arXiv:1504.00910v1 [math.OC] 3 Apr 2015

Monotonicity of Dissipative Flow Networks Renders Robust Maximum Profit
Problem Tractable: General Analysis and Application to Natural Gas Flows

Marc Vuffray, Sidhant Misra, Michael Chertkov

Abstract— We consider general, steady, balanced flows of a
commodity over a network where an instance of the network
flow is characterized by edge flows and nodal potentials. Edge
flows in and out of a node are assumed to be conserved, thus
representing standard network flow relations. The remaining
freedom in the flow distribution over the network is constrained
by potentials so that the difference of potentials at the head
and the tail of an edge is expressed as a nonlinear function
of the edge flow. We consider networks with nodes divided
into three categories: sources that inject flows into the network
for a certain cost, terminals which buy the flow at a fixed
price and “internal” customers each withdrawing an uncertain
amount of flow, which has a priority and thus it is not priced.
Our aim is to operate the network such that the profit, i.e.
amount of flow sold to terminals minus cost of injection, is
maximized, while maintaining the potentials within prescribed
bounds. We also require that the operating point is robust
with respect to the uncertainty of customers’ withdrawals. In
this setting we prove that potentials are monotonic functions
of the withdrawals. This observation enables us to replace
in the maximum profit optimization infinitely many nodal
constraints, each representing a particular value of withdrawal
uncertainty, by only two constraints representing the cases
where all nodes with uncertainty consume their minimum and
maximum amounts respectively. We illustrate this general result
on example of the natural gas transmission network. In this
enabling example gas withdrawals by consumers are assumed
uncertain, the potentials are gas pressures squared, the potential
drop functions are bilinear in the flow and its intensity with an
added tunable factor representing compression.

I. INTRODUCTION

The maximum profit, or alternatively minimum loss, net-
work flow problem aims to maximize monetary benefit by
delivering maximum amount of flow (of a commodity) from
sources to terminals. The setting is general, and as such it
applies to natural gas networks [1], [2], [3], our enabling
example, but also to electric circuits [4], [5] and traffic flows
(61, [7], [8].

Formally, these problems are constructed by extending
the standard network flow setting, see e.g. [9], [10] and
references there in, with additional physical constraints,
introducing nodal potentials and relating the potential drop
along an edge of the network to a function of the flow. Thus,
in the case of the gas flows, the potentials are pressures
squared and the pressure square drop is a bilinear function
of the flow and the flow amplitude with added term related
to compression [1], [2], [3].
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In this manuscript we focus on discussing a robust version
of the maximum profit network flow problem, more accu-
rately “adjustable robust optimization” problem following the
terminology commonly accepted in the literature on robust
optimization [11], [12], [13], [14]. This means that in the
robust optimization network flow model considered there are
three different types of variables: the uncertain variables, the
non-adjustable variables and the adjustable variables. The
uncertain variables express information that is not certain,
i.e. available for the optimization decision only in the form
of allowed range. The non-adjustable variables represent the
“here and now” decision in the system. Their values should
be feasible for any realization of the uncertain variables from
the allowed range. Finally the adjustable variables represents
the “wait and see” decisions. Their values are adaptable to
a particular values of the uncertain parameters.

The adjustable robust optimization is composed of a test of
robust feasibility and an optimization procedure. A value of
the non-adjustable variables is said to be robust feasible if for
any acceptable configuration of the uncertain variables there
exists feasible values of the adjustable variables. Then the
optimization procedure consists in finding a robust feasible
configuration of the non-adjustable variables such that the
objective function, maximum profit or minimum loss, is
minimized.

The difficulty in solving robust optimization problems
arises primarily due to the robust feasibility constraint, which
is in essence an intersection of infinitely (and possibly
uncountably) many constraints, one corresponding to each
allowed value of the uncertain parameters. This results
in the so-called semi-infinite program [15]. In the robust
optimization literature, the ways to handle these constraints
can be classified into three different categories. First, when
the constraints and the uncertainty set have special structure,
e.g., linear constraints and ellipsoidal uncertainty set, it is
possible to use duality theory to represent the infinitely many
constraints with one single dual feasibility constraint [16],
[17], [18]. Also included in this category is approximations
and relaxations of more complicated uncertainly sets and/or
constraints with simpler ones that are amenable to duality
theory. The second category/approach is similar to the so-
called “scenario based” approach, where a (possibly ran-
dom) sampling of the uncertain parameters is performed,
and the feasibility constraint corresponding to each sampled
parameter is included in the optimization formulation [19],
[20]. The quality of the solution thus obtained depends on
the number of samples used and also on how the samples
were chosen. The third case, which is the approach taken in



this manuscript, is when one can analytically or numerically
identify the “extreme-cases”, i.e, find the subset of values
of the uncertain parameters that can violate the feasibility
constraints. When this subset is finite, or has a finite repre-
sentation, the robust feasibility constraint again reduces to a
finite number of standard constraints. Examples where this
strategy is used are scarce. (See [20, pp. 388] for a brief
discussion on the topic.)

Our main result, stated in Theorem I] is that the adjustable
robust maximum profit problem is tractable, in the sense
that instead of keeping infinitely many conditions, associated
with all possible realizations of the uncertain variables, it is
sufficient to only account for two extremal conditions corre-
spondent to every uncertain variable (customer withdrawal)
greedily maximize/minimize their values. We implement a
multi-stage strategy to prove the results. First, we prove in
Theorem [2] existence and uniqueness of the optimal solutions
for the adjustable variables given that the other parameters in
the problem are fixed. Then, we prove in Theorem [3] that the
adjustable variables are monotonic functions of the uncertain
variables. Finally, we combine all these result to prove the
main tractability statement. Schematic outline of our proof

strategy is shown in Fig. [I]
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Fig. 1. Schematic diagram relating different statements of the manuscript.

The manuscript is organized as follows. In Section [[I, we
briefly introduce the concept of dissipative network flows
and define the problem of the adjustable robust maximum
profit/minimum loss problem. In this Section we also state
our main theorem/statement. In Section [III] we prove exis-
tence and uniqueness of a configuration of the adjustable
variables given that the other parameters are fixed. The
proof is based on the energy function method which consist

in rewriting a set of equations as the result of a convex
minimization problem. In Section [[V] we prove that the ad-
justable variables are monotonic with the respect to uncertain
variables. This result is general — it applies to the case
of unconstrained network flows. Finally, in Section [Yl, we
discuss application of our results to robust optimization in
natural gas transportation networks.

II. FORMULATION AND THE MAIN RESULT
A. Dissipative Flow Networks

Let G = (V,E) be a connected directed graph, where
V and E C V x V denotes the set of nodes and directed
edges respectively. Our notational convention is that for
any pair of , 7 and j, connected by an edge, both (i,7)
and (j,4) belong to E. Function ¢ : V' — R associates
production/consumption ¢; to the node ¢ € V. We assume
that the total production/consumption is balanced

> ai=0. (1)

%
Flow ¢ : F — R is a function mapping an edge (4, j) €
E to flow intensity ¢;; (which we also call flow, or edge

flow, when not confusing). The flow is skew-symmetric with
respect to the edge inversion, i.e. for all (¢,5) € E

Gij = —¢ji- 2)
The flow is conserved locally, i.e. at any ¢ € V' equation
> it a =0, 3)
jEdi

where we denote the set of neighbors of i € V by 0i :=
{j €V |(j,i) € E}. Note that in the context of electric
circuits, the flow conservation equation (3)) is also called the
first Kirchhoff’s Law.

Flow over an edge (i,7) € & is related to the potentials at
end-nodes of the edges through the following potential drop
equation

7 —m = —fij (¢ij) s “4)

where the functions, fij(~), coined dissipation functions, are
assumed to be continuous and monotonically decreasing,
thus leading to decrease/dissipation of potential along the
direction of the flow. The dissipation functions satisfy the
following symmetry relation with respect to an edge inver-
sion

fij (x) = = fji (=), 5)

and they also possess an operational freedom, i.e. the dis-
sipation functions can take any form from their admissible
set, f € F depending on the problem considered.

Note that existence of a potential function that satis-
fies Eq. @) allows a graph cycle interpretation. Let v =
{#1,...,in} € V™ be a directed path in G such that iy, # i;
for k,l € {1,..n — 1}. If 43 = 4,, we say that ~y is a directed
cycle, otherwise we called v a non-intersecting directed path.
For any directed cycle v in G we sum the potential drop



Eq. @) along the directed edges of « to get the following
expression

n—1
Z firinia (¢ikik+1) =0. (6)
k=1

Egs. (6) can be interpreted as a nonlinear generalization of
what is called second Kirchoff’s law in the circuit theory.
In fact, conditions expressing the fact that the flows satisfy
Egs. (6) for any cycle basis of the graph is fully equivalent
to the set of conditions (@) over all edges of the graph.

We call the network G = (V, E), with flows, potentials
and the dissipative functions, f, defined on it, the dissipative
flow network.

B. Robust Maximum Profit/Minimum Loss Optimization

We consider a dissipative flow network where the set of
nodes is partitioned into three non-empty subsets V = S U
T U R. The set S contains nodes ¢ € S that are sources
injecting flow into the network which costs g; (¢;), where g;
is a pre-set function. Nodes 7 € T are terminals where the
flows are withdrawn leading to the following payment per
node, h; (g;), where h; is non-decreasing function. Nodes ¢ €
R are internal customers each consuming a fixed amount of
flow that is uncertain, i.e. it lies in the set g[qi, qij . We assume
that the internal consumption is mandatory, and as such it is
not priced. We aim to maximize the revenue, defined as a
difference between the profit brought by selling the flow at
the terminals minus the cost of injection. Alternatively we
can state the problems as minimization of expenses, defined
as the cost of injection minus the profit at the terminal:

clas,qr) ==Y gi (@) — > _ hila), )
i€S i€T
where gs and gr are shorthand notations for production at
the sources and the terminals respectively.

The maximum profit (minimum loss) problem is an un-
certain program that minimize the cost with respect to
injections, potentials, flows and dissipation functions from
their admissible set F

minimize ¢ (qs, qr)
q,7.f,¢

subject to  q; = giealization Vi € R,
Z¢ji+Qi:O VieV
j€Di (8)
mj —m = —fij (¢i5) V(i,j) €E
2 6i=0
iev
m <m < VieV,

where the regular customer withdrawals could be any, but
fixed, value gfedlization ¢ [gi,ql}.

The optimization (8) is deterministic as the uncertain
parameters are fixed. Below we will turn to its robust equiv-
alent, thus aiming at taking optimization decision leading to
a solution which is feasible for any realization of uncertainty

while also achieving losses which are first maximized (ad-
versarially) over the internal (uncertain) degrees of freedom
and then minimized over the external (operational) degrees
of freedom. Therefore, to arrive at a plausible robust opti-
mization formulation one, first, need to split all the variables
into the sets of the so-called operational (non-adjustable)
and adjustable variables [12]. Operational variables represent
decisions taken regardless of a particular configuration of the
uncertainty. Adjustable variables, according to the name, are
flexible, i.e. they adjust themselves to the uncertainty.

We consider the case where the operational variables are
the production values at the source gs := {qi},cg, the
potential values at the terminals 77 := {m;},., and the
dissipation functions f € F. The adjustable variables are
the production values at the terminals g7 := {q;};cp. the
potential values at the source g := {7}, g, the potential
values at the consumers 7r := {m;},.p and the flows,
¢. The production values at the consumers are denoted by
qr = {4i},c p and the cartesian product of their uncertainty
set is denoted as @) = {gh,qil} X oo X {gi‘m’qi\m}' We
refer the reader to the illustration of the natural gas network
in Section [V] to justify this particular choice of adjustable
and non-adjustable variables.

With this choice of the operational variables, an adjustable
robust counterpart of the deterministic minimum cost prob-
lem (8) becomes

minimize

qs,mr, [,

such that Vqgr € Q, 3qr, 7, TR, O
& (QS ) QT) S T
Z¢ji+(]i20 VieV ©)
jEDi
T —m = —fij (di5)
Z g =0
i€V
m; < ST

subject to

V(i,j) € E

VieV.

Considered directly, Eq. (O) is intractable as containing
an infinite number of constraints, each associated with a
particular gr € ). However, and in spite of the grim naive
assessment, Eq. @]) allows tractable re-formulation stated in
the following main theorem/result of the manuscript:

Theorem 1 (Tractability of the Robust Minimum
Loss/Maximum Profit Problem). There exists a function
7' RIEHISHTE o 7 o RITI and a function
RS RIFHISHTE o 7 — RIEYSE such that the
adjustable robust counterpart Q) reads

minimize ¢ (qs,d7 (G, 45,7, f))
qs,mT,f
. ~RUS .
subject to 7w, <, (QR,qS,Wpf) Vie RUS
7AT:iRUS(6137Q»S'77TT7.]C)Sf’i VZGRUS
m;, < ST VieT,

where g, = {Qz} on and G :={4;};cp are respectively
K2



the minimum and maximum withdrawal values at the con-
sumer nodes.

The functions ¢7 and 77%“° mentioned in Theorem [1] are

derived explicitly, moreover stated in terms of the strictly
convex optimizations, in Section In words Theorem
tells us that only the two extreme realizations of g have to
be considered in order to solve the semi-infinite optimization
©.

Our strategy to prove the Theorem [I}is the following: We
first prove that there exists a unique solution of the adjustable
variables gr, mg, mr and ¢ given a configuration qgr, ¢s,
mr and f. This states the existence of the functions g~
and 77YS. Then, we show that the solution g7, 7g, Tg are
monotonic functions of g, that enables us to reduce number
of critical constraints to only two corresponding to the
extreme configurations of the uncertainty. This establishes
that g7 and 77 are monotonic functions of ¢g.

The proof of existence and uniqueness of the solution is
done in Section [[II| using the energy function method. The
monotonicity properties are proved in Section V] and only
require some properties of the flow network.

III. UNIQUENESS OF DISSIPATIVE FLOW SOLUTIONS:
THE ENERGY FUNCTION METHOD

In this Section we show the existence and uniqueness of
a configuration of adjustable variables, given a configuration
of the non-adjustable variables. The key idea here is to relate
solutions of the dissipative flow network equations (I, (3)
and (@) to the extremum of some convex “energy” function.

Theorem 2 (Uniqueness and Existence of the Dissipative
Flow Solutions). Letr G = (V,E) be a dissipative flow
network. Given qr, qs, mr and f, there exists a unique
solution qr, ms, mr and ¢ which satisfies the balanced
production equation (1), the flow conservation equation
and the potential drop equation (@).

Proof. Let us first invert the potential drop Eq. (4) to express
the flow with respect to the potential

—1 o
fq',j (mi —m5) = dij.
This operation is possible because f;; is an increasing

function. Then, we rewrite the flow conservation equations
only in terms of the potential

Z fﬁl (mj —mi) + ¢ =0.

JEDI
Therefore if one finds 7mg and 7gr that satisfy the flow
conservation equation for ¢ € S U R, one reconstructs the
production g using flow conservation for ¢ € T'. It is easy
to see that the balanced production Eq. (I) is automatically

satisfied
Su = ~X Y gt
1<% i€V jedi
= = Y St mmm) + L ()
(i,J)EE

= O’

where in the last line we use the symmetry relation (3) of
the drop function.

We use the energy function method to prove that the po-
tentials mg and 7k are uniquely determined. Let us introduce
the set of oriented edges

O:={(,j)e E]i<j}.

The graph T' = (V, O) is an orientation of G i.e. (i,5) € T
if and only if (4,j) € G and (j,4) ¢ T.
Consider the following energy function

E(ng,mr | qr a5, 7o, f) = Y Wiy (mi—m) = migi,
(i,5)€0 i€V

(10
where ¥;; is a primitive of fz;1 Note that the primitive exists
because fl-;l is continuous as f;; is continuous. It is easy to
see that a minimum of £ with respect to mg and g satisfies
the flow conservation equation at ¢ € SUR. Indeed by taking
the derivative, one arrives at

o€ _
o = 2 B (T =) + i

JjEODI

We now have to prove that the extremum is unique and that
the extremum is actually the minimum.
Let us define for every edge (i,j) € O, variables

Aij =T —7Tj.

It is straightforward to see that the function

> W, (Ay),

(i,7)€0

is a strictly convex function of A;;. Note that fgl is
increasing because f;; is increasing. This implies that W,;
is also a strictly convex function of A;;. Now we have to
prove that it the function is also strictly convex in mg and
TR.

First we express the relation between A;; and m; in
a matrix form using the incidence matrix M of I'. The
incidence matrix M is a |V| x |O| matrix with entries
Mi. (i.jy = Orj — Or; where ¢ is the Kronecker’s symbol.
The relation between A = {Aj;},.., and 7 reads

A=—-MTr.

We can also explicitly separate contributions of the potential
mg and mgr from 7r in this equation by introducing the
reduced incidence matrices My and M. The matrices
My and M7 are equal to M with the lines, corresponding
respectively to to i € T and ¢ € V'\ T respectively, removed.
One finally obtains the following equation

TS
A= —M"';\T ( - ) — Mlmr.
Observe that the matrix M‘T/ T is full rank. To see this, note
that the product My 7 M, ‘T,\T corresponds to the Laplacian of
the graph L = M M T with the lines ¢ and 7, corresponding to
1,7 € T, removed. Due to the Kirchoff’s matrix-tree theorem



[4] we know that the determinant of any co-factor of L is
non-zero on a connected graph, which implies that

rank (M‘T/\T) =|V\T].
This proves that £ is strictly convex in mg and 7g. O

Theorem 2] enables us to eliminate the adjustable variables
from the adjustable robust counterpart (O). We can now
rewrite our optimization problem as follows

minimize T

gs,mr,f,x
such that Vggr € Q,
subject to ¢ (qr,dr (qr.as, 77, f)) < @
EZ-S%@RUS((]RJQSJTTyf)Sfi VZER,S
m; S ST VieT.
(11)
Function 775 (g, g5, 7, f) which outputs the potential

m; for i € RU S was explicitly constructed in the result of
the strictly convex optimization

%RUS (qR7 qs,TT, f) ‘= arg ﬂ_I?iﬂ_I; & (ﬂ-Sa TR I 4dr,4s,TT, f) 5

(12)
where £ is defined by (I0). Once the potentials are found
using Eq. (I2), one can easily reconstruct the productions

~T —1
i (qr,qs,m, f) = > _ fi;' (mj—m).  (13)
jedi
IV. MONOTONICITY PROPERTIES OF THE DISSIPATIVE
FLoOw NETWORKS

The existence and uniqueness properties from Section [[T]
allowed us to simplify the robust minimum loss optimiza-
tion problem. However, it still remains in the form of an
intractable semi-infinite program given by Eq. (T1). In this
Section we show that only two scenarios for g has to be
considered in order to solve Eq. (TT). To achieve this goal
we show that the potentials 77V, given by Eq. (I2), and the
productions g/, given by Eq. (I3) are monotonic functions
of qdR.

A. Flow Networks

The following theorem applies to general network flows,
i.e. flow networks which are not necessary dissipative. We
only require here that the flows satisfy the flow conservation
Eq. (3). This very general result will then become a starting
point to prove monotonicity properties of the dissipative flow
networks.

Theorem 3 (Aquarius Theorem). Let G = (V| E) be a
flow network and let ¢ and ¢* be flows that satisfy the
flow conservation Eq. Q) for the productions q and q*
respectively. Let T C 'V be a subset of V. If q; > q} for
all i € V\ T, then for every node w € V \ T there exists a
non-intersecting path {iy,...,i,} such that iy € T, i, = u
and (bflil“ > Qiyiyy,- Moreover if q, > q;, the inequality is
strict i.e. @7 > Pigiys-

Proof. We construct the path by induction. Choose v € V\T
and assume that ¢, > g;,. The proof in the case where g, =

q., is identical. We define a sequence of subsets of nodes
B, CV and Ay = Ule By in the following way

Bl = {U}
Biy1 = {ZGV\Ak |3j€aiﬂBkS.t.¢fj >¢ij}~

An example of the sets Ay and By, is shown in Fig. [2}

Fig. 2.
The edges for which ¢7. > ¢;; with i € By and j € By are shown
with a solid line and a djark arrow.

Construction of the ensembles Ag. Note that By, = Ag \ Ap_1.

Let n be the first k for which B, NT # (. First, we prove
by induction that the sets By, for k < n are non-empty. The
set B; is non-empty by construction. Suppose that the sets
By, are non-empty. Define the set of edges connecting two
vertices in Ay by

Ek = {(7’7]) S | Z7] € Ak}?

and the set of edges with a starting point in V' \ A and an
endpoint in Ay

TAL = 1{(,)) € E|j¢ Apandi € A}

By summing the continuity Eq. () for the flow ¢ over the
vertices in A;, one obtains

0 = Z ¢ + Z bji

i€AL JEOI

— Z g + Z Z Dji
iI€EA} i€Ay jEOI

= Z q; + Z (Gij + bj5i) + Z bji
i€ Ay, (.)€ Ex ()€ T Ak

— Z qi + Z bji,
€Ak (7.6)€ D Ar

where the skew-symmetry of the flow (Z) between the two
last lines has been used. Summing up the same continuity
relations for the flow ¢* leads to the following inequality

Z ¢ji:*ZQi<*ZQf: Z Dji-

()€ T Ax €Ay i€ Ay ()€ D Ax

The above inequality implies that there exists (v, w) € 314;@
such that ¢ = > ¢, It remains to be checked that the node

VW



w € Ay is an element of By, = Ay, \ Ai_1. By construction
if w € Ag_1 then v should be contained in A; which
is a contradiction. Thus By is non-empty. We have just
proved by induction that By for k¥ < n are non-empty and
moreover that Ay is an increasing sequence of sets. The last
observation guarantees that n is a finite number.

We now focus on proving that there exists a path
{i1,...,in} from some ¢t € T to w such that iy >
®iyi,,, - By induction it is now easy to prove that for every
node i € By there exists a path of length k£ from ¢ to u
such that ¢7; = > ¢y, . Since it was already shown that
there exists n € N such that By N T # () the proof is
concluded. O

Theorem [3] has an intuitive explanation, clarifying the
name chosen for the theorem. Picture a flow of water through
a network of aqueducts. If water leaks appear at some points
within the network the system becomes unbalanced. There-
fore an aqueduct inspector (“Aquarius” in Latin) needs to
compensate for the leaks pouring more water at other nodes.
This extra water added at the injection node will flow along
some path that has to end up at a leak. Otherwise the added
water accumulates and the network remains unbalanced.

B. Dissipative Flow Networks

Theorem [3| applied to the dissipative flow networks results
in the following statement.

Corollary 4 (Monotonicity of Potentials with Consump-
tions). Let (¢, ) and (¢*, *) be solutions of the continuity
Eq. (@) and the potential loss Eq. @) for the productions q
and q* respectively and the same dissipation function f. If
me >7f forallt € T CVoand ¢; > qf foralli € V\T
then m, > 7 for every node u € V\T. Moreover if ¢, > q;
the inequality is strict i.e. m, > ;.

Proof. Consider u € V' \ T. One evaluates the potential drop
Eq. @) as explained by Theorem [3to arrive at the inequality

Ty =

Z _f (¢ikik+1) +
k=1

n
> Yy —f (aﬁ;‘kml) +
k=1

*

= ﬂ'u’

where we have just used (in between the two last lines) that
fij is an increasing function. O

Corollary [5 allows us to make the following statement
about relations between productions and consumptions.

Corollary 5 (Monotonicity of Productions with Consump-
tions). Let (¢, ) and (¢*, *) be solutions of the continuity
Eq. Q) and the potential loss Eq. @) for the productions q
and q* respectively and the same dissipation function f. If
me =7 forallt € T CV and ¢; > qf foralli €¢ V\T
then q. < qf forallt €T.

Proof. Choose u € T and assume that g, > ¢;;. Corollary [
applied to v implies that 7,, > 7 which is a contradiction.
O

Corollary [] directly implies that the maximum (and
respectively minimum) of the potential 7; (¢r,gqs, 77, f)
given by Eq. (I2) is achieved at a maximum (respectively
minimum) of the customers production qgr

max 7; (qr, qs, 7T, =
max i (qrsqs, 7™, f)

g (QR7QS77TTa f)
in 7 = m . (14
é&gbﬂﬁ(QRaQSaWTaf) Wz(gRaQS;WT7f> (14)

With regards to the Corollary [5} it tells us that the production
q; (qr,qs,7r, f) given by Eq. achieves its maximum
(respectively minimum) at ¢ R (respectively at Gp). This
implies that the maximum of our objective function is
achieved when all the regular customers are consuming at
their maximum value

qlgé%z h’Z ((Jz (qRu qs,TT, f)) = Z h’l (Qz (QR7QS77TT7 f)) .
€T

ieT
15)
Here in Eq. we use the property that A is a non-
decreasing function of ¢;.

Egs. (14) and show that only the two extreme
scenarios of the regular customers consumption has to be
considered to guarantee feasibility of all other consumption
configurations from the uncertain intervals.

V. ILLUSTRATION WITH NATURAL GAS NETWORKS

A natural gas network is a system of interconnected
pipelines delivering natural gas from producers to consumers.
In the normal operational regime gas flows in the transmis-
sion (high pressure level) pipes are turbulent. Consider a
pipeline of length L. As a pipeline length is much longer
that its cross-section, the system can be modeled as one-
dimensional, parameterized by position along the flow, x €
[0, L], with cross-section effects averaged out. Then, the state
of the gas flow at a time ¢ is characterized by its pressure
p (z,t) and mass flow ¢ (z,t) along the pipe (both averaged
over the cross-section). The two characteristics are related
to each other via the following set of partial differential
equations [1], [3], [21], [22]

8y (1) + Bup (2,1) = W + ok (z,1)

op (x,t) + 20, (x,t) = 0, (16)

where c; is the speed of sound in the gas and « is a constant
that depends on the type of gas, size of the cross-section,
roughness of the pipe surface and also on the Re-number,
characterizing the level of turbulence. The term « (z,t) in
Egs. (T6) accounts for a compression added at a compression
station to compensate for pressure drop. The first equation
in Egs. (T6) is a phenomenological equation that quantify
the loss of momentum due to turbulent friction. The second
equation in Eqgs. (T6) enforces conservation of the fluid mass
along the pipe. Compression can be modeled as

k(z,t) = b6 (x — x.),

—Q

a7)



where 0 (-) is the Dirac’s delta function; z, is the compressor
station position along the pipeline and b is an additive
compression factor of the station.

The equations are dynamic, however for the purpose of
planning the gas flow budget on the scale of a day, the
dynamics in Egs. can be ignored, thus setting 0;¢p =
Oyp = 0. In this case, after straightforward spatial integration
along the pipe, Eq. (16) transforms into

L
(L’ =p(0.)° = =016 +b
¢ (,1) b, (18)

relating pressures at the ends of the pipe to the amount of
flow and the value of compression acquired along the pipe.
Eq. tells us that the flow in one pipe is constant and
that it is driven by a difference of pressure squared at the
endpoints of the pipeline. This static representation enables
us to model the gas network in the steady-state regime as
a dissipative network with a potential equal to the pressure
squared m = p?. The dissipation function over a pipe (7,7)
is nonlinear:

fij (di5) = —L”;w bij |diz] + bij.

The three types of nodes that we have introduced above
in the maximum profit problem (sources, internal customers
and terminal) map into nodes of the gas network as fol-
lows. The sources that inject gas into the network are
gas producers, e.g. gas processing plants, Liquid Natural
Gas (LNG) terminals and storage injecting gas into the
system. The internal customers with uncertain demand are
consumers with existing contracts for gas delivery, such as
Local Distribution Companies (LDC) and electric gas-fired
plants. The terminals are opportunistic customers ready to
buy whatever amount of gas which can be made available
(e.g. LNG terminals and storage reservoirs working in the
regime of gas accumulation). The uncertainty on the side of
the internal customers accounts for exogenous changes such
as those related to LDC consumers’ heating requirements,
and fluctuations of gas consumption at the gas-fired plans
due to uncertainty on the electric grid side (e.g. the renewable
generation).

The choice of operation variables is not unique and de-
pends on the regime of operation, type of the system, country,
etc. For example in US, typical large-scale producers would
maintain constant injection/flow, thus allowing changes in
the pressure, while LDC (and related city-gates) on the
contrary would withdraw constant flow allowing the pressure
to meander.

19)

VI. PATH FORWARD

In this manuscript we proved that the robust maximum
profit problem over nonlinear dissipative network flow prob-
lem is tractable. The strategy that we have employed in the
proof is based on the search for an explicit formulation of
the special limiting scenarios such that feasibility of solution
for the special scenarios guarantees feasibility for all other
scenarios from the uncertainty range. We proved that in

the general case of the static dissipative network flow it is
sufficient to maintain feasibility only for two scenarios. The
essence of this major step in our proof strategy is related
to the very strong monotonicity property in the space of
solutions.

We envision extending this work in the future along the
following three directions:

« We plan on moving from static formulation to dynamic
and thus to analyze dynamic versions of respective
robust optimizations from the perspective of scenario
reduction discussed in this manuscript. There are more
than one possible generalization strategies (for transition
from static to dynamic). In particular, one may hope
to find a dynamic (Lagrangian) generalization of the
Aquarius principle, i.e. generalization of the Theorem
Bl In the context of natural gas application, we plan
to introduce and analyze consumption robust version
of the dynamic optimization (off-line control) problem
discussed in [23] based on the dynamic Egs. (I8). We
will also attempt to develop dynamic version of our
scenario-reduction technique suitable for control and
dynamic optimization traffic network problems of the
type discussed in [6], [7], [8].

« We would like to design an efficient numerical scheme
to solve the tractable version of the robust maximum
profit/minimum cost problem. As formulated in Theo-
rem [I] the problem is a bi-level optimization task. To
advance this task we plan to utilize the energy function
representation in order to formulate the entire problem
as one minimization procedure in the spirit of [24].

o Finally, we plan to extend the results reported in the
manuscript to more general types of uncertainty sets
such as ellipsoids. The ellipsoid type of uncertainty
set is more challenging than the one of the box kind
considered in the manuscript. Even if the monotonicity
properties guarantee existence of the extremal scenarios,
deriving explicit form of the extremal scenarios in
setting other than of the box type remains a challenge.
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