
ar
X

iv
:1

50
3.

06
13

3v
2 

 [c
s.

S
Y

]  
31

 A
ug

 2
01

5

An Optimal Control Approach for the Data Harvesting Problem

Yasaman Khazaeni and Christos G. Cassandras
Division of Systems Engineering

and Center for Information and Systems Engineering
Boston University, MA 02446

yas@bu.edu,cgc@bu.edu

Abstract— We propose a new method for trajectory planning
to solve the data harvesting problem. In a two-dimensional
mission space,N mobile agents are tasked with the collection
of data generated atM stationary sources and delivery to a
base aiming at minimizing expected delays. An optimal control
formulation of this problem provides some initial insights
regarding its solution, but it is computationally intractable,
especially in the case where the data generating processes are
stochastic. We propose an agent trajectory parameterization in
terms of general function families which can be subsequently
optimized on line through the use of Infinitesimal Perturbation
Analysis (IPA). Explicit results are provided for the case of
elliptical and Fourier series trajectories and some properties of
the solution are identified, including robustness with respect to
the data generation processes and scalability in the size ofan
event set characterizing the underlying hybrid dynamic system.

I. I NTRODUCTION

Systems consisting of cooperating mobile agents are being
continuously developed for a broad spectrum of applications
such as environmental sampling [1],[2], surveillance [3],
coverage control [4],[5],[6], persistent monitoring [7],[8],
task assignment [9], and data harvesting and information
collection [10],[11],[12]. The data harvesting problem arises
in many settings, including “smart cities” where wireless
sensor networks (WSNs) are being widely deployed for pur-
poses of monitoring the environment, traffic, infrastructure
for transportation and for energy distribution, surveillance,
and a variety of other specialized purposes [13]. Although
many efforts focus on the analysis of the vast amount of
data gathered, we must first ensure the existence of robust
means to collect all data in a timely fashion when the size
of the sensor networks and the level of node interference do
not allow for a fully wireless connected system. Sensors can
locally gather and buffer data, while mobile elements (e.g.,
vehicles, aerial drones) retrieve the data from each part of
the network. Similarly, mobile elements may themselves be
equipped with sensors and visit specific points of interest
to collect data which must then be delivered to a given
base. These mobile agents should follow an optimal path
(in some sense to be defined) which allows visiting each
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data source frequently enough and within the constraints of
a given environment like that of an urban setting.

The data harvesting problem using mobile agents known
as “message ferries” or “data mules” has been considered
from several different perspectives. For a survey on different
routing problems in WSNs see [14],[15] and references
therein. In [16] algorithms are proposed for patrolling target
points with the goal of balanced time intervals between
consecutive visits. A weighted version of the algorithm
improves the performance in cases with unequally valued
targets. However, in this scenario the data need not be
delivered to a base and visits to a recharging station are only
necessary if the data mules are running out of energy. In [11]
the problem is viewed as a polling system with a mobile
server visiting data queues at fixed targets. Trajectories are
designed for the mobile server in order to stabilize the
system, keeping queue contents (modeled as fluid queues)
uniformly bounded.

In this paper, we consider the data harvesting problem as
an optimal control problem for a team of multiple cooperat-
ing mobile agents responsible for collecting data generated
by arbitrary random processes at fixed target points and
delivering these data to a base. The ultimate goal is for the
data to be collected and delivered with minimum expected
delay. Rather than looking at this problem as a scheduling
task where visit times for each target are determined as-
suming agents only move in straight lines between targets,
we aim to optimize a two-dimensional trajectory for each
agent, which may be periodic and can collect data from
a target once the agent is within a given range from that
target. Interestingly, the setting of the problem can also be
viewed as an evacuation process where visits are needed to
retrieve individuals from a set of target points which may be
of non-uniform importance. In this paper, we limit ourselves
to trajectories with no constraints due to obstacles or other
factors. Clearly, in an urban environment this is generally
not the case and the set of admissible trajectories will have
to be restricted in subsequent work.

We formulate a finite-horizon optimal control problem
in which the underlying dynamic system has hybrid (time-
driven and event-driven) dynamics. We note that the speci-
fication of an appropriate objective function is nontrivialfor
the data harvesting problem, largely due to the fact that the
agents act as mobile servers for the data sources and have
their own dynamics. Since the control is applied to the mo-
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tion of agents, the objective function must capture the agent
behavior in addition to that of the data queues at the targets,
the agents, and the base. The solution of this optimal control
problem (even in the deterministic case) requires a Two Point
Boundary Value Problem (TPBVP) numerical solver which
is clearly not suited for on-line operation and yields only
locally optimal solutions. Thus, the main contribution of
the paper is to formulate and solve an optimal parametric
agent trajectory problem. In particular, similar to the idea
in [17] we represent an agent trajectory in terms of general
function families characterized by a set of parameters thatwe
seek to optimize, given an objective function. We consider
elliptical trajectories as well as the much richer set of Fourier
series trajectory representations. We then show that we can
make use of Infinitesimal Perturbation Analysis (IPA) for
hybrid systems [18] to determine gradients of the objective
function with respect to these parameters and subsequently
obtain (at least locally) optimal trajectories. This approach
also allows us to exploit(i) robustness properties of IPA to
allow stochastic data generation processes,(ii) the event-
driven nature of the IPA gradient estimation process which
is scalable in the event set of the underlying hybrid dynamic
system, and(iii) the on-line computation which implies that
trajectories adjust as operating conditions change (e.g.,new
targets).

In section II we present an optimal control formulation
for the data harvesting problem. In section III we provide
a Hamiltonian analysis leading to a TPBVP. In section IV
we formulate the alternative problem of determining optimal
trajectories based on general function representations and
provide solutions using a gradient-based algorithm using
IPA for two particular function families. Sections V and
VI present the numerical results and the conclusions respec-
tively.

II. PROBLEM FORMULATION

We consider a data harvesting problem whereN mo-
bile agents collect data fromM stationary targets in a
two-dimensional rectangular mission spaceS = [0, L1] ×
[0, L2] ⊂ R

2. Each agent may visit one or more of theM
targets, collect data from them, and deliver them to a base. It
then continues visiting targets, possibly the same as before
or new ones, and repeats this process. By cooperating in
how data are collected and delivered, the objective of the
agent team is to minimize a weighted sum of collection and
delivery delays over all targets.

Let sj(t) = [sxj (t), s
y
j (t)] be the position of agentj at

time t with sxj (t) ∈ [0, L1] andsyj (t) ∈ [0, L2]. The position
of the agent follows single integrator dynamics:

ṡxj (t) = uj(t) cos θj(t), ṡyj (t) = uj(t) sin θj(t) (1)
where uj(t) is the scalar speed of the agent (normalized
so that0 ≤ uj(t) ≤ 1) and θj(t) is the angle relative to
the positive direction,0 ≤ θj(t) < 2π. Thus, we assume
that the agent controls its orientation and speed. An agent is
represented as a particle, so that we will omit the need for
any collision avoidance control. The agent dynamics above
could be more complicated without affecting the essence of
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Fig. 1. Data harvesting queueing model forM targets andN agents

our analysis, but we will limit ourselves here to (1).
Consider a set of data sources as pointswi ∈ S, i =

1, . . . ,M, with associated rangesrij , so that agentj can
collect data fromwi only if the Euclidean distanceDij(t) =
‖wi−sj(t)‖ satisfiesDij(t) ≤ rij . Similarly, there is a base
at w

B
∈ S which receives all data collected by the agents.

An agent can only deliver data to the base if the Euclidean
distanceD

Bj
(t) = ‖w

Bj
−sj(t)‖ satisfiesD

Bj
(t) ≤ rBj . We

define a functionPij(t) to be the normalized data collection
rate from targeti when the agent is atsj(t):

Pij(t) = p(wi, sj(t)) (2)
and we assume that:(A1) it is monotonically non-increasing
in the value ofDij(t) = ‖wi − sj(t)‖, and (A2) it
satisfiesPij(t) = 0 if Dij(t) > rij . Thus, Pij(t) can
model communication power constraints which depend on
the distance between a data source and an agent equipped
with a receiver (similar to the model used in [11]) or sensing
range constraints if an agent collects data using on-board
sensors. For simplicity, we will also assume that:(A3)
Pij(t) is continuous inDij(t). Similarly, we define:

P
Bj
(t) = p(w

B
, sj(t)) (3)

The data harvesting problem described above can be viewed
as a polling system where mobile agents are serving the
targets by collecting data and delivering them to the base.
Figure 1 shows a queueing system in which eachPij(t) is
depicted as a switch activated whenDij(t) ≤ rij to capture
the finite range between agentj and targeti. All queues
are modeled as flow systems whose dynamics are given next
(however, as we will see, the agent trajectory optimization
is driven by events observed in the underlying system where
queues contain discrete data packets so that this modeling
device has minimal effect on our analysis). As seen in Fig.
1, there are three sets of queues. The first set includes the data
contentsXi(t) ∈ R

+ at each targeti = 1, ...,M where we
useσi(t) as the instantaneous inflow rate. In general, we treat
{σi(t)} as a random process assumed only to be piecewise
continuous; we will treat it as a deterministic constant only
for the Hamiltonian analysis in the next section. Thus, at
time t, Xi(t) is a random variable resulting from the random
process{σi(t)}. The second set of queues consists of data
contentsZij(t) ∈ R

+ onboard agentj collected from target
i as long asPij(t) > 0. The last set consists of queues
Yi(t) ∈ R

+ containing data at the base, one queue for each
target, delivered by some agentj as long asP

Bj
(t) > 0.

Note that{Xi(t)}, {Zij(t)} and {Yi(t)} are also random
processes and the same applies to the agent states{sj(t)},



j = 1, . . . , N , since the controls are generally dependent on
the random queue states. Thus, we ensure that all random
processes are defined on a common probability space. The
maximum rate of data collection from targeti by agentj
is µij and the actual rate isµijPij(t) if j is connected to
i. We will assume that:(A4) only one agent at a time is
connected to a targeti even if there are other agentsl with
Pil(t) > 0; this is not the only possible model, but we adopt
it based on the premise that simultaneous downloading of
packets from a common source creates problems of proper
data reconstruction at the base. The dynamics ofXi(t),
assuming that agentj is connected to it, are

Ẋi(t) =

{

0 if Xi(t) = 0 andσi(t) ≤ µij(t)Pij(t)
σi(t)− µij(t)Pij(t) otherwise

(4)
Obviously, Ẋi(t) = σi(t) if Pij(t) = 0, j = 1, . . . , N . In
order to express the dynamics ofZij(t), let

µ̃ij(t) =

{

min
(

σi(t
Pij(t)

, µij

)

if Xi(t) = 0 andPij(t) > 0

µij otherwise
(5)

This gives us the dynamics:

Żij(t) =

{

0 if Zij(t) = 0 and µ̃ij(t)Pij(t)− βijPBj
(t) ≤ 0

µ̃ij(t)Pij(t)− βijPBj
(t) otherwise

(6)
whereβij is the maximum rate of data from targeti delivered
by agentj. For simplicity, we assume that:(A5) ‖wi −
wB‖ > rij+rBj for all i = 1, . . . ,M andj = 1, . . . , N , i.e.,
the agent cannot collect and deliver data at the same time.
Therefore, in (6) it is always the case thatPij(t)PBj(t) = 0.
Finally, the dynamics ofYi(t) depend onZij(t), the content
of the on-board queue of each agentj from targeti as long as
PBj(t) > 0. We defineβi(t) =

∑N
j=1 βijPBj(t)1[Zij(t) >

0] to be the total instantaneous delivery rate for targeti data,
so that the dynamics ofYi(t) are:

Ẏi(t) = βi(t) (7)
Our objective is to maintain minimal values for all target and
on-board agent data queues, while maximizing the contents
of the delivered data at the base queues. Thus, we define
J1(X1, . . . , XM , t) to be the weighted sum of expected target
queue contents (recalling that{σi(t)} are random processes):

J1(X1, . . . XM , t) =

M
∑

i=1

qiE[Xi(t)] (8)

where the weightqi represents the importance factor of target
i. Similarly, we define a weighted sum of expected base
queues contents:

J2(Y1, . . . YM , t) =

M
∑

i=1

qiE[Yi(t)] (9)

For simplicity, we will in the sequel assume thatqi = 1 for
all i without affecting any aspect of our analysis. Therefore,
our optimization objective may be a convex combination of
(8) and (9). In addition, we need to ensure that the agents are
controlled so as to maximize their utilization, i.e., the fraction
of time spent performing a useful task by being within range
of a target or the base. Equivalently, we aim to minimize the
non-productive idling time of each agent during which it is

not visiting any target or the base. Let
D+

ij(t) = max(0, Dij(t)− rij), D
+
Bj
(t) = max(0, D

Bj
(t)− r

Bj
)

(10)
so that the idling time for agentj occurs whenD+

ij(t) > 0

for all i andD+
Bj(t) > 0. We define the idling functionIj(t):

Ij(t) = log

(

1 +D+
Bj
(t)

M
∏

i=1

D+
ij(t)

)

(11)

This function has the following properties. First,Ij(t) = 0 if
and only if the product term inside the bracket is zero, i.e.,
agentj is visiting a target or the base; otherwise,Ij(t) > 0.
Second,Ij(t) is monotonically nondecreasing in the number
of targetsM . The logarithmic function is selected so as to
prevent the value ofIj(t) from dominating those ofJ1(·)
andJ2(·) when included in a single objective function. We
define:

J3(t) =MI

N
∑

j=1

E[Ij(t)] (12)

whereMI is a weight for the idling time effect relative to
J1(·) and J2(·). Note thatIj(t) is also a random variable
since it is a function of the agent statessj(t), j = 1, . . . , N .
Finally, we define a terminal cost atT capturing the expected
value of the amount of data left on board the agents, noting
that the effect of this term vanishes asT goes to infinity as
long as allE[Zij(T )] remain bounded:

Jf (T ) =
1

T

M
∑

i=1

N
∑

j=1

E[Zij(T )] (13)

We can now formulate a stochastic optimization problemP1

where the control variables are the agent speeds and headings
denoted by the vectorsu(t) = [u1(t), . . . , uN (t)] andθ(t) =
[θ1(t), . . . , θN (t)] respectively (omitting their dependence on
the full system state att). We combine the objective function
components in (8), (9), (12) and (13) to obtain:

min
u(t),θ(t)

J(T ) = 1
T

∫ T

0

(

αJ1(t)− (1 − α)J2(t) + J3(t)
)

+ Jf (T )

(14)
whereα ∈ [0, 1] is a weight capturing the relative importance
of collected data as opposed to delivered data and0 ≤
uj(t) ≤ 1, 0 ≤ θj(t) < 2π. To simplify notation, we have
also expressedJ1(X1, . . .XM , t) and J2(Y1, . . . YM , t) as
J1(t) andJ2(t).

Since we are considering a finite time optimization prob-
lem, instability in the queues is not an issue. However,
stability of such a system can indeed be an issue in the
sense of guaranteeing thatE[Xi(t)] < ∞, E[Zij(T )] < ∞
for all i, j under a particular control policy whent → ∞.
This problem is considered in [11] for a simpler deterministic
data harvesting model where target queues are required to be
bounded. In this paper, we do not explicitly study this issue;
however, given a certain number of agents, it is possible
to stabilize a target queue by designing agent trajectories
to ensure that the queue is visited frequently enough and
periodically emptied.



III. O PTIMAL CONTROL SOLUTION

In this section, we addressP1 in a setting where all data
arrival processes are deterministic, so that all expectations
in (8)-(13) degenerate to their arguments. We proceed with
a standard Hamiltonian analysis leading to a Two Point
Boundary Value Problem (TPBVP) [19] where the states and
costates are known att = 0 and t = T respectively. We
define a state vector and the associated costate vector:

X(t) = [X1(t), . . . , XM (t), Y1(t), . . . , YM (t),

Z11(t), . . . , ZMN (t), sx1(t), s
y
1(t), . . . , s

x
N (t), syN (t)]

λ(t) = [λ1(t), . . . , λM (t), γ1(t), . . . , γM (t),

φ11(t), . . . , φMN (t), ηx1 (t), η
y
1 (t), . . . , η

x
N (t), ηyN (t)]

The Hamiltonian is

H(X,λ,u, θ) =
1

T

[

αJ1(t)− (1− α)J2(t) + J3(t)
]

+
∑

i

λi(t)Ẋi(t) +
∑

i

γi(t)Ẏi(t) +
∑

i

∑

j

φij(t)Żij(t)

+
∑

j

(

ηxj (t)uj(t) cos θj(t) + ηyj (t)uj(t) sin θj(t)
)

(15)
where the costate equations are

λ̇i(t) = − ∂H
∂Xi

= −α
T λi(T ) = 0

γ̇i(t) = − ∂H
∂Yi

= 1−α
T γi(T ) = 0

φ̇ij(t) = − ∂H
∂Zij

= 0 φij(T ) =
∂Jf (t)
∂Zij

∣

∣

∣

T

η̇xj (t) =−
∂H

∂sxj
= −

[

MI

T

∂Ij(t)

∂sxj
+
∑

i

∂

∂sxj
λi(t)Ẋi(t)

+
∑

i

∂

∂sxj
γi(t)Ẏi(t) +

∑

i

∂

∂sxj
φij(t)Żij(t)

]

η̇yj (t) =−
∂H

∂syj
= −

[

MI

T

∂Ij(t)

∂syj
+
∑

i

∂

∂syj
λi(t)Ẋi(t)

+
∑

i

∂

∂syj
γi(t)Ẏi(t) +

∑

i

∂

∂syj
φij(t)Żij(t)

]

(16)
ηxj (T ) = ηyj (T ) = 0

From (15), after some trigonometric manipulations, we get

H(X,λ,u, θ) =
1

T

[

αJ1(t)− (1− α)J2(t) + J3(t)
]

+
∑

i

λi(t)Ẋi(t) +
∑

i

γi(t)Ẏi(t) +
∑

i

∑

j

φij(t)Żij(t)

+
∑

j

uj(t)sgn(ηyj (t))
√

ηxj (t)
2
+ ηyj (t)

2
sin(θj(t) + ψj(t))

(17)
where tanψj(t) =

ηx
j (t)

ηy
j
(t)

for ηyj (t) 6= 0 and ψj(t) =

sgn(ηxj (t))
π
2 if ηyj (t) = 0. Applying the Pontryagin principle

to (15) with (u∗, θ∗) being the optimal control, we have:
H(X∗,λ∗,u∗, θ∗) = min

u(t),θ(t)
H(X,λ,u, θ) (18)

From (17) we easily see that we can always make theuj(t)
multiplier to be negative, hence, recalling that0 ≤ uj(t) ≤ 1,

u∗j(t) = 1 (19)

Following the Hamiltonian definition in (15) we have:
∂H

∂θj
= −ηxj (t)uj(t) sin θj(t) + ηyj (t)uj(t) cos θj(t) (20)

and setting∂H∂θj = 0 the optimal headingθ∗j (t) should satisfy:

tan θ∗j (t) =
ηyj (t)

ηxj (t)
(21)

Since u∗j (t) = 1, we only need to evaluateθ∗j (t) for all
t ∈ [0, T ]. This is accomplished by discretizing the problem
in time and numerically solving a TPBVP with a forward
integration of the state and a backward integration of the
costate. Solving this problem quickly becomes intractableas
the number of agents and targets grows. However, one of the
insights this analysis provides is that under optimal control
the data harvesting process operates as a hybrid system with
discrete states (modes) defined by the dynamics of the flow
queues in (4), (6), (7), while the agents maintain a fixed
speed. The events that trigger mode transitions are defined
in Table I (the superscript0 denotes events causing a variable
to reach a value of zero from above and the superscript+
denotes events causing a variable to become strictly positive
from a zero value):

TABLE I

HYBRID SYSTEM EVENTS
Event Name Description

1. ξ0i Xi(t) hits 0, for i = 1, . . . ,M

2. ξ+
i

Xi(t) leaves 0, fori = 1, . . . ,M .
3. ζ0

ij
Zij(t) hits 0, for i = 1, . . . ,M , j = 1, . . . , N

4. δ+
ij

D+

ij
(t) leaves 0, fori = 1, . . . ,M , j = 1, . . . , N

5. δ0
ij

D+

ij
(t) hits 0, for i = 1, . . . ,M , j = 1, . . . , N

6. ∆+

j
D+

Bj
(t) leaves 0, forj = 1, . . . , N

7. ∆0
j D+

Bj
(t) hits 0, for j = 1, . . . , N

Observe that each of these events causes a change in at
least one of the state dynamics in (4), (6), (7). For example,
ξ0i causes a switch in (4) froṁXi(t) = σi(t) − µijPij(t)
to Ẋi(t) = 0. Also note that we have omitted an eventζ+ij
for Zij(t) leaving 0 since this event is immediately induced
by δ0ij when agentj comes within range of targeti and
starts collecting data causingZij(t) to become positive if
Zij(t) = 0 andXi(t) > 0. Finally, note that all events above
are directly observable during the execution of any agent
trajectory and they do not depend on our model of flow
queues. For example, ifXi(t) becomes zero, this defines
eventξ0i regardless of whether the corresponding queue is
based on a flow or on discrete data packets; this observation
is very useful in the sequel.

The fact that we are dealing with a hybrid dynamic system
further complicates the solution of a TPBVP. On the other
hand, it enables us to make use of Infinitesimal Perturbation
Analysis (IPA) [18] to carry out the parametric trajectory op-
timization process discussed in the next section. In particular,
we propose a parameterization of agent trajectories allowing
us to utilize IPA to obtain a gradient of the objective function
with respect to the trajectory parameters.



IV. A GENT TRAJECTORYPARAMETERIZATION AND

OPTIMIZATION

The idea here is to represent each agent’s trajectory
through general parametric equations

sxj (t) = f(Θj, ρj(t)), syj (t) = g(Θj, ρj(t)) (22)
where the functionρj(t) controls the position of the agent
on its trajectory at timet andΘj is a vector of parameters
controlling the shape and location of the agentj trajectory.
Let Θ = [Θ1, . . . ,ΘN ]. We now replace problemP1 in (14)
by problemP2:

min
Θ∈FΘ

1

T

∫ T

0

[

αJ1(Θ, t)− (1− α)J2(Θ, t) + J3(Θ, t)
]

dt

+ Jf (Θ, T )
(23)

where we return to allowing arbitrary stochastic data arrival
processes{σi(t)} so thatP2 is a parametric stochastic opti-
mization problem withFΘ appropriately defined depending
on (22). The cost function in (23) is written as

J(Θ, T ;X(Θ, 0)) = E[L(Θ, T ;X(Θ, 0))]

whereL(Θ, T ;X(Θ, 0)) is a sample function defined over
[0, T ] andX(Θ, 0) is the initial value of the state vector. For
convenience, in the sequel we will useL1, L2, L3, Lf to
denote sample functions ofJ1, J2, J3 andJf respectively.
Note that in (23) we suppress the dependence of the four
objective function components on the controlsu(t) and
θ(t) and stress instead their dependence on the parameter
vector Θ. In the rest of the paper, we will consider two
families of trajectories motivated by a similar approach
used in the multi-agent persistent monitoring problem in
[20]: elliptical trajectories and aFourier series trajectory
representation which is more general and better suited for
non-uniform target topologies. The hybrid dynamics of the
data harvesting system allow us to apply the theory of IPA
[18] to obtain on line the gradient of the sample function
L(Θ, T ;X(Θ, 0)) with respect toΘ. The value of the IPA
approach is twofold:(i) The sample gradient∇L(Θ, T )
can be obtained on line based on observable sample path
data only, and (ii) ∇L(Θ, T ) is an unbiased estimate of
∇J(Θ, T ) under mild technical conditions as shown in [18].
Therefore, we can use∇L(Θ, T ) in a standard gradient-
based stochastic optimization algorithm

Θl+1 = Θl − νl∇L(Θl, T ), l = 0, 1, . . . (24)
to converge (at least locally) to an optimal parameter vector
Θ∗ with a proper selection of a step-size sequence{νl} [21].
We emphasize that this process is carried outon line, i.e.,
the gradient is evaluated by observing a trajectory with given
Θ over [0, T ] and is iteratively adjusting it until convergence
is attained.

1) IPA equations: Based on the events defined earlier,
we will specify event time derivative and state derivative
dynamics for each mode of the hybrid system. In this process,
we will use the IPA notation from [18] so thatτk is the
kth event time in an observed sample path of the hybrid
system andτ

′

k = dτk
dΘ , X ′(t) = dX

dΘ are the Jacobian matrices
of partial derivatives with respect to all components of the

controllable parameter vectorΘ. Throughout the analysis we
will be using(·)′ to show such derivatives. We will also use
fk(t) = dX

dt to denote the state dynamics in effect over an
interevent time interval[τk, τk+1). We review next the three
fundamental IPA equations from [18] based on which we
will proceed. First, events may be classified as exogenous or
endogenous. An event is exogenous if its occurrence time is
independent of the parameterΘ, henceτ

′

k = 0. Otherwise, an
endogenous event takes place when a conditiongk(Θ,X ) =
0 is satisfied, i.e., the stateX (t) reaches a switching surface
described bygk(Θ,X ). In this case, it is shown in [18] that

τ
′

k = −
(dgk
dX

fk(τ
−

k )
)−1(dgk

dΘ
+
dgk
dX

X ′(τ−k )
)

(25)

as long as∂gk∂X fk(τ
−

k ) 6= 0. It is also shown in [18] that the
state derivativeX ′(t) satisfies

d

dt
X ′(t) =

dfk
dX

X ′(t) +
dfk
dΘ

, t ∈ [τk, τk+1) (26)

X ′(τ+k ) = X ′(τ−k ) + [fk−1(τ
−

k )− fk(τ
+
k )]τk

′ (27)
Then,X ′(t) for t ∈ [τk, τk+1) is calculated through

X ′(t) = X ′(τ+k ) +

∫ t

τk

d

dt
X ′(t)dt (28)

Table I contains all possibleendogenous event types for
our hybrid system. To these, we addexogenous eventsκi,
i = 1, ...,M , to allow for possible discontinuities (jumps)
in the random processes{σi(t)} which affect the sign of
σi(t) − µijPij(t) in (4). We will use the notatione(τk) to
denote the event type occurring att = τk with e(τk) ∈ E,
the event set consisting of all endogenous and exogenous
events. Finally, we make the following assumption which is
needed in guaranteeing the unbiasedness of the IPA gradient
estimates:(A6) Two events occur at the same time w.p.0
unless one is directly caused by the other.

2) Objective Function Gradient: The sample function
gradient∇L(Θ, T ) needed in (24) is obtained from (23)
assuming a total ofK events over[0 T ] with τ

K+1
= T

andτ0 = 0:

∇L(Θ, T ;X(Θ; 0))) =
1

T
∇
[

∫ T

0

(

αL1(Θ, t)− (1 − α)L2(Θ, t) + L3(Θ, t)
)

dt
]

+∇Lf (Θ, T )

=
1

T
∇
[

K
∑

k=0

∫ τk+1

τk

(

αL1(Θ, t)− (1− α)L2(Θ, t) + L3(Θ, t)
)

dt
]

+∇Lf (Θ, T )

=
1

T

[

K
∑

k=0

(

α
(

∫ τk+1

τk

∇L1(Θ, t)dt+ L1(Θ, τk+1)τ
′
k+1 − L1(Θ, τk)τ

′
k

)

− (1 − α)
(

∫ τk+1

τk

∇L2(Θ, t)dt+ L2(Θ, τk+1)τ
′
k+1 − L2(Θ, τk)τ

′
k

)

+
(

∫ τk+1

τk

∇L3(Θ, t)dt+ L3(Θ, τk+1)τ
′
k+1 − L3(Θ, τk)τ

′
k

)]

+∇Lf (Θ, T )

=
1

T

[

K
∑

k=0

∫ τk+1

τk

(

α∇L1(Θ, t)dt− (1 − α)∇L2(Θ, t)dt+∇L3(Θ, t)dt
)]

+∇Lf (Θ, T )

(29)
The last step follows from the continuity of the state

variables which causes adjacent limit terms in the sum to
cancel out. Therefore,∇L(Θ, T ) does not have any direct
dependence on anyτ ′k; this dependence is indirect through
the state derivatives involved in the four individual gradient
terms. Referring to (8), the first term involves∇L1(Θ, t)



which is as a sum ofX ′
i(t) derivatives. Similarly,∇L2(Θ, t)

is a sum ofY ′
i (t) derivatives and∇Lf (Θ, T ) requires only

Z ′
ij(T ). The third term,∇L3(Θ, t), requires derivatives of

Ij(t) in (11) which depend on the derivatives of the max
function in (10) and the agent state derivativess

′

j(t) with
respect toΘ. Possible discontinuities in these derivatives
occur when any of the last four events in Table I takes place.

In summary, the evaluation of (29) requires the state
derivativesX ′

i(t), Z
′
ij(t), Y

′
i (t), and s

′

j(t). The latter are
easily obtained for any specific choice off and g in (22)
and are shown in Appendix I. The former require a rather
laborious use of (25)-(27) which, however, reduces to a
simple set of state derivative dynamics as shown next.

Proposition 1: After an event occurrence att = τk, the
state derivativesX ′

i(τ
+
k ), Y ′

i (τ
+
k ), Z ′

ij(τ
+
k ), with respect to

the controllable parameterΘ satisfy the following:

X ′
i(τ

+
k ) =







0 if e(τk) = ξ0i
X ′

i(τ
−

k )− µil(t)Pil(τk)τ
′

k if e(τk) = δ+ij
X ′

i(τ
−

k ) otherwise
where l 6= j with Pil(τk) > 0 if such l exists and

τ
′

k =
∂Dij(sj)

∂sj

∂sj
∂Θ

(

∂Dij(sj)
∂sj

ṡj(τk)
)−1

.

Y ′
i (τ

+
k ) =

{

Y ′
i (τ

−

k ) + Z ′
ij(τ

−

k ) if e(τk) = ζ0ij
Y ′
i (τ

−

k ) otherwise

Z ′
ij(τ

+
k ) =







0 if e(τk) = ζ0ij
Z ′
ij(τ

−

k ) +X ′
i(τ

−

k ) if e(τk) = ξ0i
Z ′
ij(τ

−

k ) otherwise
wheree(τk) = ξ0i occurs whenj is connected to targeti.

Proof : See (59), (70), (78), (76), (62), (71), (73), (65) in
Appendix III.

This result shows that only three of the events inE can
actually cause discontinuous changes to the state derivatives.
Further, note thatX ′

i(t) is reset to zero after aξ0i event.
Moreover, when such an event occurs, note thatZ ′

ij(t)
is coupled toX ′

i(t). Similarly for Z ′
ij(t) and Y ′

i (t) when
eventζ0ij occurs, showing that perturbations inΘ can only
propagate to an adjacent queue when that queue is emptied.

Proposition 2: The state derivativesX ′
i(τ

−

k+1), Y
′
i (τ

−

k+1)
with respect to the controllable parameterΘ satisfy the
following after an event occurrence att = τk:

X ′
i(τ

−

k+1) =

{

0 if e(τk) = ξ0i
X ′

i(τ
+
k )−

∫ τk+1

τk
µijP

′
ij(u)du otherwise

Y ′
i (τ

−

k+1) = Y ′
i (τ

+
k ) +

∫ τk+1

τk

β′
i(u)du

wherej is such thatPij(t) > 0, t ∈ [τk, τk+1).
Proof : See (58), (61) and (63) in Appendix III.
Proposition 3: The state derivativesZ ′

ij(τ
+
k+1) with respect

to the controllable parameterΘ satisfy the following after an
event occurrence att = τk:
i- If j is connected to targeti,

Z ′
ij(τ

−

k+1) =

{

Z ′
ij(τ

+
k ) if e(τk) = ξ0i , ζ

0
ij or δ+ij

Z ′
ij(τ

+
k ) +

∫ τk+1

τk
µijP

′
ij(u)du otherwise

ii- If j is connected toB with Zij(τk) > 0,

Z ′
ij(τ

−

k+1) = Z ′
ij(τ

+
k )−

∫ τk+1

τk

βijP
′
Bj(u)du

iii- Otherwise,Z ′
ij(τ

−

k+1) = Z ′
ij(τ

+
k ).

Proof : See (66), (67), (74) and (81) in Appendix III.
Corollary 1: The state derivativesX ′

i(t), Z
′
ij(t), Y

′
i (t)

with respect to the controllable parameterΘ are independent
of the random data arrival processes{σi(t)}, i = 1, . . . ,M .
Proof : Follows directly from the three Propositions.

There are a few important consequences of these results.
First, as the Corollary asserts, one can apply IPA regardless
of the characteristics of the random processes{σi(t)}. This
robustness property does not mean that these processes do
not affect the values of theX ′

i(t), Z
′
ij(t), Y

′
i (t); this happens

through the values of the event timesτk, k = 1, 2, . . ., which
are observable and enter the computation of these derivatives
as seen above. Second, the IPA estimation process is event-
driven: X ′

i(τ
+
k ), Y ′

i (τ
+
k ), Z ′

ij(τ
+
k ) are evaluated at event

times and then used as initial conditions for the evaluations
of X ′

i(τ
−

k+1), Y
′
i (τ

−

k+1), Z
′
ij(τ

−

k+1) along with the integrals
appearing in Propositions 2,3 which can also be evaluated
at t = τk+1. Consequently, this approach is scalable in the
number of events in the system as the number of agents
and targets increases. Third, despite the elaborate derivations
in the Appendix, the actual implementation reflected by
the three Propositions is simple. Finally, returning to (29),
note that the integrals involving∇L1(Θ, t), ∇L2(Θ, t) are
directly obtained fromX ′

i(t), Y
′
i (t), the integral involving

∇L3(Θ, t) is obtained from straightforward differentiation
of (11), and the final term is obtained fromZ ′

ij(T ).
3) Objective Function Optimization: This is carried out

using (24) with an appropriate step size sequence.

A. Elliptical Trajectories

Elliptical trajectories are described by their center coor-
dinates, minor and major axes and orientation. Agentj’s
positionsj(t) = [sxj (t), s

y
j (t)] follows the general parametric

equation of the ellipse:
sxj (t) = Aj + aj cos ρj(t) cosφj − bj sin ρj(t) sinφj
syj (t) = Bj + aj cos ρj(t) sin φj + bj sin ρj(t) cosφj

(30)
Here,Θj = [Aj , Bj , aj , bj, φj ] whereAj , Bj are the coordi-
nates of the center,aj and bj are the major and minor axis
respectively whileφj ∈ [0, π) is the ellipse orientation which
is defined as the angle between thex axis and the major axis
of the ellipse. The time dependent parameterρj(t) is the
eccentric anomaly of the ellipse. Since the agent is moving
with constant speed of 1 on this trajectory from (19), we
haveṡxj (t)

2 + ṡyj (t)
2 = 1 which gives

ρ̇j(t) =







(

a sin ρj(t) cosφj + bj cos ρj(t) sinφj

)2

+
(

a sin ρj(t) sinφj − bj cos ρj(t) cosφj

)2







− 1
2

(31)
In the data harvesting problem, trajectories that do not pass
through the base are inadmissible since there is no delivery
of data. Therefore, we add a constraint to force the ellipse
to pass throughw

B
= [wx

B
, wy

B
] where:

wx
B
=Aj + aj cos ρj(t) cosφj − bj sin ρj(t) sinφj

wy
B
=Bj + aj cos ρj(t) sinφj + bj sin ρj(t) cosφj

(32)



Using the fact thatsin2 ρ(t) + cos2 ρ(t) = 1 we define a
quadratic constraint term added toJ(Θ, T ;X(Θ, 0)) with a
sufficiently large multiplier. This can ensure the optimal path
passes through the base location. We defineCj(Θj) which
appears in (34):

Cj(Θj) =
(

1− f1
j cos

2 φj − f2
j sin2 φj − f3

j sin 2φj
)2

(33)

where f1
j =

(wx

B
−Aj

aj

)2
+
(wy

B
−Bj

bj

)2
, f2

j =
(wx

B
−Aj

bj

)2
+

(wy

B
−Bj

aj

)2
, f3

j =
(b2j−a2

j )(w
x

B
−Aj)(w

y

B
−Bj)

a2
j
b2
j

.
Multiple visits to the base may be needed during the

mission time[0, T ]. We can capture this by allowing an agent
trajectory to consist of a sequence of admissible ellipses.
For each agent, we defineEj as the number of ellipses in
its trajectory. The parameter vectorΘκ

j with κ = 1, . . . , Ej,
defines theκth ellipse in agentj’s trajectory andT κ

j is the
time that agentj completes ellipseκ. Therefore, the location
of each agent is described throughκ during [T κ−1

j , T κ
j ]

whereT 0
j = 0. Since we cannot optimize over all possible

Ej for all agents, an iterative process needs to be performed
in order to find the optimal number of segments in each
agent’s trajectory. At each step, we fixEj and find the
optimal trajectory with that many segments. The process
is stopped once the optimal trajectory withEj segments
is no better than the optimal one withEj − 1 segments
(obviously, this is not a globally optimal solution). We can
now formulate the parametric optimization problemP2e

whereΘj = [Θ1
j , . . . ,Θ

Ej

j ] andΘ = [Θ1, . . . ,ΘN ]:

min
Θ∈FΘ

Je =
1

T

∫ T

0

[

αJ1(Θ, t)− (1− α)J2(Θ, t) + J3(Θ, t)
]

dt

+MC

N
∑

j=1

Cj(Θj) + Jf (Θ, T )

(34)
whereMC is a large multiplier. The evaluation of∇Cj is

straightforward and does not depend on any event. (Details
are shown in Appendix I).

B. Fourier Series Trajectories

The elliptical trajectories are limited in shape and may
not be able to cover many targets in a mission space. Thus,
we next parameterize the trajectories using a Fourier series
representation of closed curves [22]. Using a Fourier series
function for f and g in (22), agentj’s trajectory can be
described as follows with base frequenciesfx

j andfy
j :

sxj (t) = a0,j +

Γx
j
∑

n=1

an,j sin(2πnf
x
j ρj(t) + φxn,j)

syj (t) = b0,j +

Γy
j
∑

n=1

bn,j sin(2πnf
y
j ρj(t) + φyn,j)

(35)

The parameterρ(t) ∈ [0, 2π], similar to elliptical trajectories,
represents the position of the agent along the trajectory. In
this case, forcing a Fourier series curve to pass through the
base is easier. For simplicity, we assume a trajectory to start
at the base and setsxj (0) = wx

B
, syj (0) = wy

B
. Assuming

ρ(0) = 0, with no loss of generality, we can calculate the

zero frequency terms by means of the remaining parameters:

a0,j = wx
B
−

Γx
j
∑

n=1

an,j sin(φ
x
n,j), b0,j = wy

B
−

Γy
j
∑

n=1

bn,j sin(φ
y
n,j)

(36)
The parameter vector for agentj is Θj =

[fx
j , a0,j , . . . , aΓx

j
, b0,j, . . . , bΓy

j
, φ1,j , . . . , φΓx

j
, ξ1,j , . . . , ξΓy

j
]

andΘ = [Θ1, . . . ,ΘN ]. Note that the shape of the curve is
fully represented by the ratiofx

j /f
y
j so one of these can

be kept constant. For the Fourier trajectories, the fact that
u
∗
j = 1 allows us to calculatėρj(t) as follows:

ρ̇j(t) =
1
2π















(

fx
j

Γx
j
∑

n=1

an,jn sin(2πf
x
j ρj(t) + φxn,j)

)2

+

(

fy
j

Γx
j
∑

n=1

bn,jn sin(2πf
y
j ρj(t) + φyn,j)

)2















−1/2

(37)
ProblemP2f is the same asP2 but there are no additional

constraints in this case:
min
Θ∈FΘ

Jf = 1
T

∫ T

0

(

αJ1(t)− (1− α)J2(t) + J3(t)
)

+ Jf (T )

(38)

V. NUMERICAL RESULTS

In this section numerical results are presented to illustrate
our approach. We consider 8 targets, 2 agents and a base
as shown in Fig. 2. First, we assume deterministic arrival
process withσi = 0.5 for all i. For (2) and (3) we have used
p(w, v) = max(0, 1− D(w,v)

r ) wherer is the corresponding
value of rij or r

Bj
. We haveµij = 50 and βij = 500

for all i and j. Other parameters used areα = 0.5, rij =
r
Bj

= 1, MI = 1 andT = 100 except for the TPBVP case
whereT = 30. In Fig. 2 results of the TPBVP are shown
which depend heavily on the initial trajectory and this is
the best result among several initializations. These results
are after 10,000 iterations of the TPBVP solver. In Fig. 3
the results are shown for the (locally) optimal trajectory
with two ellipses in each agent’s trajectory (Ej = 2) and
in Fig. 4 for a Fourier series representation with 5 terms
in (35). Both methods converge in few iterations with each
iteration taking less than a few seconds. We use the Armijo
rule to update the step-size in each iteration. The average
queue length at targets for TPBVP, Ellipse withEj = 2
and Fourier series are 52.13, 49.23 and 62.03 respectively.
Whereas The average throughput for the three trajectories is
3.76, 4.2, 3.56 respectively. Although the example is a very
symmetric configuration, the benefit of the Fourier series
trajectories shows when the targets are randomly positioned.
Then, initializing the TPBVP becomes a very hard task and
ellipses cannot fit all targets.

Based on Corollary 1 our results are independent of the
underlying random processes{σi(t)}. To verify this property,
we model the exact same problem with a uniform distribution
for σi(t) asU [0.1, 0.9]. Note that we keepE[σi(t)] = 0.5,
the same rate as in the deterministic setting. At each iteration
we generate a random sample path using the random process
with σi(t) ∼ U [0.1, 0.9]. The Fourier series trajectories
for this stochastic optimization problem are shown in Fig.
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Fig. 2. 8-targets, 2-agents, TPBVP trajectories (T=30)J∗ = 15.82
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Fig. 3. 8-targets, 2-agents, Elliptical trajectories (T=100) J∗ = −50.9

5 with J∗ = −48.05 compared toJ∗ = −50.18. The
objective function converges almost as quickly but with some
oscillations as expected.

VI. CONCLUSIONS

We have developed a new method for trajectory plan-
ning in the data harvesting problem. An optimal control
formulation provides initial insights for the solution, but it
is computationally intractable, especially in the case where
the data generating processes are stochastic. We propose an
agent trajectory parameterization in terms of general function
families which are optimized on line through the use of IPA.
Explicit results are provided for the case of elliptical and
Fourier series trajectories. We have shown robustness of the
solution with respect to stochastic data generation processes
by considering stochastic data arrivals at targets. Natural
next steps include constraining trajectories to urban setting
obstacles in the mission space.
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Fig. 4. 8-targets, 2-agents, Fourier series trajectories (T=100) J∗ =
−50.18

0 20 40 60 80 100 120
0

200

X

0 20 40 60 80 100 120
0

500

Y

0 2 4 6 8 10 12 14 16
−50

0

50

iteration

O
bj

ec
tiv

e 
F

un
ct

io
n

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

1 2 3

4 5 6

7 8 9

 

 

Targets Base Agent 1 Initial Agent 2 Initial Agent 1 Final Agent 2 Final

Fig. 5. 8-targets, 2-agents, Random data processes - Fourier series
trajectoriesJ∗ = −48.05

APPENDIX I
ELLIPTICAL TRAJECTORIES

In order to calculate the IPA derivatives we need to
have the derivative of state variable with respect to all the
parameter vectorΘj = [Aj , Bj , aj , bj, φj ] for all agentsj.
These derivatives do not depend on the events happening in
the system since the trajectories of agents are fixed at each
iteration. For now we assumeEj = 1 for all j = 1, . . . , N
hence, we drop the superscript. We have:

∂sxj
∂Aj

= 1,
∂sxj
∂Bj

= 0 (39)

∂sxj
∂aj

= cos ρj(t) cosφj ,
∂sxj
∂bj

= − sin ρj(t) sinφj

(40)
∂sxj
∂φj

= −aj cos ρj(t) sinφj − bj sin ρj(t) cosφj (41)

∂syj
∂Aj

= 0,
∂syj
∂Bj

= 1 (42)



∂syj
∂aj

= cos ρj(t) sinφj ,
∂syj
∂bj

= sin ρj(t) cosφj (43)

∂syj
∂φj

= aj cos ρj(t) cosφj − bj sin ρj(t) sinφj (44)

Also the time derivative of the position state variables are
calculated as below:
ṡxj (t) = −aj ρ̇j(t) sin ρj(t) cosφj + bj ρ̇j(t) cos ρj(t) sinφj

(45)
ṡyj (t) = −aj ρ̇j(t) sin ρj(t) sinφj + bj ρ̇j(t) cos ρj(t) cosφj

(46)
The gradient of the last term in theJe in (34) needs to be
calculated separately. We have forj 6= l, ∂Cj

∂Θl
= 0 and for

j = l:
∂Cj

∂Aj
= 2Cj

(

− cos2 φj
∂f1

j

∂Aj
− sin2 φj

∂f2
j

∂Aj
− sin 2φj

∂f3
j

∂Aj

)

∂Cj

∂Bj
= 2Cj

(

− cos2 φj
∂f1

j

∂Bj
− sin2 φj

∂f2
j

∂Bj
− sin 2φj

∂f3
j

∂Bj

)

∂Cj

∂aj
= 2Cj

(

− cos2 φj
∂f1

j

∂aj
− sin2 φj

∂f2
j

∂aj
− sin 2φj

∂f3
j

∂aj

)

∂Cj

∂bj
= 2Cj

(

− cos2 φj
∂f1

j

∂bj
− sin2 φj

∂f2
j

∂bj
− sin 2φj

∂f3
j

∂bj

)

∂Cj

∂φj
= 2Cj

(

(f1
j − f2

j ) sin 2φj − 2f3
j cos 2φj

)

where
∂f1

j

∂Aj
= −2

(wx
B
−Aj

a2j

)

,
∂f1

j

∂Bj
= −2

(wy
B
−Bj

b2j

)

∂f1
j

∂aj
= −2

((wx
B
− Aj)

2

a3j

)

,
∂f1

j

∂bj
= −2

((wy
B
−Bj)

2

b3j

)

∂f2
j

∂Aj
= −2

(wx
B
−Aj

b2j

)

,
∂f2

j

∂Bj
= −2

(wy
B
−Bj

a2j

)

∂f2
j

∂aj
= −2

((wy
B
−Bj)

2

a3j

)

,
∂f2

j

∂bj
= −2

((wx
B
−Aj)

2

b3j

)

∂f3
j

∂Aj
= −

( (b2j − a2j)(w
y
B
−Bj)

a2jb
2
j

)

∂f3
j

∂Bj
= −

( (b2j − a2j)(w
x
B
−Aj)

a2jb
2
j

)

∂f3
j

∂aj
= −2

((wx
B
−Aj)(w

y
B
−Bj)

a3j

)

∂f3
j

∂bj
= 2
((wx

B
−Aj)(w

y
B
−Bj)

b3j

)

APPENDIX II
FOURIER SERIESTRAJECTORIES

We calculate the position of agent j’s
derivative with respect to all the Fourier
parameters. The parameter vector isΘj =
[fx

j , a0,j , . . . , aΓx
j
, b0,j, . . . , bΓy

j
, φ1,j , . . . , φΓx

j
, ξ1,j , . . . , ξΓy

j
].

So we have:
∂sxj
∂a0,j

= 1,
∂sxj
∂b0,j

= 0 (47)

∂sxj
∂an,j

= sin(2πnfx
j ρj(t) + φxn,j),

∂sxj
∂bn,j

= 0 (48)

∂sxj
∂φxn,j

= an,j cos(2πnf
x
j ρj(t)+φ

x
n,j)

∂sxj
∂φyn,j

= 0 (49)

∂sxj
∂fx

j

= 2πρj(t)

Γx
j
∑

n=1

an,jn cos(2πnf
x
j ρj(t) + φxn,j), (50)

∂syj
∂b0,j

= 1,
∂syj
∂a0,j

= 0 (51)

∂syj
∂bn,j

= sin(2πnfy
j ρj(t) + φyn,j),

∂syj
∂an,j

= 0 (52)

∂syj
∂φyn,j

= bn,j cos(2πnf
y
j ρj(t)+φyn,j)

∂syj
∂φxn,j

= 0 (53)

∂syj
∂fx

j

= 0 (54)

Also the time derivative of the position state variables are
calculated as below:

ṡxj (t) = ρ̇j(t)

Γx
j
∑

n=1

2πnfx
j an,j cos(2πnf

x
j ρj(t)+φ

x
n,j), (55)

ṡyj (t) = ρ̇j(t)

Γy
j
∑

n=1

2πnfy
j an,j cos(2πnf

y
j ρj(t)+φ

x
n,j), (56)

APPENDIX III
IPA EVENTS AND DERIVATIVES

In this section, we derive all event time derivatives and
state derivatives with respect to the controllable parameter
Θ for each event by applying the IPA equations.

1. Event ξ0i : This event causes a transition fromXi(t) >
0, t < τk to Xi(t) = 0, t ≥ τk. The switching function is
gk(Θ,X) = Xi so ∂gk

∂Xi
= 1. From (25) and (4):

τ
′

k = −
( ∂gk
∂Xi

fk(τ
−

k )
)−1(∂gk

∂Θ
+
∂gk
∂Xi

X ′
i(τ

−

k )
)

= −
X ′

i(τ
−

k )

σi(τk)− µijPij(τk)

(57)

where agentj is the one connected toi at t = τk and we
have used the assumption that two events occur at the same
time w.p.0, henceσi(τ

−

k ) = σi(τk). From (26)-(27), since
Ẋi(t) = 0, for τk ≤ t < τk+1:

d

dt
X ′

i(t) =
∂Ẋi(t)

∂Xi(t)
X ′

i(t) + Ẋ ′
i(t) = 0 (58)

X ′
i(τ

+
k ) = X ′

i(τ
−

k ) +
[(

σi(τk)− µijPij(τk)
)

− 0
]

τk
′

= X ′
i(τ

−

k )−
X ′

i(τ
−

k )
(

σi(τk)− µijPij(τk)
)

σi(τk)− µijPij(τk)
= 0

(59)
ForXr(t), r 6= i, the dynamics ofXr(t) in (4) are unaffected
and we have:

X ′
r(τ

+
k ) = X ′

r(τ
−

k ) (60)
If Xr(τk) > 0 and agentl is connected to it, then

d

dt
X ′

r(t) =
∂Ẋr(t)

∂Xr(t)
X ′

r(t) + Ẋ ′
r(t)

=
∂

∂Θ

(

σr(t)− µrlPrl(τk)
)

= −µrlP
′
rl(t)

(61)

and ifXr(t) = 0 in [τk, τk+1] or if no agents are connected
to i, then and d

dtX
′
r(t) = 0.

For Yr(t), r = 1, . . . ,M , the dynamics ofYr(t) in (7) are



not affected by the eventξ0i at τk, hence
Y ′
r (τ

+
k ) = Y ′

r (τ
−

k ) (62)

and sinceẎr(t) = βr(t), for τk ≤ t < τk+1:
d

dt
Y ′
r (t) =

∂Ẏr(t)

∂Yr(t)
Y ′
r (t) + Ẏ ′

r (t) = β′
r(t) (63)

For Zij(t), we must haveZij(τk) > 0 sinceXi(τ
−

k ) > 0,
henceµ̃ij(τ

−

k ) > 0 and from (27):

Z ′
ij(τ

+
k ) = Z ′

ij(τ
−

k ) +
[

Żij(τ
−

k )− Żij(τ
+
k )
]

τ ′k

= Z ′
ij(τ

−

k ) +
[

µ̃ij(τ
−

k )− µ̃ij(τ
+
k )
]

Pij(τk)τ
′
k

(64)

Since Xi(τ
−

k ) > 0, from (5) we haveµ̃ij(τ
−

k ) = µij .
At τ+k , j remains connected to targeti with µ̃ij(τ

+
k ) =

σi(τ
+
k )/Pij(τk) = σi(τk)/Pij(τk) and we get

Z ′
ij(τ

+
k ) = Z ′

ij(τ
−

k ) +
−X ′

i(τ
−

k )
[

µijPij(τk)− σi(τk)
]

σi(τk)− µijPij(τk)

= Z ′
ij(τ

−

k ) +X ′
i(τ

−

k )
(65)

From (26) forτk ≤ t < τk+1:
d

dt
Z ′
ij(t) =

∂Żij(t)

∂Zij(t)
Z ′
ij(t) +

∂Żij(t)

∂Θ

=
∂Żij(t)

∂Θ
=

∂

∂Θ

(

µ̃ij(t)Pij(t)− βijPBj
(t)
)

(66)

Since µ̃ij(t) = σi(t)/Pij(t) for the agent which re-
mains connected to targeti after this event, it follows
that ∂

∂Θ [µ̃ij(t)Pij(t)] = 0. Moreover,P
Bj
(t) = 0 by our

assumption that agents cannot be within range of the base
and targets at the same time and we get

d

dt
Z ′
ij(t) = 0 (67)

Otherwise, forr 6= j, we haveµ̃ir(t) = 0 and we get:
d

dt
Z ′
ir(t) = −βirP

′

Br
(t) (68)

Finally, for Zrj(t), r 6= i we haveZ ′
rj(τ

+
k ) = Z ′

rj(τ
−

k ). If
Zrj(t) = 0 in [τk, τk+1), then d

dtZ
′
rj(t) = 0. Otherwise, we

get d
dtZ

′
rj(t) from (66) with i replaced byr.

2. Event ξ+i : This event causes a transition fromXi(t) =
0, t ≤ τk to Xi(t) > 0, t > τk. Note that this transition can
occur as an exogenous event when an empty queueXi(t)
gets a new arrival in which case we simply haveτ ′k = 0
since the exogenous event is independent of the controllable
parameters. In the endogenous case, however, we have the
switching functiongk(Θ,X) = σi(t) − µijPij(t) in which
agentj is connected to targeti at t = τk. Assuming∂sj

∂Θ =
[∂sxj
∂Θ

∂sy
j

∂Θ

]⊤
and ṡj = [ṡxj ṡ

y
j ]

⊤, from (25):

τk
′ = −

(∂gk
∂sj

∂sj
∂Θ

)(∂gk
∂sj

ṡj(τk)
)−1

(69)

At τk we haveσi(τk) = µijPij(τk). Therefore from (27):
X ′

i(τ
+
k ) = X ′

i(τ
−

k ) + [Ẋi(τ
−

k )− Ẋi(τ
+
k )]τk

′

= X ′
i(τ

−

k ) +
(

0− σi(τk) + µijPij(τk)
)

τk
′ = X ′

i(τ
−

k )

(70)

HavingXi(t) > 0 in [τk, τk+1) we know Ẋi(t) = σi(t) −
µijPij(t) therefor, we can getddtX

′
i(t) from (61) with r and

l replaced byi and j. ForXr(t), r 6= i, if Xr(τk) > 0 and
agentl is connected tor thenẊr(τk) = σr(τk)−µrlPrl(τk),
therefor, we getX ′

r(τ
+
k ) from (60) while in [τk, τk+1) we

have d
dtX

′
r(t) from (61). If Xr(τk) = 0 or if no agent is

connected to targetr, Ẋr(τk) = 0. Thus,X ′
r(τ

+
k ) = X ′

r(τ
−

k )
and d

dtX
′
r(t) = 0.

For Yr(t), r = 1, . . . ,M the dynamics ofYr(t) in (7) are
not affected by the event atτk hence, we can getY ′

r (τ
+
k )

and d
dtY

′
r (t) in [τk, τk+1) from (62) and (63) respectively.

For Zij(t) assuming agentj is the one connected to target
i, we have:

Z ′
ij(τ

+
k ) = Z ′

ij(τ
−

k ) +
[

Żij(τ
−

k )− Żij(τ
+
k )
]

τ ′k

= Z ′
ij(τ

−

k ) +
[

µ̃ij(τ
−

k )− µ̃ij(τ
+
k )
]

Pij(τk)τ
′
k = Z ′

ij(τ
−

k )

(71)
In the above equation,̃µij(τ

+
k ) = µij becauseXi(τ

+
k ) > 0.

Also, µijPij(τk) = σi(τk) and µ̃ij(τ
−

k ) = σi(τk)
Pij(τk)

results

in µ̃ij(τ
+
k ) = µij . For Zil(t), l 6= j , agent l cannot be

connected to targeti at τk so we have,Z ′
il(τ

+
k ) = Z ′

il(τ
−

k )
and d

dtZ
′
il(t) = 0 in [τk, τk+1). For Zrl(t) ,r 6= i and l 6= j

using the assumption that two events occur at the same time
w.p. 0, the dynamics ofZrl(t) are not affected atτk, hence
we get d

dtZ
′
rl(t) from (66) for i andj replaced byr and l.

3. Event ζ0ij : This event causes a transition fromZij(t) >
0 for t < τk toZij(t) = 0 for t ≥ τk. The switching function
is gk(Θ,X) = Zij(t) so ∂gk

∂Zij
= 1. From (25):

τk
′ = −

( ∂gk
∂Zij

fk(τ
−

k )
)−1(∂gk

∂Θ
+

∂gk
∂Zij

Z ′
ij(τ

−

k )
)

= −
Z ′
ij(τ

−

k )

µ̃ij(τ
−

k )Pij(τ
−

k )− βijPBj
(τ−k )

=
Z ′
ij(τ

−

k )

βijPBj
(τk)

(72)

SinceZij(t) is being emptied atτk, by the assumption that
agents can not be in range with the base and targets at the
same time, we havePij(τk) = 0. Then from (27):

Z ′
ij(τ

+
k ) = Z ′

ij(τ
−

k ) +
[

− βijPBj
(τk)− 0

]

τk
′

= Z ′
ij(τ

−

k )−
[

βijPBj
(τk)

] Z ′
ij(τ

−

k )

βijPBj
(τk)

= 0
(73)

SinceŻij(t) = 0 in [τk, τk+1):
d

dt
Z ′
ij(t) =

∂Żij(t)

∂Zij(t)
Z ′
ij(t) +

∂Żij(t)

∂Θ
= 0 (74)

For Zrl(t), r 6= i or l 6= j, the dynamics in (6) are not
affected atτk, hence:

Z ′
rl(τ

+
k ) = Z ′

rl(τ
−

k ) (75)
if Zrl(τk) > 0, the value for d

dtZ
′
rl(t) is calculated by (66)

with r and l replacingi and j respectively. IfZrl(τk) = 0
then d

dtZ
′
rl(t) = 0.

For Yi(t) we haveβi(τ
+
k ) = 0 since the agent has emptied

its queue, hence:

Y ′
i (τ

+
k ) = Y ′

i (τ
−

k ) +
[

Ẏi(τ
−

k )− Ẏi(τ
+
k )
]

τ ′k

= Y ′
i (τ

−

k ) + [βijPBj
(τk)− 0]

Z ′
ij(τ

−

k )

βijPBj
(τk)

= Y ′
i (τ

−

k ) + Z ′
ij(τ

−

k )

(76)



In [τk, τk+1) we can get ddtY
′
i (t) = 0. For Yr(t), r 6= i the

dynamics ofYr(t) in (7) are not affected by the event at
τk hence,Y ′

r (τ
+
k ) and d

dtY
′
r (t) in [τk, τk+1) are calculated

from (62) and (63) respectively. The dynamics ofXr(t),
r = 1, . . . ,M is are not affected atτk since the event at
τk is happening at the base. We haveX ′

r(τ
+
k ) = X ′

r(τ
−

k ).
If Xr(τk) > 0 then we have d

dtX
′
r(t) from (61) and if

Xr(τk) = 0 then d
dtX

′
r(t) = 0 in [τk, τk+1).

4. Event δ+ij : This event causes a transition fromD+
ij(t) =

0 for t ≤ τk to D+
ij(t) > 0 for to t > τk. It is the moment

that agentj leaves targeti’s range. The switching function
is gk(Θ,X) = Dij(t)− rij , from (25):

τk
′ = −

∂Dij

∂sj

∂sj
∂Θ

(∂Dij

∂sj
ṡj(τk)

)−1

(77)

If agentj was connected to targeti at τk then by leaving the
target, it is possible that another agentl which is within range
with targeti connects to that target. This meansẊi(τ

+
k ) =

σi(τk)−µilPil(τk) andẊi(τ
−

k ) = σi(τk)−µijPij(τk), with
Pij(τk) = 0, from (27) we have

X ′
i(τ

+
k ) = X ′

i(τ
−

k )− µilPil(τk)τ
′
k (78)

If Xi(τk) > 0, d
dtX

′
i(t) in [τk, τk+1) is as in (61) withr

replaced byi and if Xi(τk) = 0 then d
dtX

′
i(t) = 0. On the

other hand, if agentj was not connected to targeti at τk, we
know that somel 6= j is already connected to targeti. This
means agentj leaving targeti cannot affect the dynamics
of Xi(t) so we haveX ′

i(τ
+
k ) = X ′

i(τ
−

k ) and d
dtX

′
i(t) is

calculated from (61) withr replaced byi.
ForXr(t), r 6= i the dynamics in (4) are not affected by the
event atτk hence, we getX ′

r(τ
+
k ) from (60). If Xr(τk) > 0

the time derivatived
dtX

′
r(t) in [τk, τk+1) can be calculated

from (61) and ifXr(τk) = 0 then d
dtX

′
r(t) = 0.

For Yr(t), r = 1, . . . , ,M , the dynamics in (7) are not also
affected by the event atτk hence, we getYr(τ

+
k ) from (62)

and in [τk, τk+1) the d
dtY

′
r (t) is calculated from (63).

ForZij(t), the dynamics in (6) are not affect atτk, regardless
of the fact that agentj is connected to targeti or not. We have
Żij(τ

−

k ) = µ̃ij(τk)Pij(τk) with Pij(τk) = 0 andŻij(τ
+
k ) =

0, hence from (27):

Z ′
ij(τ

+
k ) = Z ′

ij(τ
−

k ) +
[

Żij(τ
−

k )− Żij(τ
+
k )
]

τ ′k

= Z ′
ij(τ

−

k ) + µ̃ij(τk)Pij(τk)τ
′
k = Z ′

ij(τ
−

k )
(79)

and in [τk, τk+1) , we have d
dtZ

′
ij(t) = 0 using (66)

knowingPij(τk) = P
Bj
(τk) = 0. ForZrl(t), r 6= i or l 6= j,

the dynamics ofZrl(t) are not affected atτk hence (75)
holds and in[τk, τk+1) again we can use (66) withi and j
replaced byr and l.

5. Event δ0ij : This event causes a transition from
D+

ij(t) > 0 for t < τk to D+
ij(t) = 0 for to t ≥ τk. The

event is the moment that agentj enters targeti’s range.
The switching function isgk(Θ,X) = Dij(t) − rij . From
(25) we can getτk′ from (77). If no other agent is already
connected to targeti, agentj connects to it. Otherwise, if
another agent is already connected to targeti, no connection
is established. ForXi(t), the dynamics in (4) are not

affected in both cases, hence, (70) holds. IfXi(t) > 0 in
[τk, τk+1) we calculated

dtX
′
i(t) using (61) withl being the

appropriate connected agent to targeti. If Xi(τ
−

k ) = 0,
d
dtX

′
i(t) = 0. ForXr(t), r 6= i the dynamics in (4) are not

affected by the event atτk. Hence, we getX ′
r(τ

+
k ) from

(60). If Xr(τk) > 0 we calculated
dtX

′
r(t) from (61) with i

replaced byr and if Xr(τk) = 0 then d
dtX

′
r(t) = 0.

For Yr(t), r = 1, . . . ,M again the dynamics in (7) are not
affected attauk so both (62) and (63) hold.
ForZij(t), with agentj being connected or not to targeti at
τk the dynamics ofZij(t) are unaffected atτk, hence (75)
holds fori andj and in[τk, τk+1) the d

dtZ
′
ij(t) is calculated

through (66). ForZrl(t), r 6= i or l 6= j the dynamics are
unaffected (75) holds again. In[τk, τk+1), d

dtZ
′
rl(t) is given

through (66) withi andj replaced byr and l.

6. Event ∆+
j : This event causes a transition from

D+
Bj(t) = 0 for t ≤ τk to D+

Bj(t) ≥ 0 for t > τk. The
switching function isgk(Θ,X) = D

Bj
(t)− r

Bj
.

τk
′ = −

∂DBj

∂sj

∂sj
∂Θ

(∂D
Bj

∂sj
ṡj(τk)

)−1

(80)

Similar to the previous event, the dynamics ofXi(t) are
unaffected atτk hence, we haveX ′

i(τ
+
k ) calculated from

(70). IfXi(t) > 0 in [τk, τk+1) we calculated
dtX

′
i(t) through

(61) and ifXi(τ
−

k ) = 0, d
dtX

′
i(t) = 0.

For Yr(t), r = 1, . . . , ,M , the dynamics ofYr(t) in (7) are
not affected atτk, hence, we getYr(τ

+
k ) from (62) and in

[τk, τk+1), d
dtY

′
r (t) is calculated from (63).

ForZij(t), Using the fact that agentj can only be connected
to one target or the base, we haveŻij(τ

−

k ) = βij(τk)PBj
(τk)

with P
Bj
(τk) = 0 andŻij(τ

+
k ) = 0, hence (75) holds withi

andj replacingr and l. In [τk, τk+1) from (26):
d

dt
Z ′
ij(t) =

∂Żij(t)

∂Zij(t)
Z ′
ij(t) +

∂Żij(t)

∂Θ

=
∂Żij(t)

∂Θ
= −βijP

′

Bj
(t)

(81)

As for Zrl(t), r 6= i or l 6= j the dynamics are unaffected so
(75) holds. In[τk, τk+1) we can calculateddtZ

′
rl(t) through

(66) with j replacingl.

7. Event∆0
j : This event causes a transition fromD+

Bj(t) >

0 for t < τk to D+
Bj(t) = 0 for t ≥ τk. The switching

function is gk(Θ,X) = D
Bj
(t) − r

Bj
. Using (25) we can

get τk′ from (80). Similar with the previous event we have
X ′

i(τ
+
k ) from (70). If Xi(t) > 0 we can get ddtX

′
i(t) from

(61) and ifXi(τ
−

k ) = 0 then d
dtX

′
i(t) = 0.

For Yr(t), r = 1, . . . , ,M , we again follow the previous
event analysis so (62) and (63) hold.
For Zij(t), the analysis is similar to event∆+

j so we can
calculateZ ′

ij(τ
+
k ) and d

dtZ
′
ij(t) in [τk, τk+1) from (71) and

(66) respectively. Also forZrl(t), r 6= i or l 6= j, (75)
holds with same reasoning as previous event. In[τk, τk+1)
we calculated

dtZ
′
rl(t) from (66).
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[3] Z. Tang and U.Özgüner, “Motion planning for multitarget surveillance
with mobile sensor agents,”IEEE Trans. on Robotics, vol. 21, pp. 898–
908, 2005.

[4] M. Zhong and C. G. Cassandras, “Distributed coverage contorol
and data collection with mobile sensor networks,”IEEE Trans. on
Automatic Cont.,, vol. 56, no. 10, pp. 2445–2455, 2011.

[5] K. Chakrabarty, S. S. Iyengar, H. Qi, and E. Cho, “Grid coverage for
surveillance and target location in distributed sensor networks,” IEEE
Trans. on Computers, vol. 51, no. 12, pp. 1448–1453, 2002.

[6] M. Cardei, M. T. Thai, Y. Li, and W. Wu, “Energy-efficient target
coverage in wireless sensor networks,”24th Annual INFOCOM 2005.,
pp. 1976–1984, 2005.

[7] S. Alamdari, E. Fata, and S. L. Smith, “Persistent monitoring in
discrete environments: Minimizing the maximum weighted latency
between observations,”The Int. J. of Robotics Research, 2013.

[8] C. G. Cassandras, X. Lin, and X. Ding, “An optimal controlapproach
to the multi-agent persistent monitoring problem,”IEEE Trans. on Aut.
Cont., vol. 58, pp. 947–961, April 2013.

[9] D. Panagou, M. Turpin, and V. Kumar, “Decentralized goalas-
signment and trajectory generation in multi-robot networks,” CoRR,
vol. abs/1402.3735, 2014.

[10] A. T. Klesh, P. T. Kabamba, and A. R. Girard, “Path planning
for cooperative time-optimal information collection,”Proc. of the
American Cont. Conf., pp. 1991–1996, 2008.

[11] J. L. Ny, M. a. Dahleh, E. Feron, and E. Frazzoli, “Continuous path
planning for a data harvesting mobile server,”Proc. of the IEEE Conf.
on Decision and Cont., pp. 1489–1494, 2008.

[12] R. Moazzez-Estanjini and I. C. Paschalidis, “On delay-minimized data
harvesting with mobile elements in wireless sensor networks,” Ad Hoc
Networks, vol. 10, pp. 1191–1203, 2012.

[13] M. Roscia, M. Longo, and G. Lazaroiu, “Smart City by multi-
agent systems,”2013 Int. Conf. on Renewable Energy Research and
Applications IEEE, no. October, pp. 20–23, 2013.

[14] K. Akkaya and M. Younis, “A survey on routing protocols for wireless
sensor networks,”Ad Hoc Networks, vol. 3, pp. 325–349, 2005.

[15] M. Liu, Y. Yang, and Z. Qin, “A survey of routing protocols and
simulations in delay-tolerant networks,”Lecture Notes in Computer
Science, vol. 6843 LNCS, pp. 243–253, 2011.

[16] C. Chang, G. Yu, T. Wang, and C. Lin, “Path Construction and Visit
Scheduling for Targets using Data Mules,”IEEE Trans. on Sys, Man,
and Cybernetics: Systems, vol. 44, no. 10, pp. 1289–1300, 2014.

[17] X. Lin and C. G. Cassandras, “Trajectory optimization for multi-
agent persistent monitoring in two-dimensional spaces,” in IEEE 53rd
Annual Conf. on Decision and Cont. (CDC), 2014.

[18] C. G. Cassandras, Y. Wardi, C. G. Panayiotou, and C. Yao,“Perturba-
tion analysis and optimization of stochastic hybrid systems,” European
Journal of Cont., vol. 16, no. 6, pp. 642 – 661, 2010.

[19] A. E. Bryson and Y. C. Ho,Applied optimal control: optimization,
estimation and control. CRC Press, 1975.

[20] X. Lin and C. G. Cassandras, “An optimal control approach to the
multi-agent persistent monitoring problem in two-dimensional spaces,”
Automatic Control, IEEE Transactions on, vol. 60, pp. 1659–1664,
June 2015.

[21] H. Kushner and G. Yin,Stochastic Approximation and Recursive
Algorithms and Applications. Springer, 2003.

[22] C. T. Zahn and R. Z. Roskies, “Fourier Descriptors for Plane Closed
Curves,” IEEE Trans. on Computers, vol. C-21, no. 3, 1972.


	I Introduction
	II Problem Formulation
	III Optimal Control Solution
	IV Agent Trajectory Parameterization and Optimization
	IV-.1 IPA equations
	IV-.2 Objective Function Gradient
	IV-.3 Objective Function Optimization

	IV-A Elliptical Trajectories
	IV-B Fourier Series Trajectories

	V Numerical Results
	VI Conclusions
	Appendix I: Elliptical Trajectories
	Appendix II: Fourier Series Trajectories
	Appendix III: IPA events and derivatives
	References

