, e.g.,

1A matrix is sparse if it has a small number of non-zero elements
compared to each dimension.

due to external disturbances. We then provide for this prob-

lem a polynomial time approximation algorithm, Algorithm

1, that returns a B with sparsity2 up to a multiplicative factor

of O(ln(ǫ−1)) from any optimal solution of the original

Problem 1.

Next, to address Problem 1 with respect to Objective 1,

we prove that for all ǫ ≤ ǫ(A), where ǫ(A) is positive and

sufficiently small, Definitions 1 and 3 still coincide; hence,

we implement a bisection-type execution of Algorithm 1,

Algorithm 2, that quickly converges to an ǫ ≤ ǫ(A) and, as

a result, returns a B that makes the exact transfer x(t0) →
x(t1) feasible.

Finally, we provide an approximation algorithm for Prob-

lem 2 when N ⊆ R
n is finite, by observing that in this case

N can be approximated as a finite union of euclidean balls in

R
n. Specifically, let χ1, χ2, . . . , χk(N ) be their centres and

ǫ1, ǫ2, . . . , ǫk(N ) their corresponding radii. Moreover, with-

out loss of generality, assume x(t0) = 0. Then, by executing

Algorithm 1 for (x(t1) = χi, ǫ = ǫi)i∈[k(N )] and selecting

the sparsest solution B among all i ∈ [k(N )], we return an

approximate solution to Problem 2 with Algorithm’s 1 worst

case guarantees.

A. Intractability of the Minimal Reachability Problems

We prove that Problems 1 and 2 are NP-hard. The proofs

proceed with respect to the decision version of Problems 1

and 2 and that of MHS. The latter is defined as follows:

Definition 4 (k-hitting set): Given a finite set M and a

collection L of non-empty subsets of M, find an M′ ⊆M
of cardinality at most k that has a non-empty intersection

with each set in L.

Without loss of generality, we assume that every element

of M appears in at least one set in L and all set in L are

non-empty.

The decision versions of Problems 1 and 2 are defined

in Sections III-A.1 and III-A.2, where we present their NP-

hardness, respectively.

1) Intractability of Problem 1: We prove that the decision

version of Problem 1 reduces to the k-hitting set and, as a

result, that Problem 1 is NP-hard.

This version of Problem 1 is defined by replacing the

feasibility objective with that of k-feasibility:

Definition 5 (k-feasibility): The transfer x(t0)→ x(t1) is

k-feasible if and only if there exists k-sparse3 B such that

x(t0)→ x(t1) is feasible by (A,B).

To present our instance of the decision Problem 1 that

reduces to the k-hitting set problem, let |L| = p and M =
{1, 2, . . . ,m}, with respect to Definition 4, and define Φ ∈
R

p×m such that Φij = 1 if the i-th set contains the element

j and zero otherwise.

Lemma 1: For i ∈ N, denote as ei×l the i × l matrix of

all-ones and set n = m + p + 1, A = V −1
1 diag(1, 2, . . . ,

2The sparsity of a matrix is the number of its non-zero elements.
3A matrix is k-sparse if it has k non-zero elements.



m+ p+ 1)V1, where4

V1 =





2Im×m 0m×p em×1

Φ (m+ 1)Ip×p 0p×1

01×m 01×p 1



 ,

and x(t0) = 0, as well as, χ = V −1
1 en×1. For any t1 > t0,

0 → x(t1) = χ is k + 1-feasible if and only if L has a

k-hitting set.

Therefore, with Lemma 1 we provide an instance of

Problem 1 that is k+1-feasible if and only if any instance of

L, (that is, also the hardest ones with respect to the hitting

set problem), has a k-hitting set. Hence (cf. [11]):

Theorem 1: Problem 1 is NP-hard.

Thereby, the generalized version of Problem 1, with re-

spect to Objective 3, is NP-hard as well (for the above

instance where we additionally set W = I).

We illustrate the proof Lemma 1: The instance of A and

the initial and final condition are constructed so that the 0→
χ is k + 1-feasible if and only if there exists k + 1-sparse

B such that (A,B) is controllable; on the other hand, the

latter holds if and only if L has a k-hitting set [1]. Thereby,

the theorem follows. Additionally, due to the controllability

properties of linear time-invariant systems [21], it holds for

any t1 > t0.

However, the proof of Lemma 1 suggests that the sparse

reachability of a system is hard merely because its sparse

controllability is. To show the contrary, we generalize

Lemma 1 by constructing an A and a x(t0) → x(t1) so

that x(t0) → x(t1) is k + 1-feasible if and only if L has a

k-hitting set, while the resultant system is not controllable.

Lemma 2: For i ∈ N, denote as ei×l the i × l matrix of

all-ones and set n = m + p + 2, A = V −1
2 diag(1, 2, . . . ,

m+ p+ 2)V2, where

V2 =









2Im×m 0m×p em×1 0m×1

Φ (m+ 1)Ip×p 0p×1 0p×1

01×m 01×p 1 0
01×m 01×p 0 1









,

and x(t0) = 0, as well as, χ = V −1
2

[

e1×(n−1), 0
]T

. For

any t1 > t0, the x(t0)→ x(t1) = χ is k + 1-feasible if and

only if L has a k-hitting set.

With this instance, we prove that 0→ χ is k+ 1-feasible

if and only if a sub-system of (A,B) is k + 1-controllable,

a fact that is equivalent to L having a k-hitting set [1]. On

the other hand, (A,B) remains uncontrollable. Therefore,

the NP-hardness of Problem 1 emanates from this class of

instances as well, where state reachability is achieved without

implying controllability to the resultant system.

Lemma 1 extends to the case where B is a column

zero-one vector as well. Furthermore, in Theorem 1 the

assumption x(t0) = 0 is without loss of generality, since we

consider the linear dynamics (1) [21]. Finally, Lemmas 1 and

2 extend to the case where B is a column zero-one vector as

well. Furthermore, in both theorems, the assumption x(t0) =

4V1 is invertible since it strictly diagonally dominant.

0 is without loss of generality, since we consider the linear

dynamics (1) [21].

In the following paragraphs, we prove the NP-hardness of

Problem 2.

2) Intractability of Problem 2: We prove that the decision

version of Problem 2 reduces to the k-hitting set and, as a

result, that Problem 2 is NP-hard.

This version of Problem 2 is defined by replacing the

reachability objective with that of k-reachability:

Definition 6 (k-reachability): The subset N ⊆ R
n is k-

reachable if and only if there exists k-sparse B such that N
is reachable by (A,B).

To present our instance of the decision Problem 2 that

reduces to the k-hitting set problem, let |L| = p and M =
{1, 2, . . . ,m}, with respect to Definition 4, and define Φ ∈
R

p×m such that Φij = 1 if the i-th set contains the element

j and zero otherwise.

Lemma 3: Set N = {(x1, x2, . . . , xn) : x1 = x2 = . . . =
xm = 0, xm+1, xm+2, . . . , xm+p > 0} and

A =

[

0m×m 0m×p

Φ 0p×p

]

.

N is k-reachable if and only if L has a k-hitting set.

Therefore, with Lemma 3 we provide an instance of

Problem 2 that is k-feasible if and only if any instance of L,

(that is, also the hardest ones with respect to the hitting set

problem), has a k-hitting set. Hence (cf. [11]):

Theorem 2: Problem 2 is NP-hard.

Thereby, the generalized version of Problem 2, with re-

spect to Objective 4, is NP-hard as well (for the above

instance where we additionally set W = I).

Since Problems 1 and 2 are NP-hard, we need in the worst

case to provide approximate algorithms for their solution;

this is the subject of the next section.

B. Approximation Algorithms for the Minimal Reachability

Problems

We provide efficient approximation algorithms for the

general solution of Problems 1 and 2. Recall that these

problems aim for a sparse B so that a transfer is feasible or

a subset of the state space is reachable, respectively. At the

same time, the sparsity of B equals the number of actuators

that we should implement in system (1) so to satisfy these

goals. Therefore, the objective of these algorithms is the

sparse control of system (1).

To implement an approximation algorithm for Problem 1,

we use Definition 3 to relax Objective 1, by replacing the

feasibility of x(t0) → x(t1) with that of ǫ-close feasibility.

We then provide Algorithm 1, that returns a B with sparsity

up to a multiplicative factor of O(ln(ǫ−1)) from any optimal

solution of the original Problem 1.

Next, to address Problem 1 with respect to Objective 1,

we prove that for all ǫ ≤ ǫ(A), where ǫ(A) is positive and

sufficiently small, Definitions 1 and 3 still coincide; hence,

we implement a bisection-type execution of Algorithm 1,

Algorithm 2, that quickly converges to an ǫ ≤ ǫ(A) and, as



a result, returns a B that makes the exact transfer x(t0) →
x(t1) feasible.

Finally, using Algorithm 1, we provide an approximation

algorithm for Problem 2 as well.

1) Approximation Algorithm for Problem 1: We develop

the notation and tools that lead to an efficient approximation

algorithm for Problem 1.

For N ⊆ R
n and v ∈ R

n×1, we denote as v[N ] the pro-

jection of v ontoN and as ‖v‖ its euclidean norm. Moreover,

we denote as C(A) the set of columns of
[

I|A| . . . |An−1
]

,

as ei the i-th unit vector and as Ci the set of columns

{ei, Aei, . . . , An−1ei}. For B per Assumption 1, we set

S(B) ≡ span
[

B|AB| . . . |An−1B
]

.

Since the dynamics (1) are linear, x(t0) → x(t1) is

feasible if and only if 0 → x(t1)− exp[A(t1 − t0)]x(t0) ≡
v(t1) is. Moreover, since these dynamics are also continuous

and time-invariant, whenever 0→ v(t1) is feasible for some

t1 > t0, it is also for any t′1 > t0 [21]. Hence, we study

directly 0→ v, suppressing t1.

In particular, 0 → v is feasible if and only if v ∈ S(B)
[21]. Therefore, 0→ v is feasible if and only if v = v[S(B)]:
if v = v[S(B)], v ∈ S(B), while, if v 6= v[S(B)], v −
v[S(B)] ∈ S(B)⊥, that is, v /∈ S(B)5. Similarly, 0 → v is

feasible if and only if ‖v‖ = ‖v[S(B)]‖: if v = v[S(B)],
‖v‖ = ‖v[S(B)]‖, while, if v 6= v[S(B)], ‖v[S(B)]‖ < ‖v‖.

Definition 3 is restated as follows:

Definition 7 (ǫ-close feasibility): The 0 → v is ǫ-close

feasible by (A,B) if and only if ‖v‖2 − ‖v[S(B)]‖2 ≤ ǫ.

Remark 1: Since v − v[S(B)] is orthogonal to v[S(B)],
‖v[S(B)]‖2+‖v−v[S(B)]‖2 = ‖v‖2 and, as a result, ǫ-close

feasibility implies ‖v − v[S(B)]‖2 ≤ ǫ.

We provide the following greedy approximation algorithm

for Problem 1 with respect to the relaxed feasibility objective

of Definition 7. Its quality of approximation is quantified in

Theorem 3.

Algorithm 1 Approximation Algorithm for the relaxed Prob-

lem 1 with respect to Definition 7.

Input: Matrix C(A), vector v ≡ x(t1) − exp[A(t1 −
t0)]x(t0), approximation level ǫ.

Output: B such that x(t0)→ x(t1) is ǫ-close feasible.

B = 0n×n.

while ‖v‖2 − ‖v [S(B)] ‖2 > ǫ do

Find an i ∈ [n] such that: i) Bii = 0 and ii) i is a

maximizer for ‖v [S(B) + span{Ci}] ‖
2 − ‖v [S(B)] ‖2.

Set Bii = 1.

end while

Theorem 3: Given the transfer x(t0) → x(t1), denote

as B⋆ an optimal solution to Problem 1 and as B the

corresponding output of Algorithm 1. Then, x(t0) → x(t1)

5S(B)⊥ is the orthogonal complement of S(B).

is ǫ-close feasible by (A,B) and

n
∑

i=1

Bii ≤ ⌈ln(‖x(t1)− exp[A(t1 − t0)]x(t0)‖
2/ǫ)⌉

n
∑

i=1

B⋆
ii.

That is, the polynomial time approximation Algorithm 1

returns a B with sparsity up to a multiplicative factor

of O(ln(ǫ−1)) from any optimal solution of the original

Problem 1, and makes the x(t0)→ x(t1), or 0→ v, ǫ-close

feasible.

Next, to address Problem 1 with respect to Objective 1,

we show that there exists ǫ(A), positive, such that for any

ǫ ≤ ǫ(A), Definitions 1 and 3 coincide. Thereby, running

Algorithm 1 with ǫ ≤ ǫ(A), results to a B that makes the

exact transfer x(t0)→ x(t1) feasible.

In particular, for i ∈ [n], let Ci ≡ {ei, Aei, . . . , An−1ei};
that is, Ci is the sub-matrix of C(A) that is also present

in
[

B|AB| . . . |An−1B
]

if and only if Bii = 1. Moreover,

for S ⊆ [n], consider Bii = 1 if and only if i ∈ S.

Moreover, assume that 0 → v is infeasible by B, i.e.,

v[span{
⋃

j∈S Cj}] 6= v. Then, denote as Ξ(S) the event

where 0 → v can become feasible by making one more

element of B one, that is, Ξ(S) ≡ {v[span{
⋃

j∈S Cj}] 6=

v and ∃i ∈ [n] \ S, v[span{
(

⋃

j∈S Cj

)

∪ Ci}] = v}. It is,

ǫ(A) = min
S⊆[n]:Ξ(S) is true.

(

‖v‖2 − ‖v[S]‖2
)

.

Therefore, ǫ(A) is positive.

In general, ǫ(A) is unknown in advance. Hence, we need

to search for a sufficiently small value of ǫ so that ǫ ≤
ǫ(A). Since ǫ is lower and upper bounded by 0 and ‖v‖2,

respectively, we achieve this by performing a binary search.

In particular, we implement Algorithm 2, where we denote

as [Algorithm1](C(A), 0→ v, ǫ) the matrix that Algorithm 1

returns for given A, v and ǫ.

Algorithm 2 Approximation Algorithm for Problem 1.

Input: Matrix C(A), vector v ≡ x(t1) − exp[A(t1 −
t0)]x(t0), bisection’s accuracy level a.

Output: B such that x(t0)→ x(t1) is feasible.

B = 0n×n, l ← 0, u← ‖v‖2, ǫ← (l + u)/2
while u− l > a do

B ← [Algorithm1](C(A), 0→ v, ǫ)
if ‖v‖2 − ‖v [S(B)] ‖2 > ǫ then

u← ǫ
else

l ← ǫ
end if

ǫ← (l + u)/2
end while

if ‖v‖2 − ‖v [S(B)] ‖2 > ǫ then

u← ǫ, ǫ← (l + u)/2
end if

B ← [Algorithm1](C(A), 0→ v, ǫ)

In the worst case, when we first enter the while loop,

the if condition is not satisfied and, as a result, ǫ is set to



a lower value. This process continues until the if condition

is satisfied for the first time, from which point and on, the

algorithm converges, up to the accuracy level a, to ǫ(A);
specifically, |ǫ − ǫ(A)| ≤ a/2, due to the mechanics of the

bisection. Then, Algorithm 2 exits the while loop and the

last if statement ensures that ǫ is set below ǫ(A) so that

0→ v is feasible.

The efficiency of Algorithm 2 for Problem 1 is summa-

rized below.

Corollary 1: Given the transfer x(t0) → x(t1), denote

as B⋆ an optimal solution to Problem 1 and as B the

corresponding output of Algorithm 2. Then, x(t0) → x(t1)
is feasible by (A,B) and

n
∑

i=1

Bii ≤ ⌈ln(‖x(t1)− exp[A(t1 − t0)]x(t0)‖
2/ǫ)⌉

n
∑

i=1

B⋆
ii.

where ǫ is the approximation level where Algorithm 2 had

converged when terminated.

The results of this section apply to the generalized

version of Problem 1 with respect to Objective 3 by

replacing C(A), Ci and S(B) with WC(A), WCi and

span
[

WB|WAB| . . . |WAn−1B
]

, respectively (where W
is the output matrix of (1)). Similarly with regard to the

approximation algorithm described below.

2) Approximation Algorithm for Problem 2: We sketch

the approximation algorithm for Problem 2 (for the case

where N ⊆ R
n is finite), since, then, its implementa-

tion is straightforward: Without loss of generality, assume

x(t0) = 0, as the dynamics (1) are linear, and consider

the problem of reaching a finite N ⊆ R
n. Observe that

N can be approximated as a finite union of euclidean balls

in R
n. Specifically, let χ1, χ2, . . . , χk(N ) be their centres

and ǫ1, ǫ2, . . . , ǫk(N ) their corresponding radii. Then, by

executing Algorithm 1 for (C(A), 0 → χi, ǫ = ǫi)i∈[k(N )]

and, afterwards, selecting the sparsest solution B among all

i ∈ [k(N )], we return an approximate solution to Problem

2. As in Algorithm 1, two levels of approximation underlie

here: First, we approximate N with a sufficient number of

balls, and, then, we approximate the sparsity of the optimal

solution to Problem 2; the quality of the latter approximation

is quantified in Theorem 3.

We illustrate our analytical findings, and test their perfor-

mance, in the next section.

IV. EXAMPLES AND DISCUSSIONS

We test the performance of Algorithm 2 over various

systems, starting in Subsection IV-A with the networked

system of Fig. 1 and following up in Subsection IV-B with

Erdős-Rényi random networks. Extending the simulations of

this section to the algorithm for Problem 2 is straightforward

and, as a result, due to space limitations we omit this

discussion.

A. Star Network

We illustrate the mechanics and efficiency of Algorithm 2

using the star network of Fig. 1, where n = 4 and

A =













−1 1 1 1 1
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1













.

In particular, we run Algorithm 2 for the τ1 ≡
0 → (1, 0, 0, 0, 0), τ2 ≡ 0 → (0, 1, 1, 0, 0) and τ3 ≡
0 → (1, 1, 1, 0, 0) and for a = .001. The algorithm re-

turned a B equal to diag(1, 0, 0, 0, 0), diag(0, 1, 1, 0, 0) and

diag(0, 1, 1, 0, 0), respectively; indeed, τ1 is feasible by the

minimum number of actuators if and only if either x0(t)
is actuated or one among x1(t), x2(t), x3(t), x4(t) is; τ2 is

feasible by the minimum number of actuators if and only if

x1(t) and x2(t) are actuated and, finally, τ3 is feasible by

the minimum number of actuators if and only if x1(t) and

x2(t) are actuated. Overall, Algorithm 2 operated optimally.

Evidently, this star network is controllable by the

minimum number of actuators if and only if all

x1(t), x2(t), x3(t), x4(t) are actuated. Therefore, whenever

we are interested merely in the feasibility of a state transfer,

it is cost-effective, with respect to the number of actuators

that should be implemented, to design a B that does not

result to a controllable system as well.

B. Erdős-Rényi Random Networks

Erdős-Rényi random graphs are commonly used to model

real-world networked systems [22]. According to this model,

each edge is included in the generated graph with some

probability p independently of every other edge. We imple-

mented this model for varying network sizes n where the

directed edge probabilities were set to p = 2 log(n)/n. In

particular, we first generated the binary adjacencies matrices

for each network size so that each edge is present with

probability p and then we replaced every non-zero entry

with an independent standard normal variable to generate

a randomly weighted graph. The network size varied from 1
to 100, with step 1.

For each network size, we run Algorithm 2 for a 0→ χ,

where χ was randomly generated using MATLAB’s “randn”

command; for all cases, the algorithm returned a 1-sparse

B. This is in accordance with the simulation results of [1],

where similarly randomly generated networks were made

controllable by actuating one or two states.

Extending the simulations of this section to the algorithm

for Problem 2 is straightforward and, as a result, due to space

limitations we omit this discussion.

V. CONCLUDING REMARKS

We addressed a collection of state (and output) space

reachability problems for a linear system, under the addi-

tional objective of sparse control, i.e., the control using a

minimal number of actuators. In particular, we proved that



these problems are NP-hard and provided efficient approx-

imation algorithms for their general solution, along with

worst case approximation guarantees. Finally, we illustrated

the efficiency of these algorithms with a set of simulations.

Optimal behaviour was observed.

Moreover, any optimal control problem, e.g., the LQR.

where an objective is optimized with respect to i) the input

vector u and ii) the sparsity of B, subject to the system

dynamics, as well as, an initial and final condition of the

form x(t0) ∈ R
n and x(t1) ∈ R

n or x(t1) ∈ N ⊆ R
n,

respectively, is NP-hard as well. This conclusion suggests a

future direction: Which is an efficient approximation algo-

rithm for such optimal control problems? A relevant result

is [14], where the authors provide an efficient approximation

algorithm for minimizing the input energy for a desired state

transfer, subject to a k-sparse B and a controllable (A,B).

Finally, due to Lemmas 1 and 3, and since for the hitting

set problem it is NP-hard to find a set whose cardinality is

within a factor of O(log(n)) from the optimal set [23], it

is an open problem to find for Problem 1 an approximation

algorithm that achieves an O(log(n)) approximation factor,

or to prove that this is the case for Algorithm 2.

APPENDIX I

PROOFS OF THE MAIN RESULTS

A. Lemma 1

Proof: Denote as ri the i-th row of V1. It is proved

in [1] that L has a k-hitting set if and only if A is k + 1-

controllable (that is, (A,B) is controllable for B being k+1-

sparse). Therefore, we prove that 0→ χ is k-feasible at time

t1 by (A,B) if and only if A is k-controllable.

If 0→ χ is k-feasible at time t1, then

χ =

t1
∫

t0

eA(t1−τ)Bu(τ)dτ,

for some input u defined over (t0, t1). Let ǫ ≡ ǫ(t1) such

that en(t1−t0) ≤ 1 + ǫ and observe that all the entries of A
are non-negative. Then,

en×1 ≤ (1 + ǫ)V1B

t1
∫

t0

u(τ)dτ.

Set v ≡
t1
∫

t0

u(τ)dτ . Therefore, en×1 ≤ (1+ ǫ)V1Bv: Assume

that there exists i such that riB = 0. Then, riBv = 0 < 1;

contradiction. As a result, for all i ∈ [n], riB 6= 0, which

implies, from the PBH theorem, that A is k-controllable.

Conversely, if A is k-controllable, then 0→ χ is k-feasible

at any time t > t0 by A, that is, also for t = t1.

B. Lemma 2

Due to space limitations, this proof is omitted; it can be

found in the full version of this paper, located at the authors

websites.

C. Lemma 3

Proof: Let P ≡ {(x1, x2, . . . , xn) : x1 = x2 = . . . =
xm = 0, xm+1, xm+2, . . . , xm+p > 0},

Assume that S is a hitting set of cardinality at most k for

L. For all i ∈ S, set Bii = 1. Then, there exists χ ∈ P ,

χ ∈ span{[B|AB]}, i.e., P is k-reachable, since by writing

B as

B =

[

B(1)m×m 0m×p

0p×m B(2)p×p

]

,

then

[B|AB] =

[

B(1)m×m 0m×p 0 0
0p×m B(2)p×p ΦB(1)m×m 0

]

.

Conversely, assume that P is k-reachable. That is, there

exists χ ∈ P , χ ∈ span{[B|AB]} and consider [B|AB]:
Choose an i such that B(2)ii = 1 and the smallest j ∈ [m]
such that Φij = 1: Set B(2)ii = 0 and B(1)jj = 1. It

remains true that there exists χ′ ∈ P (possibly different

than χ), χ′ ∈ span{[B|AB]}, i.e., that P is k-reachable.

Proceeding likewise for all i such that B(2)ii = 1, we

construct a k-sparse matrix B(1), (while B(2) becomes

zero). Then, the set {j : B(1)jj = 1} is a k-hitting set

for L.

D. Theorem 3

Proof: We denote as I a set of columns of C(A) such

that v [span{∪c∈Ic}] = v and the cardinality of I(#) ≡
{

i : ∃c ∈ I, c ∈ {ei, Aei, . . . , An−1ei}
}

is minimum. Also,

we denote as B(I) the zero-one diagonal matrix such that

Bii(I) = 1 if and only if i ∈ I(#). That is, B(I) is a

sparsest matrix such that 0→ v is feasible.

For any S ⊆ C(A),

v
[

span{S ∪i∈I(#) Ci}
]

= v.

As i successively runs over all the elements of I(#), ‖v‖2−
‖v[span{S∪·}]‖2 decreases from ‖v‖2−‖v[span{S}]‖2 to 0.

Thereby, there is some i′ for which the dimension decreases

by at least (‖v‖2 − ‖v[span{S}]‖2)/|I(#)|; otherwise, the

total decrease is strictly less that ‖v‖2 − ‖v[span{S}]‖2,

contradiction. Thus, denoting as I(#)\i′ the previous indices

of i′ in the succession,

‖v‖2 − ‖v
[

span{(S ∪i∈I(#)\i′ Ci) ∪ Ci′}
]

‖2 ≤

‖v‖2 − ‖v
[

span{S ∪i∈I(#)\i′ Ci}
]

‖2

−
‖v‖2 − ‖v[span{S}]‖2

|I(#)|
.

Furthermore, from Lemma 8.1 in [24]

‖v [span{S ∪ (Ci′ \ S)}] ‖
2 − ‖v [span{S}]‖2 ≥

‖v
[

span{(S ∪i∈I(#)\i′ Ci) ∪ (Ci′ \ (S ∪i∈I(#)\i′ Ci))}
]

‖2

−‖v
[

span{S ∪i∈I(#)\i′ Ci}
]

‖2,

and since span{S ∪ (Ci′ \ S)} = span{S ∪ Ci′} and

span{(S ∪i∈I(#)\i′ Ci) ∪ (Ci′ \ ((S ∪i∈I(#)\i′ Ci)))} =



span{(S ∪i∈I(#)\i′ Ci) ∪ Ci′)},

‖v‖2 − ‖v [span{S ∪ Ci′}] ‖
2 ≤ (2)

(

1−
1

|I(#)|

)

(

‖v‖2 − ‖v[span{S}]‖2
)

. (3)

At Algorithm 1, consider that the while loop has been

executed for k times, and let Bk denote the corresponding

constructed matrix. By the inequality in (2)-(3), there is an i
such that the next time that the while loop will be executed

‖v‖2 − ‖v [S(Bk+1)] ‖
2 ≤

(

1−
1

|I(#)|

)

(

‖v‖2 − ‖v[S(Bk)]‖
2
)

.

Thus,

‖v‖2 − ‖v [S(Bk+1)] ‖
2 ≤ . . . ≤

(

1−
1

|I(#)|

)k

‖v‖2 ≤ e−k/|I(#)|‖v‖2.

Thereby, after k̄ ≡ |I(#)|⌈ln(‖v‖2/ǫ)⌉ steps (with |I(#)|
being equal to the number of the non-zero elements of B(I)),

‖v‖2 − ‖v [S(Bk̄)] ‖
2 ≤ ǫ,

and, as a result, 0→ v is ǫ-close feasible.
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