Unconstrained nonlinear MPC:
Performance Estimates for Sampled-data Systems with zero order hold
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Abstract—In this paper, model predictive control (MPC)
schemes without stabilizing terminal constraints and/or costs
are considered for continuous time systems governed by or-
dinary differential equations. Satisfactory estimates of the
required prediction horizon length such that the MPC closed
loop is asymptotically stable were recently proposed. However,
their applicability is, in general, limited by the fact that the
respective proofs require possible discontinuities of the input
functions at arbitrary (and a priori unknown) switching times.
We present a technique which allows to determine a suitable
discretization accuracy such that the obtained performance
bound is arbitrarily well recovered for sampled-data systems
with zero order hold.

I. INTRODUCTION

Model predictive control (MPC) is nowadays a well estab-
lished technique in order to stabilize a system at a desired
set point — both in theory and practice, see [12] and [10],
[15], [17]. In MPC, the control problem formulated on an
infinite time horizon is approximated by a sequence of finite
horizon optimal control problems (OCPs), which are itera-
tively solved. However, the stability analysis is far from being
trivial, see, e.g., [11]. One option is to incorporate additional
(artificial) terminal constraints and/or costs in the OCPs to be
solved in each MPC step, see, e.g., [2], [12]. Alternatively,
under a controllability condition the prediction (optimization)
horizon of these OCPs can be chosen sufficiently large,
cf. [6]. Recently, techniques to determine the length of the
prediction horizon such that stability is ensured were pro-
posed, see [8] for linear and [16], [4] for nonlinear systems.
In addition to stability guarantees, these methodologies yield
performance estimates of the MPC closed loop compared to
an infinite horizon optimal trajectory.

In this paper, the focus is put on continuous time systems
governed by ordinary differential equations. In order to apply
the existing results, two ways are possible. On the one hand,
the system dynamics can be represented as a sampled-data
system in order to treat them within the framework proposed
in [16], [4]. On the other hand, the genuine continuous
time approach as carried out in [13] yields significantly
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better (performance) estimates at the expense of using £ -
functions in the MPC algorithm and, thus, not being valid for
inputs which are piecewise constant on equidistant intervals,
as generated by zero order hold sampling. This even holds
if the invoked controllability condition is established for
control functions which are piecewise constant on equidistant
intervals. We propose a mechanism such that the superior
performance bounds resulting from [13] are maintained for
sampled-data systems with zero order hold. To this end,
decoupling the sampling rate (discretization) and the control
horizon in MPC is essential. Moreover, the concept of
multistep feedback laws plays a vital role in the approach.

The outline of the present paper is as follows. First, in
Section II the problem formulation and performance bounds
for MPC based on a controllability condition are revis-
ited. Then, in Section III important tools such as multistep
feedback laws and discretizations are introduced. The main
results are presented in Section IV and conclusions are drawn
in Section V. During all of these sections, the results are
illustrated with a nonholonomic integrator example.

Notation: The natural and real numbers are denoted
by N and R, respectively. For » € R, |r] stands for the
largest integer < r. The class K., contains all continuous
functions 7 : R>¢9 — R>o, which are zero at zero, strictly
monotonically increasing, and unbounded. Let I C R be
an interval. A function v : I — R™ is said to be piecewise
continuous — denoted by PC(I,R™) — if, for every a,b € T
with a < b, the interval [a, b] admits a finite partition a =
t1 <ty <---<t, =0b,n €N, such that u is continuous on
every subinterval (¢;,¢;41), @ € {1,...,n — 1}, has a right
limit limgs 4, u(t) at ¢, a left limit lim; ~;, u(t) at t,, and
both left and right limit at every ¢;, ¢ € {2,3,...,n — 1},
see [7, p.17]. Moreover, a function u : I — R™ belongs to
Ll (I,R™) if its restriction to every compact interval K C I
is measurable and satisfies [, |u;(t)| dt < oo for all i €
{1,2,...,m}, see, e.g. [14, p4T1].

II. MPC FOR CONTINUOUS TIME SYSTEMS

We consider a continuous time system governed by the
ordinary differential equation

#(t) = f(z(t),u(t)) (1)

with continuous vector field f : R™ x R™ — R"™, which is
locally Lipschitz continuous with respect to its first argument.
Here, z(t) € R™ and u(t) € R™ represent the state and the
control input at time ¢ & Ry>q, respectively. For given
state z° € R™ and control function u € £} (R>o,R™) the

loc
solution is denoted by x(-;2°, u(+)) on its maximal interval



of existence. The control values are confined to a closed
set U C R™ with nonempty interior int U. Furthermore,
let (z*,u*) € R™ x intU be such that f(z*,u*) = 0
holds. Then, x* € R™ is called a controlled equilibrium,
ie., z(t;z*, u(-)) = «* for all t > 0 with u(-) = u*.

A. Model Predictive Control

Our goal is to stabilize system (1) at the (controlled)
equilibrium z*. Since we want to fulfill this control task
in an optimal fashion, stage costs £ : R" x R™ — Rx
satisfying the conditions

(", u*) =0 and {(z,u)>n(lz—z"]) (@)

with a K.-function 7 are employed as a performance
criterion. Then, the following MPC scheme with prediction
horizon T' € R+ and control horizon ¢ € (0,7) is used.

Algorithm 1 MPC Algorithm (continuous time)
Given: T € Ryg and § € (0,7).
Set time ¢ = 0.
1) Measure the current state & = x(¢) at time ¢.
2) Minimize the finite horizon cost functional

T
:/ Lz(s;z,a(-)), u(s)) ds

subject to the initial condition Z(0;
system dynamics Z(s; &, u(-)) = f
and the control constraints (s)
compute an optimal control u%.(-;

3) Implement @f.(t;2)|ie(o,5), Set t
Step 1.

’QO

I S

Remark 1 (Existence of a minimizer) In Step 2 of Algo-
rithm 1 it is tacitly assumed that the infimum

VT(jf) = ér(lf)' JT(£7 17,()),

is attained, i.e. Vp(&) = Jr(Z,a%(-;%)) holds, without
specifying any regularity properties of @ : [0,T) — R™.
A likely choice would be the space of piecewise continuous
(constant) functions. Then, the infimum may be an element

of L¢([0,T),R™) since PC([0,T),R™) is not closed.

The procedure described in Algorithm 1 allows to de-
fine a state feedback law urs : [0,0) x R* — U as
purs(s,&) = ay(s;z), ie. the control loop is closed
every ¢ time units. The resulting (nominal) MPC closed loop

trajectory 217 (-;z) is generated iteratively by

GMPC (1) = f(aMPO (), pups(t — [£/6)6, xMEC([£/5]6)))

HT,s5 HT,5 HT,s5

P PC(0) = 2°. The control function consisting of the
concatenated input signals is denoted by u/!"¢(-;2). For
further details and explanations on nonlinear MPC we refer

to [3] and the references therein.

with z

Remark 2 (Extensions) Algorithm I and also the upcoming
results can be generalized to infinite dimensional systems
including state constraints, see [19] for details.

B. Performance Estimates & Asymptotic Stability

Asymptotic stability of this MPC scheme can be ensured
by the following theorem [13]. The idea of using a relaxed
Lyapunov inequality as a sufficient condition in order to
guarantee asymptotic stability of a receding horizon control
scheme goes back to [5].

Theorem 1 Assume existence of a suboptimality degree o €
(0,1], i.e., for each & € R™ the relaxed Lyapunov inequality

Vr(z(6;&,ur)) < Vp( —a/ Lx(s;&,arp),ur(s,2)) ds

3)
holds with @y = @y (-; &) defined by Step 2 of Algorithm 1.
Then, the suboptimality estimate

Joo (20, M PC) = / (MO (1 20), b EC (1:2%)) dt

HKT,5
< Vio(2%) /ax

holds. If, in addition, conditions (2) and Vr(z) < 7j(||x —
x*) hold for some Koo-function 1, the MPC closed loop is
asymptotically stable.

The performance (suboptimality) estimate shows that the
cost of the MPC closed 100p Joo (2°, 1§’ on the infinite
horizon is bounded by the infinite horizon optimal cost
multiplied by a~*. With respect to concluding (asymptotic)
stability, the main difficulty is to show the existence of
o > 0 such that the relaxed Lyapunov inequality (3) holds.
This point will be investigated more closely in the following

subsection.

C. Controllability Condition

In the following theorem, a controllability condition is
introduced, which allows for verifying validity of (3) based
on open loop control functions. Alternatively, bounds on the
value function analogously to [16] can be used.

Theorem 2 ([13]) If an overshoot bound C' > 1 and a decay
rate j1 > 0 exist such that, for each z° € R"™, an open loop
control function uzo € Ll (R>q,U) exists satisfying

02 (t; 20, g0 (+)), ugo (t)) < Ce M meigﬁ(xo,u) 4)

for all t > 0, then the relaxed Lyapunov inequality (3) holds
with performance estimate o s given by

C

Ver(T-0) _ 1

1 VerT —1— Yer@=o) —1
(5)

Moreover, for given control horizon 6 and a desired perfor-
mance bound @ € (0,1), there always exists T € (§,00)
such that ar s > & holds.

erd —1
YT — 1 — e —

Formula (5) allows to easily calculate a prediction hori-
zon T such that aps > 0 and, as a direct consequence
of Theorem 1, asymptotic stability of the MPC closed loop
holds. Furthermore, a certain performance bound @ can be
ensured by choosing a long enough prediction horizon.



D. Nonholonomic Integrator Example

We briefly illustrate the presented results by a nonholo-
nomic integrator example with vector field

fiR3 xR =R, (x,u) — (ur,us, T1us — Tour) T,

and stage costs {(z,u) = 3 + 23 + 3|z3| + u? + u3. This
system does not admit a continuously differentiable control
Lyapunov function and cannot be asymptotically stabilized
by continuous state feedback; see [1]. However, for an
arbitrary initial state 2 € R3, using the piecewise constant
control function u : R>o — R? defined componentwise by

—1'(1)/t1, te [Ovtl)
I RS R/ R 4(t—t1) | =
ui(t) = @ . \/i(tzjtl) sin ({ — J 5) , tEti,ta)
0’ t e [t27OO)
and
—a9/t, t€10,t)
_ 44/z3| 4(t—t1 7r
ua(t) = § gt cos (|7 ] 5) te )
07 te [tQ,OO)

steers the system to the desired equilibrium 2* = 0. While
doing so the state trajectory first reaches the z3-axis at
time t1, i.e. z(t1) = (0, 0, 23)7, and is then driven towards
the origin until time ¢5. Calculating the state trajectory
for t;, = 1 and to = 5 first and plugging the resulting
expressions into the stage costs reveals that the controllability
condition (4) holds with overshoot bound C' = 3 and
decay rate ;1 = 0.1, see [19, Section 2.2] for similar
calculation details. Then, for a fixed control horizon § = 2,
the performance bound a7 s can be evaluated according
to Formula (5). Hence, asymptotic stability of the MPC
closed loop is ensured for prediction horizon T' 2 27.5 as
can be seen in Figure 1 (solid line without markers). The
employed control u(-) € PC(R geqo, U), U = R™, exhibits
five discontinuities at t; +i(t2 — t1)/4, ¢ € {0,1,2,3,4}.

III. SAMPLING AND PERFORMANCE

While the proposed approach yields satisfactory estimates
on the prediction horizon length guaranteeing stability of
the MPC closed loop, the proof of Theorem 2 requires that
the concatenation of two control functions at an arbitrary
time instant ¢ € [0,T) is again feasible for the minimization
in Step 2 of Algorithm 1 even if — as in the case of the
nonholonomic integrator — condition (4) can be established
for functions, which are piecewise constant on equidistant
intervals. In conclusion, the optimization has to be carried
out over piecewise continuous (constant) functions. However,
the class PC([0,T), U) is neither well suited for numerically
solving the minimization problem nor for implementing the
resulting control signal at the plant. For the latter, sampled-
data systems with zero order hold are a desirable class of
input signals. For sampling period 7, the respective control
functions u inZOH,([0,T),R™), T = N7 with N € N,
belong to the function space PC([0,T"), R™), with the addi-
tional property u(-)|ji—1)rir) = % € R™, 7€ {1,2,..., N},

0.5

performance bound «
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Fig. 1. Performance bounds ar,s, 6 = 2, resulting from Theorems 1
and 2 for the continuous time setting (solid black line). Moreover, the
corresponding counterparts for the discrete time setting to be introduced
in the following section are also drawn. These depend on a discretization
parameter 7 =275, i =10 (0),i=1 ("]),i=2 (%), and i = 3 (o).

i.e. piecewise constant except at the sampling instances @7,
i € {1,2,...,N — 1}. Our goal is to derive stability
guarantees for sampled-data systems with zero order hold
assuming that the proposed controllability condition can be
verified for this function class. To this end, the exact discrete
time representation f; : R™ x R™ — R"™ given by

z(n+1) = fr(z(n),u(n)) = (r;2(n), ul-))

of the sampled-data system is considered, where 7 denotes
the length of the sampling interval and ®(7;x(n), ("))
represents the solution of the differential equation (1) with
w(t) = wu(n), t = [0,7), emanating from initial condi-
tion z(n) at time 7; see [9] for details. Here, the discrete
time n corresponds to the continuous time n7 and the
control function @ : [0,7) — R™ is identified with the
value u(n) € R™. The “state trajectory* is now a sequence
in R" — denoted by (,(n; ")), — for a given sequence
of control values u = (u(n)), and initial value z° € R™.
The (discrete time) running costs are defined as

Lo (xyu) = T4(z,u). (6)

Note that, due to continuity of the state trajectory, this is
a good approximation of the continuous time integral cost
for u(-) € ZOH,([0,T),R™), at least for small sampling
periods 7.

Remark 3 If the continuous time running costs are separa-
ble, i.e., L(x,u) = L(x,u*)+L(x*, u) holds, the discrete time
running costs defined by (6) satisfy {(x*,u) > 0 and, thus,

Inin Lo (z,u) = L (x,u¥).

Hence, 7 - mingeyf(x,u) = mingegrm {-(z,u) holds.
This separability property holds, e.g. for the running costs
used in nonholonomic integrator example or for quadratic



cost U(x,u) = ||z — 2*||*> + A||u — w*||%. In contrast to that,
if the discrete time running costs exactly represent the con-
tinuous time cost, i.e. {-(z,u) = [ ((®(t;z,a(-)), a(t)) dt,
another input signal may yield a lower value since the
interplay of the control and the current state is taken into
account, see [18] for a numerical case study.

Next, we proceed analogously to the continuous time case
in order to derive a suboptimality estimate for the considered
sampled-data system. To this end, the following discrete time
counterpart of Condition (4) is needed.

Assumption 1 Letr an overshoot bound C' > 1 and a decay
rate o € (0,1) exist such that, for each state & € R", there
exists a sequence (uz(n))>2, C R™ satisfying the inequality

L (X, (N5 2),uz(n)) < Co™ Télﬂlgl L (Z,u) VneN. (7)

Based on Assumption 1, results similar to Theorems 1
and 2 can be derived for discrete time systems, see [4].
These allow to ensure asymptotic stability or a desired
suboptimality degree for sampled-data systems with zero
order hold if Assumption 1 holds, i.e., the regularity of
the function class used in order to verify Inequality (7) is
preserved. In particular, the optimal control problem to be
solved in Step 2 of Algorithm 1 is now a finite dimensional
(nonlinear) optimization problem.

Considering the nonholonomic integrator example once
more and taking the structure of the employed control into
account shows that Inequality (4) implies Assumption 1 with
the same overshoot constant C' and decay rate o := e 7 =
e "5 However, this leads to more conservative performance
bounds, see [13] and Figure 1 (red solid line marked with
o). Hence, the question arises whether structural properties
of control functions used in order to verify Inequality (4)
can be preserved while maintaining the superior performance
bounds of the continuous time approach.

A. Decoupling of Control Horizon & Discretization

A key idea in order to solve this problem is to decouple
the control horizon § and the discretization parameter 7. To
be more precise, the interval [0, ) is subdivided into k € N
(equidistant) sampling intervals (k7 = ¢). Then, the MPC
algorithm is adapted such that the first & control values are
implemented on each interval [nd, (n + 1)J), n € Ny, in
the discrete setting, so called multistep MPC. Hence, the
relation between control horizon § = k7 and prediction
horizon T is independent of the discretization accuracy 7.
This allows us to apply the results obtained in [4] and,
thus, to ensure ué\f{fc € ZOH,(R>o,R™) for the MPC
control uj/{f® since no switches except at the sampling
instances are required in the respective proofs.

Definition 1 Ler N € N>g and m € {1,2,...,N — 1} be

given. A multistep feedback law is a map pnm, @ R™ X

{0,1,...,m — 1} — R™ which is applied according to
LN m (n+1;2) = fT(xMN,m (n; 2), MN7m(§3> n)),

forn e {0,1,...,m —1} with x,, (0;2) = 2.

Algorithm 2 yields an MPC multistep feedback law.

Algorithm 2 MPC Algorithm (discrete time)
Given: Prediction and control horizon N € Ny,
m € {1,2,..., N—1}, and discretization paramter 7 € R .
Set time n = 0.

1) Measure the current state & = x(n) at time n.

2) Minimize the finite horizon cost function

N-1
In(@a() = Y b (za(k; &), a(k))
k=0

subject to dynamics Ty (k+1; %) = fr(Ta(k; £), u(k)),
Zgz(0;2) =2, and u(k) € U, k € {0,1,...,N -1} to
compute an optimal sequence (@} (k; i))kj\’:_o1 c R™,
3) Implement (w} (k;3))7"," at the plant, set n = n+m

and goto Step 1.

The MPC multistep feedback is defined by pn,m (2, k) =
wy(k; &) for k=0,1,...,m — 1. “Classical” MPC as used
in literature corresponds to m = 1.

B. Discretizations

We want to rigorously investigate the interplay between
faster sampling and the performance bound «. To this end,
the following definition is needed in order to investigate
whether a finer discretization may close the observed gap
if the control horizon § = 7m is kept constant.

Definition 2 (Discretization and Iterative Refinement)

Let 79 € (0,8] be chosen such that the conditions
m:=0/10 € Nand N :=T /7y € N hold. In addition, let a
decay rate o be given and assume that the overshoot C does
not depend on the discretization parameter 7. Furthermore,
let a sequence (k;)jen, € N with ko := 1 be given. Then,
a discretization D is defined by a sequence of quintruplets

D = (Dj)jen, (kj, 75, Nj,mj, 05) jen, ®)

= (kj, k"0, kj N, kym, o'k e,

70V

Here, (7;)jeny, T; = To/kj, represents the sequence of
discretization parameters (i.e., the sampling time steps) and
the parameters (N;)en, and (m;)jen, specify the feedback
laws (jiN; m;)jeNo- If kjy1 is a multiple of kj and kj 11 > k;
holds, a sequence (kj)jen, C N is called an iterative
refinement.

In the j-th discretization the interval [0, 7o) is subdivided
into k; equidistant parts, i.e.,

[0,70/k;), [T0/kj,270/kj), - .., [(k; — 1)70/kj, 70)-

C. Application to the Nonholonomic Integrator Example

As shown before the controllability Assumption 1 is
preserved with the same overshoot bound C and decay
rate 0 = e #7 for the nonholonomic integrator example.
However, now the sampling rate 7 is decoupled from the
control horizon §. More precisely, m control values are
implemented at the plant (Step 3 of Algorithm 2) before a



reoptimization is carried out (Step 2 of Algorithm 2). Here,
the following stability theorem, which was proven in [4], is
applied in order to determine the suboptimality degree oy .

Theorem 3 Let N € N>o, m € {1,2 N — 1}, and
a € (0,1) be given as well as Assumption 1 be satisfied
with C > 1 and o € (0,1). Furthermore, assume that K-
Sunctions & (+), ao(+) exist satisfying

Gl = a™[) < b, ") < @o(lfe — 7))

for all x € R™. In addition, let the inequality an , > «
hold with a ., given by

N
H (vi—1) I (-1
1 1= m+1 1=N—m-+1
N N N
- Moe-v|| M- Mo
i=m-+1 i=m—+1 i=N—m-+1 i=N—m+1
' _ 9
with ~; = Czn 0o = C(1 = 0")/(1 — o). Then,

for each z° € R™, the MPC closed loop :LMPC( 20) is
asymptotically stable and its costs

Ze

satisfy the estimate Joo (o, upt 5 (;

J\4PC

Joo (L0, N m i (1

LN m 0)7“%510(77'3 xO))

xo)) < a . Voo(.%‘o)

Using ap,, defined by Formula (9) and coupling the
control horizon ¢ and the discretization parameter 7 as in
Definition 2 yields suboptimality degrees in dependence of
the discretization accuracy 7. For 7 = 2744, i € {0,1,2,3},
the resulting performance bounds are illustrated in Figure 1.
The finer the discretization, the better the suboptimality
bounds. Indeed, monotone convergence to the continuous
time values a7 s can be observed in this example. In the
following section, we rigorously formulate this observation
as a theorem.

IV. MAIN RESULT

We show that structural properties of the control functions
used to verify Assumption 1 can be preserved while the
superior continuous time estimates on performance and, thus,
the length of a stabilizing prediction horizon are maintained.
First, all assertions dealing with the discretized setting are
presented in Proposition 1. Then, in Theorem 4, conclusions
on the connection to the continuous time performance bounds
are drawn. To this end, let the expression

_ i/k
Sk Gl —a"")
ﬂ}/’LkCZO’kCZO( ) = 1_0-1/k
n=
be defined in dependence of the parameter £ € Ny and denote
an.m from Formula (9) based on C and o}, = o'/*, k €
N, by agn km(k), i.e., the argument k indicates that ~y; is
replaced by ;.

Proposition 1 (Monotone Convergence) Let a discretiza-
tion D = (Dj)jen, = (kj, 75, N;,mj,0;)jen, according
to Definition 2 with N € N>o, m € {1,2,...,N — 1},
and k;j—o0 for j tending to infinity be given. Suppose, in

addition, that for each discretization parameter 7;, j € Ny,

Assumption 1 is satisfied with decay rate o; = o , 0 €E
(0,1), and overshoot C > 1. Then, we get convergence of

Oéij,kjm(kij) to

1—om\1/C 1-oN 1/C
1— ( am ) . ( oN-—m )
_oNN\1/C —omA\1/C 1 _ NA\1/C o N-m~1/C
(10'NN) 7(10'7" ) (1O-NN) 7(10.%)

(10)
for j — oc. Moreover, for iterative refinements, i.e. k;
is a multiple of k;_1 for all j € N, the sequence
(ar; Nk m(Kj))jen, is monotonically increasing.

Proposition 1 shows that finer discretizations lead to
improved suboptimality bounds, i.e.

akrN,km(k) S aukN,l/km(Vk) v ka Ve Na

holds. This property can be employed in order to ensure,
e.g., asymptotic stability of the MPC closed loop for shorter
prediction horizons. Moreover, we computed the limit for
discretization parameter 7 tending to zero (kK — 00).
Combining these results allows for connecting the structure
preserving estimates obtained for discretized systems with
the superior performance estimates derived in the purely
continuous time setting. Indeed, the following theorem is
almost a direct consequence of Proposition 1.

Theorem 4 Let the assumptions of Proposition 1 hold. If; in
addition, Condition (4) holds with the same overshoot con-
stant C' and such that the decay rate satisfies the condition
o = e H0, then we get

lim o, Ny, kymo (Kj) = s (11
]*}
with g s from Formula (5), 6 := mty, and T = Ny,

respectively. Moreover, the suboptimality degree ors of

the continuous setting is an upper bound, i.e., ars >
Qb Ny kmy (k) holds for all k € N.

In [19, Theorem 3.2, Corollary 3.4], we proved that the
discrete time performance estimates converge for discretiza-
tion parameter 7 tending to zero (kK — o0) to their upper
bound given by a7 s if the control and prediction horizon,
ie. d = 7ym; and T = 7;N; for all j € Ny, are kept con-
stant. For iteratively refined discretizations, this convergence
was shown to be monotone, cf. [19, Proposition 3.3].

Theorem 4 mainly requires that the continuous time (ex-
ponential) controllability condition (4) and its discrete time
counterpart Assumption 1 are consistent, i.e., hold with the
same overshoot bound C' and the decay rate fulfils o0 =
e~ P70 In this case, Theorem 4 shows the connection between
MPC without stabilizing constraints for the continuous and
the discrete time setting. Here, the continuous time results
can be interpreted as limit case of what is achievable for
sufficiently fast sampling. Hence, using multistep feedback
laws, a sampling period (discretization accuracy) can be
determined such that the guaranteed performance estimate is
arbitrarily well recovered. In particular, this allows to derive
stability guarantees for sampled-data systems with zero order
hold.



The assertions of Proposition 1 and Theorem 4 are il-
lustrated in Figure 2 for an iterative refinement. The discrete
time estimates approximate their continuous time counterpart
already after a few refinements very well. This observation is
supported by the illustration drawn on the right which shows
that the discretization error decays exponentially.

Fig. 2. The figure on the left dipicts the monotone convergence of
(akj Nkym(kj))jen, for kj = 27 to the limit stated in Proposition 1.
On the right, the deviations from the theoretically obtained upper bound are
depicted. Here, we choose N =4, m=1,7=1,C =2, and o0 = 0.5.

Remark 4 Sampled-data systems with zero order hold use
control functions, which are piecewise constant on each
sampling interval. Hence, the OCP in Step 2 of the MPC
algorithm breaks down to a finite dimensional (nonlinear)
optimization problem, which is significantly easier to solve.
However, the number of optimization variables rapidly grows
for faster sampling (finer discretizations). Hence, the pre-
sented results give insight into the trade-off between slow
sampling and guaranteed performance.

The discussed procedure for choosing the relevant pa-
rameters for MPC can be summarized as follows. First, the
controllability condition (4) has to be verified for an over-
shoot bound C and a decay rate u. Second, the continuous
time performance estimate ap s in (5) allows to determine a
prediction horizon length for which asymptotic stability and
a certain performance of the MPC closed loop is guaranteed
in the continuous time case. Finally, a sampling rate can
be determined such that asymptotic stability and satisfactory
performance are achieved (possibly arbitrarily close to the
upper bound a7 of the continuous time approach). In the
case that this sampling rate is not feasible, e.g., due to
hardware limitations, the prediction horizon might have to be
increased in a follow-up step in order to recover performance
of the closed loop despite slower sampling.

V. CONCLUSIONS

In this paper, we elaborated on a structure preserving
property of performance estimates for discrete time systems.
This feature can in particular be used in order to ensure
asymptotic stability of the MPC closed loop for sampled-data
systems with zero order hold. Our research was motivated by
the fact that estimates resulting from the purely continuous
time approach [13] yield better bounds for the required length
of the prediction (optimization) horizon. We presented a

framework in which the advantages of both techniques are
merged such that asymptotic stability can be guaranteed for
control functions, which are piecewise constant on a priori
fixed (equidistant) intervals while the suboptimality degree
from the continuous time approach is maintained.
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