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Event-Triggered Control over Unreliable Networks
Subject to Jamming Attacks

Ahmet Cetinkaya, Hideaki Ishii, and Tomohisa Hayakawa

Abstract— Event-triggered networked control of a linear  attacker. We employ an event-triggered control framework,
dynamical system is investigated. Specifically, the dynawal where the plant and the controller attempt to exchange
system and the controller are assumed to be connected throhg state and control input information packets only at times

a communication channel. State and control input informatbn that dt ttri ina instants. Followihe t
packets between the system and the controller are attempted al correspond 1o event-triggering instants. Foflowing

to be exchanged over the network only at time instants approach in [12], [13], we utilize Lyapunov-like functions
when certain triggering conditions are satisfied. We provi to characterize the triggering conditions. The triggering
a probabilistic characterization for the link failures which  conditions that we propose in this paper ensure that the
allows us to model random packet losses due to unreliability value of a Lyapunov-like function of the state stays within
in transmissions as well as those caused by malicious jamngn L

certain limits. Packet exchanges are attempted only before

attacks. We obtain conditions for the almost sure stabilityof . i g
the closed-loop system, and we illustrate the efficacy of our the value of the Lyapunov-like function is predicted to eete

approach with a numerical example. a certain level. In a successful packet exchange scenario,
state measurements are sent from the plant to the controller
I. INTRODUCTION which computes a control input and sends it back to the

lant. However, state measurement or control input packets

is that communication between plant and controller m?J!;nay fail to be transmitted due to random packet losses and

. . tamming attacks. We model random losses using a binary-
not always be reliable. State measurement and control inpu D . :
) . . aluedtime-inhomogeneoullarkov chain. To characterize
packets may fail to be transmitted at times due to networ.

. . L . eJamming attacks, we follow the approach of [10]. Rather than
conggst!qn or €rrors in cqmmunlcatlon. In t.he literatur 3pecifying predetermined patterns or distributions foe th
unreliability of a network is often characterized throughoccurrences of jamming attacks, we allow jamming attacks
random models for packet loss events [1]. For instance L '

) . ' | happen arbitrarily as long as the total number of packet
[2], [3], Bernoulii processes are used for modeling paCkeexchange attempts that face jamming attacks are almost
losses in a network. Furthermore, in [4], [5], packet IOS?surely bounded by a certain ratio of the number of total
events are characterized in a more general way by employin%Cket exchange attempts

Markov chains. In these studies, a variety of control mesho .
are proposed to ensure stability of networked control syste We consider both the case where random packet losses
prop Y WS and jamming attacks are independent and the case where

that face random packet losses. . .
) .. . the attacker may use information of past random packet
More recently, cyber security has become a critical issue

. . gsses in generating a jamming attack strategy. The main
in networked control systems since the channels are nowg- . . . .

. . . . theoretical challenge in dealing with both of these cases
days connected via the Internet or wireless communication

6], [7]. Here, in addition to random losses, we conside?§ems from the fact that random losses and jamming attacks

L : . o are of different nature and hence have different models.
communication effects due to jamming attacks initiated b}é e . S .
- L utilizing a tail probability inequality for the sum of
malicious agents. Such attacks may block the communlcatlorrYOcesses that represent random losses and jamming attacks
link and effectively prevent transmission of packets betwe P P ] g

the plant and the controller. In a few recent works [8]_We show that a probabilistic characterization for the etroiu

L . - of the total number of packet exchange failures allows us
[11], networked control problems under malicious jamming . ) o
; . 0 deal with both cases. Based on this characterization, we
attacks were investigated.

In this paper we explore feedback control of a discreteEbtam conditions for almost sure asymptotic stability of

time linear system over a network that is subject to bot he closed-loop event-triggered networked control system

random packet losses due to unreliability of the communica-urthermore’ we present a numerical method for finding

. . ) . . . ﬁtabilizing feedback gains as well as parameters for the
tion channel and jamming attacks coming from an intelligen . . X
event-triggering mechanism.
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Successful packet exchange attempts

We use a fairly standard notation in the paper. Specifically,
we denote positive and nonnegative integershowand N,
respectively. We writeR for the set of real number&” for
the set ofn x 1 real column vectors, an@™*"™ for the set
of n x m real matrices. Moreovex;)T denotes transpose, || | | | |
| - || denotes the Euclidean vector norm, dnfldenotes the T Timel] 27
largest integer that is less than or equal to its real argimen
The notationP[-] denotes the probability on a probability Ka(n) a(r1) 0 #(72)
space(Q2, F,P) with filtration {F;}ien,-
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IIl. EVENT-TRIGGEREDNETWORKED CONTROL Controller [€ ‘—,

In this section we provide the mathematical model for the
event-triggered networked control system. We then prefsenf
characterization of a network that faces random packegtoss
and packet losses caused by jamming attacks.

ig. 1. Networked control system operation

exchange attempt at time is successful and the piecewise-
constant control input at the plant side is setufr;) =
A. Event-Triggered Control System Kx(r;), where K € R™ ™ denotes the feedback gain.
Consider the linear dynamical system On the other hand, the ca$gé) = 1 indicates that either
the packet sent from the plant or the packet sent from the
z(t+1) = Ax(t) + Bu(t), =(0)=wmzo, t€No, (1) controller is lost at timer;. Again, in such cases, control

wherez(t) € R* andu(t) € R™ denote the state and the I"Put at the plant side is set t

control input; furthermored € R™*" and B**™ are the The triggering condition[{2) involves two parts. The part
state and input matrices, respectively. characterized by (Ax(t) + Bu(r;)) > 8V (z(r;)) ensures

In this paper, we use the event-triggering framework (st after a successful packet exchange attempt;,athe
[13] and the references therein), where the control input {&!ue of the Lyapunov-like functior’(-) stays below the
only updated when a certain triggering condition is satisfie '€ve! AV (z(7:)) until the next packet exchange attempt.
The triggering condition is checked at each time step at terthermore, the triggering condition > 7; + ¢ ensures
plant side. that two consecutive paqket exchange attempt instantstare a

In the networked operation setting, the plant and thB0St¢ steps apart, that is;41 —7; < 0, 7 € No. Although
controller are connected through a communication chafi?€ SPecific value of does not affect the results developed
nel and attempt to exchange information packets at tim&!oW. the boundedness of packet exchange attempt irgerval
corresponding to event-triggering instants. We consitler t duarantees that (and hencé/(x(r;))) are well-defined for
case where packets are transmitted without delay, but th@?Ch,Z < N. In practice, the value of can be ;elected
may get lost. In a successful packet exchange scenario, G"Sidering how frequent the plant state is desired to be

a certain time instant, measured plant states are traesmitnonitored by the controller side.
to the controller, which generates a control input based on OPeration of the event-triggered networked control system

the received state information and sends a packet conggini? lllustrated in FigL1L. The triggering conditidni (2) is dked
the control input information to the plant. The transmittedt the plant side at each steg No. Attimest = 7;, 7 € I,
control input is applied at the plant side. In the case of aff'® triggering condition is satisfied and packet exchanges
unsuccessful packet exchange attempt, either the measuP§§veen the plant and the controller are attempted. For this

state packet or the control input packet may get dropped, af§@mMPle, packet exchange is attempted at timer;, since
in such cases control input at the plant side is set.to V(Ax(t) + Bu(m)) > BV (z(r)). At this time instant,
We user; € No.i € No, to denote the time instants at the plant and the controller successfully exchange stade an
7 bl ’

which packet exchanges between the plant and the controlf@ntrol input packets over the network, and as a resul,

are attempted. To characterize these time instants weauli CONtrol input on the plant side is updated &oz(r,). Note
quadratic Lyapunov-like functiol’ : R” — [0, co) given by that packet exchange attempts are not always successful, an
V(z) 2 2T Pz, whereP > 0. Letting 7, = 0, we describe may fail due to loss of packets in the network. For instance,

7, i € N, and control inputu(¢) applied to the plant by th_e packet _exchange attempt f_;lt timefails for the case of
Fig.[d. In this case, the control input at the plant side id®et
Tiy1 = min {t e{rn+1,1+2,. .. }:t>1+0 0 at timer,, which results in an unstable behavior. A packet
exchange is attempted again at the very next time step
or V(Az(t) + Bu(r;)) > ﬂV(I(Ti))} (2)  since the triggering condition is also satisfied at thatainst
T ‘ ‘ o Remark 2.1:The event-triggering framework we describe
u(t) = (1 =16) Ka(r), t € {7 i =11 () above requires a plant-side mechanism for checking the
for i € Ng, wheres € (0,1), 8 € N, and{l(¢) € {0,1}};en, triggering condition [(R) at each time step. If the overall
is a binary-valued process that characterizes success practical setup of the process does not allow placing such
failure of packet exchange attempts. WHe¢i) = 0, packet a mechanism at the plant side, following the self-trigggrin



control approach described in [14], we can use a decisidi®, 1}, and time-varying transition probabilitigs, ,: Ng —
mechanism at the controller side. In this case, packet ef3,1], ¢q,r € {0,1}, such that

change times are decided at the controller side based on the Pln(0) — o] — 0 0.1

state information obtained at previously successful packe Ir(0) = q] = ¥y, q €{0,1},
exchange attempts. Pllr(i +1) = r|lr (i) = q] = pq,r(i), ¢,;v € {0,1}, i € No.

The statelg(i) = 1 indicates that the network faces

B. Characterization of a Network with Random Packefandom packet losses at timg, and hence the packet

Losses and Packet Losses Caused by Jamming Attacks exchange attempt af results in failure. Note that in this
Packet transmission failures in a network may have d”(_:haractenzatmn, the event that a packet exchange attempt
f%las depends on the states of previous packet exchange at-

ferent reasons. Packet losses caused by network congesti I s Furthermore. transition brobabilities betweaTess
may be accurately described using stochastic models [15]. pis. Fu ot sttion p e W
r(7) = 0) and failure {g (i) = 1) states of packet exchange

However, only stochastic models would not be enough t . : .
ony . - 9 agtempts are time-dependent. For instance, the prohabflit
characterize packet losses if the communication channel Iacket exchanae failure at ti is given b NG
subject to jamming attacks of a malicious agent. In whdt2c<€! € 9 Mey IS given by piy (i), 1 (0)-
It is important to note that the time-inhomogeneous

follows we characterize the effects of certain stochagstitt a . o
. . : . Markov chain characterization of random packet losses gen-
jamming-related packet loss models in a unified manner b

. L : : ralizes the Bernoulli andme-homogeneouslarkov chain
investigating dynamical evolution of the total number o . ;

. models that are often used in the literature.
packet exchange failures.

First, we define a nonnegative integer-valued process2) Jamming Attacks For jamming attacks coming from

{L(k) € No}ren by an intelligent attacker, a model capturing the attack syt
1 of a malicious agent has been proposed in [10]. In that study,
L(k) 2 Zl(i)’ ke N. 4) the sum of the length of attack durations is assumed to be

bounded by a certain ratio of total time.
) We follow the approach of [10] for modeling packet
Note thatL(k) denotes the total number déiled packet exchange failures due to a jamming attack. Specifically, let

i=0

exchange attempts during the time interifalr, .. {1;(i) € {0,1}};en, denote the state of jamming attacks.
Assumption 2.1There exist scalarp € [0,1], v« € The statel;(i) = 1 indicates that the network is subject to
[0,00), k € N, such that a jamming attack at time;. We consider the case where

) the number of packet exchange attempts that face jamming

P[L(k k| < k . .
[L(k) > pR] < v, €N, attacks are upper bounded almost surely by a certain ratio

Z% < 00. (6) of the total number of packet exchange attempts, that is,
keN {l;(%) € {0,1} };en, satisfies
Note that conditions[{5) and(6) provide a probabilistic k—1 1
characterization of the evolution of the total number ofkgdc P[Z ;i) <k + —] =1, keN, @)
exchange failures through scalasse [0,1], vx € [0, 0), i=0 T

k € N. A closely related characterization for packet dropoutyheres; > 0 and+ > 1. In this characterization, amorig

in & communication link is presented in [3]; the scalain  packet exchange attempts, at mest£ of them are affected

() corresponds to the notiafropout ratediscussed there. by jamming attacks. The ratié corresponds to the notion
The following result is a direct consequence of Boreliamming ratediscussed in [17]. Note that when= 0, (7)

Cantelli lemma (see [16]) and it shows that under Assumpmplies/;(i) = 0, i € {0, ..., |7|}, almost surely. Scenarios

tion[2.1, the long run average of the total number of faileghat involve possible jamming attacks during the first few

packet exchanges is upper boundedpby packet exchange attempts can be modeled by setting).
Lemma 2.2:If there exist scalarp € [0,1], 1 € g(),oo), Note that the characterization ifl (7) does not requj(e),

k € N, such that[(),[{6) hold, thebm sup,,_, ., % < p, €Ny, to follow a particular distribution. In fact;(-) may

almost surely. be generated in a deterministic fashion, or it may involve

It is important to note that for any packet loss model’randomness.

Assumption 211 is trivially satisfied witlh = 1, and~; = 3) Combination of Random and Jamming-Related Losses:
0,k € N, sinceL(k) < k. On the other hand, as illustratedIn order to model the case where the network is subject
in the following, for certain random and jamming-relatedo both random losses and malicious jamming attacks, we
packet loss modelg; can be obtained to be strictly smallerdefine{i(i) € {0,1}}ien, by

thanl.
i . 1, lR(’L) =1or l](l) = 1,
1) Random Losses:To characterize random packet (i) = .
0, otherwise,

losses in the communication channel, we utilize time-
inhomogeneous Markov chains. Specifically, k(i) € where {ir(:) € {0,1}}ien, iS @ time-inhomogeneous
{0,1}}ien, be anF;-adapted time-inhomogeneous MarkovMarkov chain characterizing random packet losses (see Sec-
chain characterized by initial distribution, € [0,1], ¢ € tion [-B1) and {l;(i) € {0,1}};en, satisfying [T) is a

1€ No, (8)



binary-valued process that characterizes jamming at(@eles {0, 1} },cn, defined by setting (i) = 1 —Ir(i), x(i) = 15(4),

Section 1[-B.2). i € No. Now, since&(i) = 1 — Ir(i) and x(i) = I3(i),
Proposition[2.B below provides a range of values fowe havels(k) = Zf;ol &(i)x(¢); and hence, Lemmia_A.1

p € (0,1) that satisfy Assumptioh 2.1 in the case that thémplies that

network under consideration faces both random packetdosse

and jamming attacks. In the proof of this result, we utilize P[La(k) > pok] <), k€N, (16)
Lemm_fPr obtaining l;ip_)pl)er bounds on tail probabilities Z’Yz(f) < o0, (17)
of sums) . [r(i) and ;" (1 — Ir(i))l5(3). =

Proposition 2.3: Consider the packet loss indicator pro- ) . sk
cess {I(i) € {0,1}}ien, given by [B) where{in(i) € where 4 2 g i1 (et oiol ang ¢, 2
{0,1}}ien, and {i5(3) € {0,1}};en, are mutually indepen- 7r2(1—po)

- po(1—=7p2)"
dent. If there exist scalang, p1 € (0,1) such that Now, let 7, 2 %(Cl) n 7122)’ k € N. By using [T3), [T4),
Pg,1(1) < p1, (9) and [186), we obtain{5). Furthermore, as a consequence of
Peoli) Spo, q€{0,1}, ieNy, (o) @3 andlIy). we havelp) as
p1+%<1, (12) S =Y+ Y Y <o,
keN keN keN
hold, then for allp € (p; + 2, 1), there existy, € [0, c0), _
k € N, that satisfy [(5),[(6). which completes the proof. O
Proof: It follows from (@) that Note that in Propositiof 213{lr (i) € {0,1}}en, and
. . _ . _ {l;(7) € {0,1} };en, are assumed to be mutually independent
(i) = Ir(i) + (1 = r(2))l5(7), i€ No, processes. In other words, packet exchange attempt failure
and hence, by{4) due to jamming attacks are assumed to be independent

of packet exchange attempt failures due to random packet
il S ) , losses. This assumption would not be satisfied in the case
L(k) = Z I(i) + Z(l —R(@))(E), keN. (12)  hat the malicious jamming attacker has information of the
=0 =0 past random packet losses in the communication channel and
Now, lete £ p—p; — 22, e £ min{&, 1522}, ¢; £ ¢ — ¢,  Utilizes this information in the attack strategy. Proposi2.4

2T .
and defingy, £ p;+ep, p2 2 L0 +¢,. Note thatp; € (p1,1) below deals with such cases.

k—1

andp, € (p?za %)- Furthermore, leL; (k) £ Y°/" Ir(i) and  proposition 2.4: Consider the packet loss indicator pro-
La(k) £ 3272y (1 — Ir())ls(i). It then follows that cess {l(i) € {0,1}}sen,. Suppose there exists a scalar
PIL(k) > pk] = P[Ly(k) + La(k) > pik + pak] p1 € (0,1) such that[(B) and
=1—P[L1(k) + La(k) < p1k + p2k] p1+ 1 <1, (18)
< 1-P{L1(k) < prk} N {La(k) < p2k}] T
=P[{L1(k) > p1k} U {La(k) > p2k}] hold. Then for allp € (p1 + £, 1), there existy, € [0, o),

< P[Ly(k) > pik] + P[Lo(k) > pok). (13) F €N, that satisfy[(B),[(B).

In the following we obtain upper bounds for the two Proof: It follows from (@) that

probability terms on the far right-hand side ¢f{(13) using k—1 k—1
Lemma[Al. L(k) <> Ir(i)+ Y li(i), keN.
First, to apply the lemma for the terff[L, (k) > p1k], i=0 i=0

let p = p1, ¢ = 0, w = 1, and define process€g(i) € A L , A . A1
10,1} }ien, and{x (i) € {0, 1} }icx, by settinge(i) 2 ig (i), €Le=p—p1— 7, and definep = p1+ 3, p2 = 7 +
x(i) = 1, i € No. Then, the conditions in(#1) and {42) Using arguments similar to the ones used for obtaiing (13)

are satisfied. Now, sincg; (k) = Zf;ol &(4)x (i), it follows in the proof of Propositiod 213, we obtain

(Sl

from Lemma A.l that k—1 k—1
]P)[Ll(k) > Plk] < Wl(cl)’ keN, (14) P[L(k) > pk] < P[ZO lR(Z) + ZO lJ(z) > pk]
S < oo, (15) k1 k1
poers <P Ir(i) > pik] + P[Y_1i(i) > pok], k € N. (19)
=0 =0

wherer(!) £ g /(DRI gng g, & o0-m), . .
Next, we use Lemmﬁl to find an upper bound foiThe termsP[} ", Ir(i) > pik] andP[>",~; l5(i) > p2k]
P[L2(k) > p2k]. Specifically, as a consequence (7)in [@9) respectively correspond to random packet losses and
conditions [(41L), [(42) hold witlp = po, ¢ = x, andw = 2  packet losses due to jamming attacks. First, it is shownen th
together with processef& (i) € {0,1}}ien, and {x(¢) € proof of Propositiori_Z]3 thalP[Zfz_Ol Ir(@) > p1k] < 71(:)’



wherey(D) 2 gkl (- Ut DP 1 gpg g, & 210-p)  of the Lyapunov-like functionV () defined by V(z) 2

. (¢—Dp1 ~ pi(l-p1)” o L . .
Moreover, using Markov’s meqpﬁallty we obtain’ xT Pz, x € R". Then, by utilizing this inequality, we will
e i establish almost sure stability, and then finally we show
P 11(0) > pok] < P 1+(1) > ook almost sure asymptotic stability of the closed-loop system
[; 3(0) > pok] < [Z; 3(0) 2 pok First, we use[(1) and13) together with(-) to obtain

= P[eXiz0 () > er2h] < PR [X0 U] (20)  V(x(r +1)) =27 (r) (A+ (1 —1(i)) BK)' P
for k € N. By (@), we haveE[eXi=o ()] < E[ertr] = (A+ (1 -1(3) BE) a(r), i € No. (26)
e+ % . Therefore, it follows from[{20) tha]P[Zf;ol l3(¢) >  Now, for the caséd(i) = 0, (23) and [(ZB) imply
(2) (2) & _k—(p2—1)k
pak] <7y, wherey, ™ = e 28, ke N, V(x(r; +1)) = 2" () (A+ BK)" P (A+ BEK) x(r)

A

Now, let v, 2 7" 4+~ &k e N. Using [19), we

T )
obtain [%). Moreover,[{6) holds sincEkeNvg) < o0, < Bz (rs) Pa(ms). (27)
S ken 71(@2) < 0. O Sincer; 1 > 7; + 1, it follows from (2) and [2F) that
In comparison with Proposition 2.3, Proposition]2.4 pro-  V(z(t)) < 2T (r;) Px(r;)
vides a more restricted range of values forthat satisfy =BV(2(r)), te{m+1,....,741}. (28)

Assumption[Z11. The interpretation may be that the mali- . ]

cious jamming attacker is more knowledgeable and may use©On the other hand, for the cas@) = 1, it follows from

information of the past random packet losses in the attad’d) and [(26) that

strategy. V(z(r +1)) = 2¥ (1) ATPAz(1y) < pzT (1) P(my).
(29)

Now if Tit1l = 7;+1, we haVEV(,T(Ti+1)) < (pV(,T(Ti)) due
to (29). If, on the other hand;.1 > 7; + 1, it means that
In this section, we investigate stability of the closeddoo v/ (4:(t)) < gV (a(r;)) for t € {r; +2,...,7i41}. Therefore,
event-triggered networked control systelm (L)—(3), whigh isince 3 < ¢,
a stochastic dynamical system due to probabilistic charac-
terization of packet losses. Below we define almost sure V(2(t)) < ¢V (z(7i)), te{m+1,...,misa}.  (30)
asymptotic stability for stochastic dynamical systems. Using [28) and[{30) we obtain
Definition 3.1: The zero solution:(t) = 0 of a stochastic
system isalmost surely stabléf, for all ¢ > 0 andp > 0,  V(@(Ti41)) < (1 = U(8))BV (x(:)) + 1)V (2(7)), (31)
there exists) = d(¢, p) > 0 such that iflz(0)[| <4, then o ; < N,. Note that the inequality given ifi{B1) character-
Plsup ||z(t)]| > €] < p. (21 izes an upper bound on the growth of the Lyapunov function
teNg candidateV ().
Now, let (k) £ [T Zg (1 —1(3))B + 1(i)g). It follows
from (31) that

IIl. CONDITIONS FORALMOST-SURE ASYMPTOTIC
STABILITY OF THE NETWORKED CONTROL SYSTEM

Moreover, the zero solution(t) = 0 is asymptotically stable
almost surelyif it is almost surely stable and
P[lim [l(t)] = 0] = 1. (22) Vi(x(me)) < n(k)V (2(0)), (32)
for k € N. Furthermore, sincén ((1 —¢)8 +qp) = (1 —
In Theoreni 3.2 below, we present sufficient conditions fog) In 5 + ¢1In ¢ for ¢ € {0,1}, we have
almost sure asymptotic stability of the zero solution of the b1
dynamical systenT{1)X(3). (k) — o (1 — 1(i .
; . . = - +1
Theorem 3.2:Consider the linear dynamical systefd (1). ni(k) ; a(( (0)8 +1(0)e)
Suppose that the proce$q:) € {0,1}},cn, characterizing

k—1 k—1
packet exchange failures in the network satisfies Assump- =S =16)mB+ S i) ne
tion [21 with scalarp € [0,1]. If there exist a matrix ; ;
K € R™*™, a positive-definite matrix? € R"*", and = (k—L(k))InB + L(k)Inp,

scalarsg € (0,1), ¢ € [1,00) such that
where L(k) = Zf;ol 1(¢) by (4). Now sinces € (0,1), and

T
BP—(A+ BK) P(A+ BK) >0, (23) 4 € [1,00), it follows from LemmaZR that
P — ATPA >0, (24) (k) )
(1-p)InB+plnyp <0, (25) hllglls:;p = h;?i)s:;p P ((k—=Lk)InB+ L(k)Ingp)

then the event-triggered control lavz] (211 (3) guarantees <(A-p)lnB+phe,
almost sure asymptotic stability of the zero solutigh) =0 4imost surely. Therefore, it follows frorfi(25) that
of the closed-loop system dynamics.
Proof: The proof is composed of three steps. In the P[lim sup In (k) <0]=1.
initial step, we obtain an inequality concerning the eviolut k—o00 k




As a consequencdimy_, Inn(k) =
limg—, oo n(k) = 0, almost surely. Thus, for all > 0,

hm P[supn(k) > €] =0,

o0 k>j

and therefore, for at > 0 andp > 0, there exists a positive

integer N (¢, p) such that

Plsupn(j) > ¢*] <p, j > N(ep). (33)

k>j

In what follows, we will employ [(3R) and (33) to show

—o0, and hence,

It follows from (38) and[(3b) that for alt > 0, p > 0,

Plsup [[z(t)]| > €] = P[sup max||z(t)]| > €]

t€No keNg k
=P
[{ke{o,Lm,a)% - 1}?37)(”17( )| > €}
U sup max ||T > €
{osp maxa(t)] > )]
<P max max ||z (t)]| > €]
k€{0,1,...,N(e,p)—1} t€Tk

+P[ su max ||x > €
e max (o) >

almost sure stability of the closed-loop system. Note that P

(28), (30), andp > 1 > B imply that
V(z(t+1)) <oV (x(t)), t € {r,...,

for i € Ny. Since, [|z]|* <
Amax(P)|z]?, = € R", we have

-1}
V(z) and V(z) <

Ti+1

mln(P)

le@* < ulla(m)l®, t € {7, .. e — 1}, (34)

for i € Ny, wherey £ i:?:((lf)).
Now, let 7y {mky---»Tk41 — 1}, k € Np. Then
by using [32) and[{34), we obtain(k) > % >

Awin(P) (] < 1 [z
Amax(P) 2O = 725 [(0) 7
(k) > 1¢% k € N. By (@3), it follows that
foralle >0andp >0

P[zgpmaXHx( ) > evi/el|z(0)]]]

forallt € T, k € N. Hence,

[

= Plsupmax [lo(t)[|* > *v*l2(0) ]
k>jt

1 2
by s 0]
k> V2o ||z (0)]]
< P[supn(k) > €2
k>j

<p, j=>N(ep).

We now defines; = V\/_ Note that if||z(0)|| < 4, then
(sincev,/pllz(0)| < 1) we have

> €]

Plsup max ||z(t)]| >
sup s (0] >
< Plsupmax |[2(t)[| > evy/i]|z(0)[[]
k>j teETk

j = N(ep).

On the other hand, sinceg > 1 > g, it follows from
@) thatV (z(r)) < "V (2(0)) < NP1V (2(0)) for
all k € {0,1,...,N(e,p) — 1}. Therefore,||:v(7k)||2 <
NP1 2B 10) 2 — NPy (0) 2. Further-

mi n

more, as a result of (34),

< p, (35)

max |z()[|* < vl|z(m)|* < V2N P 12(0)]?,
€Tk

and hencemaxieT, ||[z(t)]| < vv/pNED)||2(0)] for all
k S {0117---7N(6,]5) — 1} Let 62 é (9% -1 —N(e,p)_

Now, if ||z(0)|| < &2, then maxier, ||2(t)]] < € k €
{0,1,...,N(e,p) — 1}, which implies

Inax||:1:( )| >¢€¢ = 0.

36
ke{01 ..... N( D)} teTh ( )

<D

whenever||z(0)|| < § £ min(d;, d2), which implies almost
sure stability.

Now in order to establish almost suasymptoticstability
of the zero solution, it remains to shofv [22). To this end,
note thatP[limy_, o 7(7) = 0] = 1. It follows from (32) that
Pllimg— o0 V(z(7%)) = 0] = 1, which implies [2R). Hence
the zero solution of the closed-loop system (L), (B), (3) is
asymptotically stable almost surely. O

Theoren{ 3.2 provides a sufficient condition under which
the event-triggered control law](2)](3) guarantees almost
sure asymptotic stability of the linear dynamical systéin (1
for the case packet losses satisfy Assumpfioh 2.1. Note that
the scalarg3 € (0,1) and € [1,00) in conditions [[2B) and
(24) characterize upper bounds on the growth of a Lyapunov-
like function. Specifically, when a packet exchange attempt
between the plant and the controller is successful at time
7;, the condition [(2B) together with](2) guarantees that
V(z(riy1)) < BV (x(r;)). On the other hand, if a packet
exchange attempt between the plant and the controller is
unsuccessful at time;, it follows from (24) and [(R) that
V(z(rit1)) < oV (z(r;)). If unsuccessful packet exchange
attempts are sufficiently statistically rare (successadket
exchanges happen statistically frequently) such thatitond
(29) is satisfied, then the closed-loop system stability is
guaranteed.

Note that the analysis for the closed-loop system stabil-
ity is technically involved partly due to the general char-
acterization in Assumptiof_2.1, which captures not only
random packet losses but jamming attacks as well. If we
consider only the case of random packet losses, we may
employ methods from discrete-time Markov jump systems
theory [18] for obtaining conditions of stability. On the
other hand packet losses due to malicious jamming attacks
(Sectior I-B.2) cannot be described using Markov procgsse
Stability of a system under jamming attacks is explored in
[10], where the analysis relies on a deterministic approach
for obtaining an exponentially decreasing upper bound for
the norm of the state. In contrast, in our analysis, after
establishing that both random losses and jamming attacks
allow a probabilistic characterization, we use tools from
probability theory. Specifically, we find a stochastic upper
bound for a Lyapunov-like function and show that this
stochastic upper bound tends to zero even though it may
increase at certain times.



red line in Fig[2, where the dark shaded region corresponds
to 8 € (0,1) and ¢ € [1,00) that satisfy [(2b). Note that
picking smaller values for\ > 0 moves the curve towards
the boundary identified byl — p)In 5 + plny = 0. Also,
there is no conservatism inot considerings < (0,1),
¢ € [1,00) such that(1 — p)Ins + plny < —A. This
, is due to the fact that if there exist/ and @ that satisfy
Fig. 2. Region for3 € (0, 1) andy € [1, 00) that satisfy[25) fop = 0.4 (34) and [3B) for valueg = 3 and ¢ = ¢, then the same
M and @ satisfy [37) and[(38) also for larger valugs> 3
and ¢ > $; moreover, for allg € (0,1), ¢ € [1,00) such
A. Feedback Gain Design for Event-Triggered Control that(1—p)In8+plng < —A, there exist3 > f andy > ¢
such that(1 — p)In 8 4+ plnp = —A.

g —
0

In the following, we outline a numerical method for
designing the feedback gaii € R™*", as well as the
positive-definite matrixP € R”*" and the scalap € (0,1) IV. NUMERICAL EXAMPLE
used in the event-triggered control la (Z) (3). In this section we present a numerical example to illustrate

Corollary 3.3: Consider the linear dynamical systefm (1).0ur results. Specifically, we considéi (1) with
Suppose that the pr_oce@s(?’) € {0,1}}ien, cha_lre}cterizing R 1 01 Lol
packet exchange failures in the network satisfies Assump- A= [ 05 1.1 ] , B= [ 1.9 } .

tion 23 with scalarp € [0,1]. If there exist a matrix . . .
M € R™ ", a positive-definite matrix) € R"<", and We use the event-triggering control lail (2} (3) for stabi-

scalarsB € (0,1), ¢ € [1,00) such that[(Z5), lization of (1) over a network. We consider the case where
the random packet losses in the network are characterized
BQ (AQ + BM)™ >0 37) by the discrete-time Markov chaifirg(:) € {0,1}}ien,
AQ + BM Q =7 with initial distribution 99 = 0, ¥; = 1, and transition
P . A .2 . . A
0Q (AQ)T probabilities pp 1 (1) = 0.2 4+ 0.03sin”(0.1%), p11(7) =
[ 0 o |20 (38) 0.2+ 0.03cos?(0.1i), andp,.o(i) = 1 — g1 (), g € {0, 1},

i € Ng. Note that{ig (i) € {0,1}};en, satisfies[(P) and{10)
hold, then the event-triggered control law (Z)} (3) with®  with p; = 0.23 and p, = 0.8. Furthermore, the network
Q! and K & MQ~! guarantees almost sure asymptotidgs assumed to be subject to jamming attacks characterized
stability of the zero solution:(t) = 0 of the closed-loop with {I;(i) € {0,1}};en, that is independent ofir(i) €

system dynamics. {0,1}}ien, and satisfied{7) with: = 2 andr = 5.
Proof: Using Schur complements (see [19]), we trans- Note thatp; 4 £ < 0.4. It follows from Propositiod 23
form (37) and [(3B), respectively, into that for p = 0.4, there existy, € [0,00), k € N, such that
T (B) and [®6) of Assumptioh 2.1 hold. Furthermore, matrices
fQ—(AQ+ BM) Q™ (AQ+BM) =0,  (39) 0618 2119
©Q — (AQ)TQ14Q > 0. (40)  Q=| 5119 o9so14 |+ M=[0202 —20.405 ],

Now by multiplying both sides of inequalities (39) and(40)and scalars3 = 0.55, ¢ = 2.4516 satisfy [25), [3F), [(38).
from left and right byQ~*, we obtain [2B) and{24) with Hence, it follows from Corollarf3]3 that the event-trigger
P=Q'and K = MQ~'. Thus, the result follows from control law @), @) withP = Q' and K = MQ,
Theoreni 3. L) guarantees almost sure asymptotic stabilization.

Note that inequalities[(37) and_(38) are linear ih € Fig. @ shows250 sample trajectories of the state norm
R™*™ and @ € R for fixed 8 € (0,1) andyp € [1,00).  |2(¢)|| obtained with the same initial conditiary = [1, 1]"
In our method we seek feasible solutiond and Q for and the event_triggering mechanism param@teﬁ 1000,
linear matrix inequalities[(37) an@(B8) by iterating over &yt with different sample paths foflg (i) € {0,1}}ien,
set of values for3 € (0,1) andy € [1,00) that satisfy and {1,(i) € {0,1}};cn,. Furthermore, in Figll4 we show
(25). We do not need to sear¢hand¢ in the entire space g single sample trajectory of the Lyapunov-like function
characterized by[(25). We restrict the search space and OWx(t)), and in Fig[5 we show the corresponding sample tra-
check feasibility of[(37) and (38) for larger valuesandy  jectories fori(-), Ix(-), andiy(-), indicating packet exchange
that are close to the boundary of the search space |dent|f|§ﬁempt failures due to random packet losses and jamming
by (1 — p)InB + plnp = 0. Specifically, we sefA > 0 attacks. Note that when packet exchange attempts fail due to
as a small positive real number, and then we iterate ov@frandom loss or a jamming attack, the control input is set to
a set of values fop3 in the range(0,e” ™-#] to look for (. As a result, due to unstable dynamics of the uncontrolled
feasible solutionsM and @ (flqr)llipﬁaAr matrix inequalities system, the Lyapunov-like functiofi(-) may grow and take
(32) and [(3B) withy = e 7 . lIn this approach, a larger value at the next packet exchange attempt instant.
feasibility of (37) and[(3B) is checked only fgt € (0,1), On the other hand, when a packet exchange attempt between
€ [1,00) that are on the curvfl —p)InS+plnp = —A.  the plant and the controller is successful, the control inpu
We illustrate the curvél —p) In 5+ pIlnp = —A with solid  at the plant side is updated. In this cdse¢) is guaranteed
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APPENDIX

Lemmal[Al below provides upper bounds on the tail
probabilities of sums involving a binary-valued time-
inhomogeneous Markov chain.

Lemma A.L:Let {£(i) € {0,1}}ien, be a time-
inhomogeneous Markov chain with transition probabilities
pgr: No — [0,1], ¢, € {0,1}. Furthermore, let{x (i) €
{0,1}}ien, be a binary-valued process that is independent
of {£(7) € {0,1} }en,. ASsume

pq,l(i) S f)a qc {Oa 1}7 (NS NOv (41)
k—1
P[> x(i) <é+wk]l =1, k€N, (42)
=0
wherep € (0,1), w € (0,1], andé € [0, 00). It then follows
that for all p € (pw, w),
k—1

P[> €@)x(i) > pk] < ¥x, k€N, (43)

=0



where ¢, £ gb*f’k“((d”l)(it# with ¢ £ 20" We now show that[{d5) holds for = 5 + 1. Using similar
Moreover,> 7 | ¢y, < oc. arguments that we used for obtainingl(4)3+(49), we obtain

In the proof of Lemmd_All, by following the approach E[¢i51 80)] = RB[¢Xi=1 €03) g€list)]
used for obtaining Chernoff-type tail distribution inedjtias ) szj L g(zj)¢g(1 s41) | Fi ]
for sums of Bernoulli random variables (see [20]), we use e

[
Markov’s inequality. Some additional key steps (including = E[¢Zi-1 SODE[g¢ ) | F )]
LemmalA.2 below) are also required due to the fact that in - E[¢Z§:1£(w) E[¢¢ (1) | €(i5q — 1)]]
Lemmal[A.1l we consider sums of (not necessarily indepen- S eiy)
< Elp=i=15%]((¢ — 1)p +1). (51)

dent) random variables composed of the product of states
of a time-inhomogeneous Markov chain and a binary-valued . .
process that satisfy (42). elgsmg (50) and[(H1), we arrive at

PDERICH — 1% 5
Lemma A.2:Let {£(¢) € {0,1}}ien, be an F;-adapted El¢ Jso(@-Dp+1),
binary-valued Markov chain with transition probabilityfer |\ 1ich completes the proof. 0
tions pg»: No — [0,1], ¢, € {0,1}. Then for all¢ > 1,
s € N, andp € [0, 1] such that Proof of Lemmd& Al1First, let
Paa() <P, a € {0.1}, T € No, “4) E(k) £ [£(0),£(1), .. 0 = 1T,
we have X(k) 2 [x(0),x(1),...,x(k—=1D]F, keN.
E[p>= ] <o((6-15+1D""  (45)  Now let
whereiy, is,...,is € Ny denote indices such that< i; < _ T
iy < ... < is. Foe2{xe{0,1}*:X"x =5}, s€{0,1,... .k}, keN.
Proof: The proof is based on induction. First, note thah is important to note thatF,, x N Fs, x = 0, 51 % so]
for the cases = 1, moreover, due td(32) 7 7
E[¢Z§:1 ﬁ(ij)] - E[¢£(i1)] < 6. (46)

Pix(k) € UM E, ] =1, keN.
For the cases = 2, the random variable (1) is F;,_1-

measurable (sincg < i, — 1), and thus we have It then follows that for allp € (pw, 1) andk € N,
E[p>i=1 €] = B[ <)) iy
E[E[¢50) ¢662) | Fo. _1]] Zf ) > pk] =P (k)X(k) > ph]
=E[p*E[p*) | Fiya]l. (A7) pey
Notifr(wg)that{é(i) € {0, 15}(&36% is a Markov chain, welobtain ; xezF:k ) > pk | X(k) =X]
E[ptt*2) | Fi,—1] = E[¢5"2) [ £(i2 — 1)]. Consequently, Blx(k) — ¥, (52)

E[g¥s- €] = E[¢*WE[6*) | €(in — 1)]]

) _¢£(i1)(¢P[§(i )= 1] €(is — 1)] Due to the mutual independencegif) and x(-),
= , o) = Y —
+Ble(iz) =01 €62~ 1)) PE" (9 (6) > ok | X(K) = ¥) = PE ()% > okl (59)
) '¢g(n) (@P’[E(h) =1 &(in —1)] As a result, it follows from[(52) and_(53) that fére N,
1= PlgG) = 11 €002 = 1)) E:g ) > ok
= E[6°) (6~ PIS(ia) = 1] §li— D] + 1) |. (48) .
Then by using[{@4) and (46), we arrive at = > > P’ (k)X > pk]P[x(k) = XI.
E[¢E§:1 E(ij)] < ]E|:¢‘$(il) ((¢ —1)p+ 1)} =0 X€Fe
— E[650)((6 — 1) + 1) Next, note thaﬂP[ZT(k)y > pk] = 0 for ¥ € Fj . Hence,
< 66— 1)F+1). (49) for all k£ € N such that|é + wk]| = 0, we have
N o Lok
Hence, by[(4b) and {49)_(45) is satisfied foe {1, 2}. =T\ N
Now, suppose thaf (#5) holds fer= 5 > 2, that is, ; YEZFZ P& (k)X > pkIPx(k) = X]

E[p== 0] <o ((0—1)p+ 1) (50) =0. (54)



Furthermore, for alk € N such that|¢ +wk| > 1, we have

[&+wk]
> Y PE (R)X > pkIPR(E) =X
s=0 XEFs k
|E+wk]
> Y PE (k)X > pkPx(K) =X].  (55)
s=1 X€Fs
Now, fors € {1,2,..., |é+wk]|}, letiy(X),i2(X), - - -, is(X)

denote the indices of the nonzero entriesyof F; j such
that i1 (%) < i2(X) < --- < is(x). Consequently,

Zf X)
Zfla (x

., |6+ wk|}, andk € N such that

=T
PlE (k)X > pk] = k) > pk]

—1) > pk], (56)
forx € Fs i, s € {1, 2,
|wk| > 1

Now note that > 1, sincep € (pw, w). We use Markov’s
inequality to obtain

PIE" (k)X > pk] < B> €(i;(X) — 1) > pk]

j=1
_ ]p[(ij:l £(E;(0)—-1) > ¢Pk]

< g PETI €G] (57)

Now it follows from Lemmd AR tha[pxi=1 £ (=] <
¢ ((¢ — 1)p+ 1)°*"". Using this inequality together with (55)
and [5Y), for allk € N such that|¢ + wk] > 1, we obtain

[e+wk]

Y 3 PE (kx> pkIPIxX(K) = X
5=0 X€Fsk
o4k
> Y e ee -1+ PR =]
s=1 XEFs
|6+k ]
=S (0-1p+1) Y P =X
s=1 XEFs k
|6+k ]
= N (90— 1)p+1)"  PXy € Fusl
s=1
|e-+ak]
< ¢7pk+1 Z (((b _ 1)13 + 1)571 , (58)
s=1

where we also used the fact tHfty, € Fs ] < 1 to obtain
the last inequality. Here, we have
|é+wk]|
Y ((e-Dp+1)*
s=1
_((0—1p+1)H -1
 (e-1p+1)-1
(¢ —1p+ 1™ —1
(¢ —1)p '

(59)
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Hence, [(5B) and (39) imply

|é+wk]|
Y. > PE (k)X > pk]P[x(k) =X]
s=0 X€&Fsk
~ c+wk
< —pk+1 (((b - 1) + 1) 1, 60
= (0= Db (©0)
for all £ € N such that|¢ + @wk] > 1. Note that since
CcTw —T p— p—
S Y er,  PIE (KX > pk]P[x(k) = X] = 0 for al
k € N such that|¢+wk| = 0, (€0) holds for allk € N, that

is,
le+idrk) T
> > PE (k)X > pkIP[x(K) =]
s=0 X€EFs
C g (@ DPE DT 1 e

(¢—1)p ’
Hence [(5B) and (89) imply_(43).

Our next goal is to show th3t ) ; ¥ < co. To this end,
first note that

Z Y = Z ¢—pk+1 (((b -

2 GRS
= ¢((¢E¢__1)g+ Uy S ot (0 - 1)p+ 1™
k=1
——(d)fl) Z¢ ok, (62)

We will show that the series on the far right hand sidd_of (62)
are both convergent. First of all, singe> 1, we havep—" <

1, and thus, the geometric serigs,” , % converges, that
is,

oo

Z¢7pk<oo.

k=1

(63)

Next, we shows ((¢ — 1)p+ 1) < 1. We obtain

5 (6 -1p+ )" = (678 (0 - 15+ 1) (64)

Furthermore,

(65)



Note thatZ2, +=5 € (0,1) U(1,00). Sincelnv < v—1 for

anyv € (0,1) U (1,00), we have

In (67 (9~ 1)5+1))

p pw p 1-p
=Lm (= 1- 5y

g (5) o (=F)

p (pw N

(=-1)+a-L —-1
<@<p )+( v?)<1—% )
=p-L+2 -5

w w

=0

which implies thatp~ & ((¢—=1)p+1) < 1, and hence by
©4), o= ((¢ — 1)p+1)* < 1. Therefore,
Yo (0 1)p+ 1) < oo, (66)

k=1

Finally, (62), [€8), and[{86) implyp .-, ¥ < co. O
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