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Abstract— We propose a new method for trajectory planning data source frequently enough and within the constraints of
to solve the data harvesting problem. In a two-dimensional g given environment like that of an urban setting.
rTstiO” spaceNdmob]i\I; agents are tasked Witg tdhel' collection  The data harvesting problem using mobile agents known
of data generated at M stationary sources and delivery to a ‘, A » :
base airr?ing at minimizing expectrgd delays. An optimal Zonttl as ‘message ferrles or data. mules” has been c0n15|dered
formulation of this problem provides some initial insights rom several different perspectives. For a survey on dffier
regarding its solution, but it is computationally intractable, routing problems in WSNs see [14],[15] and references
especially in the case where the data generating processe® a therein. In [16] algorithms are proposed for patrollinggetr
stochastic. We propose an agent trajectory parameterizadin in points with the goal of balanced time intervals between

terms of general function families which can be subsequentl . . . . .
optimized on line through the use of Infinitesimal Perturbation consecuiive visits. A weighted version of the algorithm

Analysis (IPA). Explicit results are provided for the case ¢ Improves the perfo_rman.ce in cases with unequally valued
elliptical and Fourier series trajectories and some propeties of ~ targets. However, in this scenario the data need not be

the solution are identified, including robustness with respct to  delivered to a base and visits to a recharging station ase onl
the data generation processes and scalability in the size ah necessary if the data mules are running out of energy. In [11]
event set characterizing the underlying hybrid dynamic sysem. the problem is viewed as a polling system with a mobile
server visiting data queues at fixed targets. Trajectonies a
designed for the mobile server in order to stabilize the
system, keeping queue contents (modeled as fluid queues)
Systems consisting of cooperating mobile agents are beingiformly bounded.
continuously developed for a broad spectrum of application In this paper, we consider the data harvesting problem as
such as environmental sampling [1],[2], surveillance [3]an optimal control problem for a team of multiple cooperat-
coverage control [4],[5],[6], persistent monitoring [8], ing mobile agents responsible for collecting data gendrate
task assignment [9], and data harvesting and informatid®y arbitrary random processes at fixed target points and
collection [10],[11],[12]. The data harvesting problenisas  delivering these data to a base. The ultimate goal is for the
in many settings, including “smart cities” where wirelesglata to be collected and delivered with minimum expected
sensor networks (WSNs) are being widely deployed for puglelay. Rather than looking at this problem as a scheduling
poses of monitoring the environment, traffic, infrastruetu task where visit times for each target are determined as-
for transportation and for energy distribution, surveitta, Suming agents only move in straight lines between targets,
and a variety of other specialized purposes [13]. Althougwe aim to optimize a two-dimensional trajectory for each
many efforts focus on the analysis of the vast amount @gent, which may be periodic and can collect data from
data gathered, we must first ensure the existence of rob@target once the agent is within a given range from that
means to collect all data in a timely fashion when the siztarget. Interestingly, the setting of the problem can also b
of the sensor networks and the level of node interference déewed as an evacuation process where visits are needed to
not allow for a fully wireless connected system. Sensors cdgtrieve individuals from a set of target points which may be
locally gather and buffer data, while mobile elements (e.gof non-uniform importance. In this paper, we limit ourselve
vehicles, aerial drones) retrieve the data from each part & trajectories with no constraints due to obstacles orrothe
the network. Similarly, mobile elements may themselves bi@ctors. Clearly, in an urban environment this is generally
equipped with sensors and visit specific points of interetot the case and the set of admissible trajectories will have
to collect data which must then be delivered to a givetP be restricted in subsequent work.
base. These mobile agents should follow an optimal path We formulate a finite-horizon optimal control problem

(in some sense to be defined) which allows visiting each Which the underlying dynamic system has hybrid (time-
driven and event-driven) dynamics. We note that the speci-
The authors work is supported in part by NSF under grants CNSf-ICatlon of an appropnate objective function is nontriviat
1239021, ECCS-1509084, and 1IP-1430145, by AFOSR undentgrathe data harvesting problem, largely due to the fact that the
FA9550-12-1-0113, by ONR under grant N00014-09-1-105H by the  ggents act as mobile servers for the data sources and have

Cyprus Research Promotion Foundation under Grant New shnfreture . . . . .
Project/Strategic/0308/26. their own dynamics. Since the control is applied to the mo-
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tion of agents, the objective function must capture the tigen X l X, l M
behavior in addition to that of the data queues at the targets | | ot | |

the agents, and the base. The solution of this optimal cbntro P — “Pun
problem (even in the deterministic case) requires a TwotPoin o (_IZU
Boundary Value Problem (TPBVP) numerical solver which
is clearly not suited for on-line operation and yields only
locally optimal solutions. Thus, the main contribution of YrTlJ v |_|_TIY
the paper is to formulate and solve an optimal parametric ! M
agent trajectory problem. In particular, similar to thedde _ _
in [17] we represent an agent trajectory in terms of general™'9: 1+ Data harvesting queueing model fuf targets andV agents
function families characterized by a set of parameterswieat our ana_ly5|s, but we will limit ourselves he_re (1)',
seek to optimize, given an objective function. We conside Consider a set of data sources as poiis€ 5, i =

elliptical trajectories as well as the much richer set of e ""‘ ‘ ’tjvé’ tW']fh as§00|ie1t§f<1tr:arllzgje??a S0 (tjhatt aggh?tcin
series trajectory representations. We then show that we cgf cc data fromo; only If the Euclidean distan ij (1) =
—s;(t)|| satisfiesD;;(t) < r;;. Similarly, there is a base

k f Infinitesimal Perturbation Analysis (IPA) for ‘" _ i
make use of Infinitesimal Perturbation Analysis (IPA) for t w, € S which receives all data collected by the agents.

agent can only deliver data to the base if the Euclidean
anceD,, (t) = |Jw,, — s,(t)|| satisfiesD,,(t) < rp;. We
define a functionP;; (¢) to be the normalized data collection
rate from target when the agent is at;(¢):

PB1/ /PRN

hybrid systems [18] to determine gradients of the objectiv
function with respect to these parameters and subseque ég
obtain (at least locally) optimal trajectories. This apmio St
also allows us to exploit:) robustness properties of IPA to
allow stochastic data generation processes, the event-
driven nature of the IPA gradient estimation process which Py;(t) = p(wi, s5(t)) (2)
is scalable in the event set of the underlying hybrid dynami@nd we assume thatA1) it is monotonically non-increasing
system, andiii) the on-line computation which implies thatin the value of D;;(t) = [w; — s;(¢)], and (A2) it
trajectories adjust as operating conditions change (eeyv, Satisfies P;;(t) = 0 if D;;(t) > riy;. Thus, P;(t) can
targets). model communication power constraints which depend on
In section[1l we present an optimal control formulationthe distance between a data source and an agent equipped
for the data harvesting problem. In section 11l we providgvith a receiver (similar to the model used in [11]) or sensing
a Hamiltonian analysis leading to a TPBVP. In secfion Iange constraints if an agent collects data using on-board
we formulate the alternative problem of determining optimasensors. For simplicity, we will also assume thas3)
trajectories based on general function representatiods af;;(t) is continuous inD;;(t). Similarly, we define:
provide solutions using a gradient-based algorithm using P, (t) = p(w,, s;(t)) 3)
IPA for two particular function families. Sectioris] V andThe data harvesting problem described above can be viewed
M]present the numerical results and the conclusions respegs a polling system where mobile agents are serving the
tively. targets by collecting data and delivering them to the base.
Figure[1 shows a queueing system in which e&tht) is
depicted as a switch activated whén; (¢t) < r;; to capture
the finite range between ageptand targeti. All queues
! : b are modeled as flow systems whose dynamics are given next
two-dimensional rectangular mission spage= [0, L1] X (however, as we will see, the agent trajectory optimization
[0, L>] < R?. Each agent may visit one or more of thé s qriven by events observed in the underlying system where
targets, collect data from them, and deliver them to a b&se.d e es contain discrete data packets so that this modeling
then continues visiting targets, possibly the same as &efofg,jice has minimal effect on our analysis). As seen in Fig.
or new ones, and repeats this process. By cooperatingflihere are three sets of queues. The first set includes the da
how data are collected and delivered, the objective of th@ontentin(t) € R* at each target = 1,..., M where we

agent team is to minimize a weighted sum of collection anflse ;. (1) as the instantaneous inflow rate. In general, we treat
delivery delays over aIyI targets. L {os(t)} as a random process assumed only to be piecewise
Lets; (1) - [55(2), 557(2)] beythe position of agenf at . vinuous; we will treat it as a deterministic constantyonl
time ¢ with s7(t) € [0, L] andsj(t) € [0, Lo]. The position ¢ e Hamiltonian analysis in the next section. Thus, at
of the agent follows single integrator dynamics: time ¢, X;(t¢) is a random variable resulting from the random
87 (1) = u;(t)cosb;(t),  57(t) = u;(t)sin;(t) (1)  process{o,(t)}. The second set of queues consists of data
where u;(t) is the scalar speed of the agent (normalizedontentsZ;;(t) € R* onboard agenj collected from target
so that0 < wu;(t) < 1) andd,(¢) is the angle relative to ; as long asP;;(t) > 0. The last set consists of queues
the positive directionp < 6;(¢t) < 2m. Thus, we assume Y;(t) € R* containing data at the base, one queue for each
that the agent controls its orientation and speed. An agenttarget, delivered by some ageptas long asP,,(t) > 0.
represented as a particle, so that we will omit the need fofote that{X;(¢)}, {Zi;(t)} and {Y;(¢)} are also random
any collision avoidance control. The agent dynamics aboysrocesses and the same applies to the agent stajés},
could be more complicated without affecting the essence of

Il. PROBLEM FORMULATION

We consider a data harvesting problem whé¥emo-
bile agents collect data fromd/ stationary targets in a



j=1,.

maximum rate of data collection from targety agent;

, IV, since the controls are generally dependent onot visiting any target or the base. Let
the random gueue states. Thus, we ensure that all randqm( t) =
processes are defined on a common probability space. The

max(O, Dij (t) — TB]’)

(10)
so that the idling time for agent occurs whenD;! Lt ) >0

Tij), D;—j (t) = max(0, Dy, (t) -

is pi;; and the actual rate ig;; Pi; (1) if j is connected t0 for all ; and D (t) > 0. We define the idling functlom (t):

1. We will assume that(A4) only one agent at a time is

connected to a targéteven if there are other ageritsvith

Py (t) > 0; this is not the only possible model, but we adopt

M
I;(t) = log <1 + D (t) H D} (t)) (11)

it based on the premise that simultaneous downloading This function has the following prop;erties. Firgt(t) = 0 if
packets from a common source creates problems of propgtd only if the product term inside the bracket is zero, i.e.,

data reconstruction at the base. The dynamicsXgft),
assuming that agentis connected to it, are

. {0 if X;(t) =0ando;(t) < pij(t)Pi(t)

&@—{mm—%waw> otherwise
4)

Obviously, X;(t) = o;(t) if Py;(t) =0, j=1,...,N.In

order to express the dynamics Bf;(t), let
fiss () = { min (P Et) u”> if X;(t)=0andP;(t) >0

i otherwise
©)
This gives us the dynamics:
Zii(t) = { 0 if Z;;(t) =0 and fu;; (t) Pij (t) — Bi; By, (1) <0
“ Nw( ) ( ) 527 ( ) OtheI'Wi?GE)

whereg;; is the maximum rate of data from targedelivered
by agentj. For simplicity, we assume thatA5) |w; —
wg| > rij+rg;foralli=1,...,Mandj =1,...,N, ie.,

the agent cannot collect and deliver data at the same time.

Therefore, in[(B) it is always the case ta§ (t) Pg;(t) = 0.
Finally, the dynamics ot (¢) depend orZ;;(¢), the content
of the on-board queue of each aggfitom targeti as long as
Pg;(t) > 0. We defineg;(t) = 3., Bi; Pp;(t)1[Zi;(t) >
0] to be the total instantaneous delivery rate for taig#ta,
so that the dynamics df;(¢) are:

Yi(t) = Bi(t) (7)

Our objective is to maintain minimal values for all targetlan “<t%9(t>
on-board agent data queues, while maximizing the content
of the delivered data at the base queues. Thus, we defify

J1(Xq, ..., X, t) to be the weighted sum of expected targe?
gueue contents (recalling thgd; ( } are random processes)
Jl(Xl,...XM,t):ZqZ-EX t (8)

agent; is visiting a target or the base; otherwide(t) > 0.
Second [ (t) is monotonically nondecreasing in the number
of targetsM . The logarithmic function is selected so as to
prevent the value of;(¢) from dominating those off; (-)
and J>(-) when included in a single objective function. We

define:
= M; Z E[I

where M; is a weight for the |d||ng time effect relative to
J1(+) and J2(-). Note thatl;(t) is also a random variable
since it is a function of the agent states¢), j =1,...,N.
Finally, we define a terminal cost &tcapturing the expected
value of the amount of data left on board the agents, noting
that the effect of this term vanishes &sgoes to infinity as
long as allE[Z;;(T)] remain bounded:

1 M N
=r > E[Zi(T)]
i=1 j=1
We can now formulate a stochastic optimization problein
where the control variables are the agent speeds and heading
denoted by the vectons(t) = [u1(t),...,un(t)] andé(t) =
[01(t),...,0xN(t)] respectively (omitting their dependence on
the full system state a). We combine the objective function
components in[(8)[19)[(12) and {13) to obtain:
(1) =+ i (071(0) = (1= @)a(t) + Jo(8)) + T4 (T)
(14)
%erea € [0,1] is a weight capturing the relative importance
collected data as opposed to delivered data @ng

i) < 1,0 < 0;(t) < 2m. To simplify notation, we have
. X, t) and Jo(Yy,... Yy, t) as

(12)

(13)

min

also expressedil (X1,..
Jl( ) andJQ( )
Since we are considering a finite time optimization prob-

1= . g . . .
where the weighg; represents the importance factor of targetem, instability in the queues is not an issue. However,
i. Similarly, we define a weighted sum of expected basgtability of such a system can indeed be an issue in the

queues contents:

Jo(Y1,... Yo, 1)

Z B 9)

For simplicity, we will in the sequel assume that= 1 for

sense of guaranteeing thB{X,(t)] < oo, E[Z;;(T)] < oo

for all 4,5 under a particular control policy when— oc.

This problem is considered in [11] for a simpler determinist
data harvesting model where target queues are required to be
bounded. In this paper, we do not explicitly study this issue

all 2 without affecting any aspect of our analysis. Thereforenowever, given a certain number of agents, it is possible
our optimization objective may be a convex combination ofp stabilize a target queue by designing agent trajectories

(8) and [(9). In addition, we need to ensure that the agents gt ensure that the queue is visited frequently enough and
controlled so as to maximize their utilization, i.e., thediion  periodically emptied.

of time spent performing a useful task by being within range
of a target or the base. Equivalently, we aim to minimize the
non-productive idling time of each agent during which it is



[1l. OPTIMAL CONTROL SOLUTION Following the Hamiltonian definition il (15) we have:

6H .
9, =~ (Ous(0)sin 0 (0) + 1 (s (1) cos0;() - (20)
and settlnggTj = 0 the optimal heading; () should satisfy:

i (t)

In this section, we addred31 in a setting where all data
arrival processes are deterministic, so that all expectati tan 6% (1) = 21)
in (8)-(13) degenerate to their arguments. We proceed with J n;(t)

a standard Hamiltonian analysis leading to a Two Poirsince uj(t) 1, we only need to evaluaté;(t) for all
Boundary Value Problem (TPBVP) [19] where the states ande [0, T]. This is accomplished by discretizing the problem

costates are known @t = 0 andt¢ = T respectively. We
define a state vector and the associated costate vector:

X(t) = [X1(t), -, X (t), Y1 (1), ..., Ym(2),
Zu(t), - ZMN( ),51(1),87(t), -, s (1), 5% ()]
A(t) = [/\1(t) Mm(t), (1), (),
P11(t), ---7¢MN( ny (@), n] (1), - -, nn (t), n (1))
The Hamiltonian |s1
H(X,A,0) = = [aJl(t) - (1 —a)a(t) + Js(t)}

+in(t)
+ Z (n? (t)uy(t

0+ 2 N0+ 220507

t)cosb;(t )—H7j( Juy(t )s1n0j( ))

(15)
where the costate equations are
Ai(t) = =P = -2 N(T)=0
i(t) = 25 =12 () =0
ij(t) = — 5= =0 ¢z‘j (T) = anéf;) r
" OH M; 0
B0 =5 =~ | 7 e +Zax (Xl
0 . .
+ Z @%‘ t)Yi(t) + EL: 8_s§¢” (t)Zi;(t)
. aH REEH0) B :
i (t) = L2 N (0 X(t)
J 85 T 0s} ; s}
o .
+ ; Tséﬂi(t) t)+ ; 3S§,¢ij(t)zij(t)1
(16)

1 (T) =n(T) =0

From [I5), after some trigonometric manipulations, we ge

HX,Au,0) = ~ lano) - (-a)n() + Jg(t)}
FY MO +Z% 0+ T T2
+ Zuj(t)sgr(n;’(t)) i (t)? +77§’(t) sin(0;(t) + ¥;(t))

17)
where tan;(t) = for 773() # 0 and ¢;(t) =
sgn(n; (1)) 5 if n;.’( )= 0 Applylng the Pontryagin principle
to (I8) with (u*, ") being the optimal control, we have:

H(X*, A%, u*,0%) (Itr)ngl(t)H(X A u,0) (18)
From [1T) we easily see that we can always makeut}{e)
multiplier to be negative, hence, recalling that «;(¢) < 1,

ui(t) =1 (19)

7u()

in time and numerically solving a TPBVP with a forward
integration of the state and a backward integration of the
costate. Solving this problem quickly becomes intractaisle

the number of agents and targets grows. However, one of the
insights this analysis provides is that under optimal cantr
the data harvesting process operates as a hybrid system with
discrete states (modes) defined by the dynamics of the flow

qgueues in[(®),[(6),[{7), while the agents maintain a fixed
speed. The events that trigger mode transitions are defined
in Tablel] (the superscrifit denotes events causing a variable
to reach a value of zero from above and the superseript
denotes events causing a variable to become strictly pesiti
from a zero value):

TABLE |
HYBRID SYSTEM EVENTS
Event Name| Description

1.¢) X;(t) hits 0, fori =1,..., M
2.¢F X (t) leaves O, fori=1,..., M.
3.¢) ()h|tsO,fori:l,...,M,j:l,...,N
4.5 D/ (t) leaves 0, fori=1,...,M,j=1,...,N
5.5% ](t)hltsO,fori:I,...,J\/[,j:1,...,N
6. A7 Dy (1) leaves 0, forj = 1,..., N
Y.A? +(t) hits 0, forj =1,...,N

Observe that each of these events causes a change in at
least one of the state dynamics in (4}, (€), (7). For example,
€9 causes a switch if4) fromX;(t) = o;(t) — pij Py (t)
to X;(t) = 0. Also note that we have omitted an eve{[j;[
for Z;;(t) leaving 0 since this event is immediately induced

by 5% when agentj comes within range of target and

starts collecting data causing;;(t) to become positive if
Z;;(t) = 0 and X;(¢) > 0. Finally, note that all events above
are directly observable during the execution of any agent
trajectory and they do not depend on our model of flow
queues. For example, iK;(t) becomes zero, this defines
event¢) regardless of whether the corresponding queue is
based on a flow or on discrete data packets; this observation
is very useful in the sequel.

The fact that we are dealing with a hybrid dynamic system
further complicates the solution of a TPBVP. On the other
hand, it enables us to make use of Infinitesimal Perturbation
Analysis (IPA) [18] to carry out the parametric trajectoy-o
timization process discussed in the next section. In pdaic
we propose a parameterization of agent trajectories aligwi
us to utilize IPA to obtain a gradient of the objective functi
with respect to the trajectory parameters.



IV. AGENT TRAJECTORYPARAMETERIZATION AND controllable parameter vectér. Throughout the analysis we
OPTIMIZATION will be using(-)’ to show such derivatives. We will also use
_ _ ~ fx(t) = £* to denote the state dynamics in effect over an
The idea here is to represent each agents trajectopyterevent time intervalry, 7o41). We review next the three
through general parametric equations fundamental IPA equations from [18] based on which we
sP(t) = f(©5,p;(t),  sY(t) = 9(0;,p,(t)) (22)  will proceed. First, events may be classified as exogenous or
where the functiorp;(¢) controls the position of the agent endogenous. An event is exogenous if its occurrence time is
on its trajectory at time¢ and©; is a vector of parameters independent of the parameter hencer; = 0. Otherwise, an
controlling the shape and location of the aggrntajectory. endogenous event takes place when a condifid®, X') =

Let©® = [O4,...,0x]. We now replace proble®1 in (I4) 0 is satisfied, i.e., the stat¥(¢) reaches a switching surface
by problemP2: described by (©, X). In this case, it is shown in [18] that
1T Y e S G v
min / [@1(8,) = (1= a)12(6, 1) + Ja(O, 1) at T = agkd)( Tk ) ( i " ax ) @)
+J5(0,T) as long e}sﬁfk(Tk ) # 0 .It is also shown in [18] that the
S (23) state derivativeY’(t) satisfies
where we return to allowing arbitrary stochastic data afriv EXI@ = %X’(t) + %’ t € [Th, Thy1) (26)

processego;(t)} so thatP2 is a parametric stochastic opti-
mization problem withFg appropriately defined depending The
on (22). The cost function i (23) is written as

J(0,T:X(0,0)) = E[L(0,T;X(6,0))] X(t) = X () + / t %X’(t)dt (28)

where £(©,T; X(0,0)) is a sample function defined over rpe 1 contains all possiblendogenous event types for
[0, 7] andX(©,0) is the initial value of the state vector. For . hybrid system. To these, we ae&bgenous eventsr;
convenience, in the sequel we will ugg, Ly, L3, Ly t0 = 1,...,M, to allow for possible discontinuities (jumps)

denote sample functions of, J, J3 and J; respectively. in the random processelr; ()} which affect the sign of
Note that in [[2B) we suppress the dependence of the foglr(t) — 1w P;(t) in @). We will use the notatior(r,) to
objective functio_n compongnts on the contrai$t) and denote thje erent type occurring fat 7, with e(ry) € E,

6(t) and stress instead their dependence on the parameier oy ent set consisting of all endogenous and exogenous
vector ©. In the rest of the paper, we will consider tWo gy ants. Finally, we make the following assumption which is
families of trajectories motivated by a similar approacheege in guaranteeing the unbiasedness of the IPA gradient

used in the multi-agent persistent monitoring problem ifgimatesA6) Two events occur at the same time wp.
[20]: elliptical trajectories and dourier series trajectory unless one is directly caused by the other.

representation which is more general and better suited for . . . .
P g 2) Objective Function Gradient: The sample function

non-uniform target topologies. The hybrid dynamics of the </ : . .
data harvesting system allow us to apply the theory of lP}gradmptVﬁ(@,T) needed in[(24) is Obt"?“”ed fronl{23)
ssuming a total ofX events over|0 7| with 7,,,, = T

[18] to obtain on line the gradient of the sample functiorf ] K+1
L(©,T;X(6,0)) with respect to0. The value of the IPA and7o = 0: LT

approach is twofold:(i) The sample gradienWVL(©,T) VE<®,T;X(®;0))):TV[/O
can be obtained on line based on observable sample path; vz, 1) '

dataonly, and (i) VL£(©,T) is an unbiased estimate of | & %

V.J(©,T) under mild technical conditions as shown in [18]. = TV[Z/ (0100 — (1= )£2(0,0) + £3(0,)) ]

k=0"Tk

Therefore, we can us& £(©,T) in a standard gradient- 1 vz,(0,1)

X'(r") = X' (7)) + [fea(r) = fr(mD)m” (27
n,X’(t) for t € [, 7+1) is calculated through

(u[l((-),t) — (1= a)L2(O, ) + L3(0O, t))dt]

based stochastic optimization algorithm 1 & it , )
O 0 e ), 1=01,.. (24 "7 (] TEOLOmd - a©n)
to converge (at least locally) to an optimal parameter vecto _ ; _ a></* VL0, 1)t + L2(©, Tear) Ty — 52(@7%)7@
©* with a proper selection of a step-size sequeheg [21]. e T
We emphasize that this process is carried autine, i.e., + / VLs(O,t)dt + Ls(0, Tii1)Th fﬁs(@,mfé)} +VL(O,T)
the gradient is evaluated by observing a trajectory witlegiv K

i -
© over[0,T] and is iteratively adjusting it until convergence = 7 Z/ (Wﬁl(@-,t>dt - —a'Wﬁz((-)-ﬂdt+Vﬁs(@ﬁt)dt)}
k=0"Tk

is attained. _ CsveeT)

1) IPA equations. Based on the events defined earlier, (29)
we will specify event time derivative and state derivative The last step follows from the continuity of the state
dynamics for each mode of the hybrid system. In this procesgariables which causes adjacent limit terms in the sum to
we will use the IPA notation from [18] so that, is the cancel out. Thereforey £(©,T) does not have any direct
kth event time in an observed sample path of the hybridependence on any; this dependence is indirect through
system and-, = 4z X'(t) = % are the Jacobian matricesthe state derivatives involved in the four individual geai

do’
of partial derivatives with respect to all components of théerms. Referring to[{8), the first term involvas., (0O, )



which is as a sum ak/(t) derivatives. SimilarlyV £, (©,t) iii- Otherwise,Z] (7, ,) = Z/ ().

is a sum ofY;(¢) derivatives andVL¢(0,T) requires only Proof: See @),@7),[(]4)' and (B1) in Appendixl IIl.

Z};(T). The third term,VL3(©, 1), requires derivatives of ~ Corollary 1: The state derivativesX(t), Z;;(t), Y (t)

I;(t) in () which depend on the derivatives of the mawvith respect to the controllable parame&are independent

function in [I0) and the agent state derivativgst) with ~ of the random data arrival processs(t)}, i = 1,..., M.

respect to®. Possible discontinuities in these derivative$>roof: Follows directly from the three Propositions.

occur when any of the last four events in Table | takes place. There are a few important consequences of these results.
In summary, the evaluation of (R9) requires the statEirst, as the Corollary asserts, one can apply IPA regasdles

derivatives X/(t), Z;(t), Y{(t), and S; (t). The latter are Of the characteristics of the random procesfest)}. This

easily obtained for any specific choice ¢fand g in (22) robustness property does not mean that these processes do

and are shown in Append[X I. The former require a rathefot affect the values of th&/(t), Z;(t), Y/(t); this happens

laborious use of[{25)=(27) which, however, reduces to #rough the values of the eventtimes k& = 1,2, ..., which
simple set of state derivative dynamics as shown next. ~ are observable and enter the computation of these deeegativ

Proposition 1: After an event occurrence at= 7, the as seen above. Second, the IPA estimation process is event-
state derivativest/(r;"), Y/(r;"), Z/;(r;}), with respect to driven: X{(,"), Y/(r,[), Zj;(r;") are evaluated at event

the controllable parameté satisfy the following: times and then used as initial conditions for the evaluation
0 if e(ry,) =& of X{(r341), Y/ (74y1), Zi;(7,1) along with the integrals

X{(n5) =S X{(r) = pa(O) Pu(ri)my, if e(mi) = 6 appearing in Propositions 2,3 which can also be evaluated
X!() otherwise Y att = 7,1. Consequently, this approach is scalable in the

number of events in the system as the number of agents

where ! # j with Py(r;) > 0 if such [ exists and
) -
S

, s o 1 and targets increases. Third, despite the elaborate tleriga
__09Di;(s;) 9s; (9Di;(s; . . . . .
Tk = 9s;, 90 ( s J(Tk)) . in the Appendix, the actual implementation reflected by
y/(r) = V(1) + Zi;(m,) if e(m) = ?j the three Propositions is simple. Finally, returning [fo)(29
i (1) = Y/ (1) otherwise note that the integrals involving £1(0,t), VL2(0,t) are
0 if e(7,) = O directly obtained fromX/(¢), Y/ (¢), the integral involving
i ) . . . L
Z{j (T:) _ Z{j (1) + XUro) if e(my) = €9 VLs3(0,t) is obtained from straightforward differentiation

of (11), and the final term is obtained froffy,(T).
3) Objective Function Optimization: This Is carried out
using [24) with an appropriate step size sequence.

Zi(ty) otherwise
wheree(r;) = £2 occurs whenj is connected to target

Proof: See [(5D), [(710),[{48) L(T6). (b2), (71}, {73).{65) in
AppendixIl.

This result shows that only three of the eventsfincan
actually cause discontinuous changes to the state degsgati  Elliptical trajectories are described by their center eoor
Further, note thatX/(t) is reset to zero after 8’ event. dinates, minor and major axes and orientation. Aggst
Moreover, when such an event occurs, note t#a(t) positions;(t) = [s7(t), s?(t)] follows the general parametric

J
is coupled toXj(t). Similarly for Z;;(t) and Y/(t) when equation of the ellipse:

A. Elliptical Trajectories

eventg% occurs, showing that perturbations @ can only si(t) = Aj+ajcosp;j(t)cosg; — bjsinp;(t)sin ¢,
propagate to an adjacent queue when that queue is emptieds?(t) = B; + a; cos p;(t) sin ¢; + b; sin p;(t) cos ¢,
Proposition 2: The state derivatives(; (7, ), Y/ (7,,) (30)
with respect to the controllable parameter satisfy the Here,©; = [A;, B;,a;,b;, ¢;] whereA;, B; are the coordi-
following after an event occurrence &t= 7. nates of the center; andb; are the major and minor axis
_ 0 respectively whilep; € [0, ) is the ellipse orientation which
X! ) = { 0 - _— ) if G(Tk)_ =& s defmed_ as the ang_le between thaxis and the major axis
Ck Xi(m) = [ i Pjj(u)du otherwise  of the ellipse. The time dependent paramaigft) is the

_ Th+1 eccentric anomaly of the ellipse. Since the agent is moving
/ . 1+ /

Yi(tep) =Y () + /Tk Bi(u)du with constant speed of 1 on this trajectory froml(19), we
where; is such thatP;;(t) > 0, t € [k, Thy1). haves}(t)? + $7(t)* = 1 which gives

1
2

Proof: See [(58),[{61) and(63) in Appendix]iil.

Proposition 3: The state derivatives;; (7", ;) with respect
to the controllable parametér satisfy the following after an
event occurrence at= 7:

i- If j is connected to target

2
0 (a sin p;(t) cos ¢; + b; cos p;(t) sin ¢>j>
p;(t) = 2
’ + (a sin p;(t) sin ¢; — b; cos p;(t) cos qb.j)
(31)
In the data harvesting problem, trajectories that do nos pas

_ Z/(7'+) |f €(Tk) = Q’ 0 or 5+ . . . . . .
Zz{j(TkJrl) = ok _— , i1 Sij EE g through the base are inadmissible since there is no delivery
o Zij(n) + [7 wig P (u)du - otherwise o qara Therefore, we add a constraint to force the ellipse
ii- If j is connected tad3 with Z;; () > 0, to pass throughw, = [w?, w?] where:

Tk+1 T . .
ZL(riy) = 24 () - / B Phy; (u)du wy =A; +a;c05p;(t) cos gy = by sinp;(D)sing; oo

Tk wY =B; + a; cos p;(t) sin ¢; + b; sin p; () cos ¢;



Using the fact thakin® p(t) + cos? p(t) = 1 we define a zero frequency terms by means of the remaining parameters:

quadratic constraint term added 40, T"; X(©,0)) with a ry ry
sufficiently large multiplier. This can ensure the optimattp  ao ; = w? — Z an jsin(ey, ;),boj = wl — Z bn,j sin(¢}, ;)
passes through the base location. We defin@;) which n=1 n=1

. _ (36)
appears in[(34): L9 9 . o 5 . 9 The parameter vector for agenf is ©; =
CJ(GJ):(l_Z‘J cos (bj_fj s (bj_'fj Sln2:§bj) (33) [ff’ao,jv"'7arj?7b0,j7'"abl—‘yvgﬁl,jv"'7¢F?7€1,j7"'7€1—‘y]
where f} = (“’Ba;j“‘ff n (wgl;Bj)Q, 2= (wBb;Af)Q + and® =1[0,,...,0x]. Note]_that the shape of the curve is
wl—Bj\2 g (B—ad)(wi—A;)(w!—By) fully represented by the ratlgff/f;?’ so one of these can

( a; ) ' fj - aZb? : ) be kept constant. For the Fourier trajectories, the fadt tha
Multiple visits to the base may be needed during thg: — 1 allows us to calculate; (t) as follows:

mission time[0, T']. We can capture this by allowing an agent 7

~1/2

trajectory to consist of a sequence of admissible ellipses. . & . o o ’

For each agent, we defing as the number of ellipses in . (fj n;a"’jnsm(%fj pj(t)+¢”’j)>

its trajectory. The parameter vect®r’ with x = 1,...,&;, Pitt) = om ry 2

defines thes'” ellipse in ageny’s trajectory and7;" is the +<f]y D bugnsin(mfyp;(t) + ¢Z¢j))

time that agenj completes ellipse. Therefore, the location =t (37)
of each agent is described throughduring [7." ", T)"] ProblemP2; is the same aP2 but there are no additional

WhereTj0 = 0. Since we cannot optimize over all possibleconstraints in this case:

§j for all age_nts, an |ter§t|ve process needs to be pgrformeﬂin Jp = %foT (aJl (t) — (1 — a)Ja(t) + Jg(t)) + J4(T)
in order to find the optimal number of segments in eacR<re (38)
agent's trajectory. At each step, we f& and find the
optimal trajectory with that many segments. The process

is stopped once the optimal trajectory witfy segments . ] ] )
is no better than the optimal one witf; — 1 segments I this section numerical results are presented to illtestra

(obviously, this is not a globally optimal solution). We can®Ur approach. We consider 8 targets, 2 agents and a base
now formulate the parametric optimization probléR2, S shown_ln Fig[]2. First, we assume deterministic arrival
where®; = [61,..., 9;%] and® = [01,...,0y]: process withr; = 0.5 fg(rway)z. For (2) z_;md[IB) we have u_sed
| T ' p(w,v) = max(0,1 — =-*) wherer is the corresponding
min J. :—/ [aJl(G,t)— (1—a)J2(@,t)+J3(®7t)} dt  value of r;; or r,,. We havepu;; = 50 and 3;; = 500
octe TJo for all 4 and j. Other parameters used ate= 0.5, r;; =
ry; =1, My =1 andT = 100 except for the TPBVP case
whereT = 30. In Fig.[2 results of the TPBVP are shown

(34) which depend heavily on the initial trajectory and this is

where M is a large multiplier. The evaluation &7C; is  the best result among several initializations. These tesul
straightforward and does not depend on any event. (Detadse after 10,000 iterations of the TPBVP solver. In . 3
are shown in Appendii ). the results are shown for the (locally) optimal trajectory
with two ellipses in each agent’s trajector§; (= 2) and
in Fig. [4 for a Fourier series representation with 5 terms
in (38). Both methods converge in few iterations with each

The elliptical trajectories are limited in shape and mayteration taking less than a few seconds. We use the Armijo
not be able to cover many targets in a mission space. Thugje to update the step-size in each iteration. The average
we next parameterize the trajectories using a Fourier serigueue length at targets for TPBVP, Ellipse wifh = 2
representation of closed curves [22]. Using a Fourier seri@nd Fourier series are 52.13, 49.23 and 62.03 respectively.
function for f and g in (22), agentj’s trajectory can be Whereas The average throughput for the three trajectaies i

V. NUMERICAL RESULTS

N
+Mc Y Ci(0;) + J¢(,T)

Jj=1

B. Fourier Series Trajectories

described as follows with base frequencfgsand f;/: 3.76, 4.2, 3.56 respectively. Although the example is a very
re symmetric configuration, the benefit of the Fourier series
Ty — . g T, T trajectories shows when the targets are randomly posiione
5(0) %04 ¥ ; ang (@IS p;(E) + 60) Then, initializing the TPBVP becomes a very hard task and
ry (35) ellipses cannot fit all targets.
s?(t) = bo, + Z bn Sin(27T’I’Lnypj (t) + ¢‘Z,j) Baseq on Corollar{]1 our results are !ndependent of the
1 underlying random processés;(t) }. To verify this property,

The parametep(t) € [0, 2x], similar to elliptical trajectories, we model the exact same problem with a uniform distribution
represents the position of the agent along the trajectary. for o;(¢) asU]0.1,0.9]. Note that we kee[o;(t)] = 0.5,

this case, forcing a Fourier series curve to pass through ttiee same rate as in the deterministic setting. At each iterat
base is easier. For simplicity, we assume a trajectory 1 stave generate a random sample path using the random process
at the base and sef (0) = w?, s7(0) = w?. Assuming with o;(t) ~ U[0.1,0.9]. The Fourier series trajectories

J
p(0) = 0, with no loss of generality, we can calculate thefor this stochastic optimization problem are shown in Fig.
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with J* = —48.05 compared toJ* = —50.18. The trajectoriesJ* = —48.05
objective function converges almost as quickly but with som APPENDIX I
oscillations as expected. ELLIPTICAL TRAJECTORIES
In order to calculate the IPA derivatives we need to
VI. CONCLUSIONS have the derivative of state variable with respect to all the

parameter vecto®; = [A;, B;,a;, b;, ¢;] for all agents;.

We have developed a new method for trajectory planFhese derivatives do not depend on the events happening in
ning in the data harvesting problem. An optimal controthe system since the trajectories of agents are fixed at each
formulation provides initial insights for the solution, toin  iteration. For now we assumg& = 1 forall j = 1,..., N
is computationally intractable, especially in the case nehe hence, we drop the superscript. We have:

the data generating processes are stochastic. We propose an % _ % _ (39)
agent trajectory parameterization in terms of generaltfanc 0A; oB;

families which are optimized on line through the use of IPA.  Js? 0s7 ) )
Explicit results are provided for the case of elliptical and aTLj = cos p;(t) cos ¢;, 6_19] = —sinp;(t)sin ¢;
Fourier series trajectories. We have shown robustnesseof th (40)

solution with respect to stochastic data generation pesses s . .

. . . —= = —a,cosp,(t)sing; — b;sin p;(t) cos @, 41
by considering stochastic data arrivals at targets. Natura 9¢; 5 008 £ (1) $in @5 = by sin pj (t) cos 6 (41)
next steps include constraining trajectories to urbaringgtt 35? s

95 _ 955 _
obstacles in the mission space. 94, 0, 9B, ~ 1 (42)



0s? 0sY Os® 5
Do, = COSP; (t)sin @;, B—I)J =sinp;(t) cos¢p; (43) j

a; y Bf”” = 2mp;(t Z an,jncos(2mnfip;(t) + ¢y, i), (50)
0sY n=1
?J = a; cos p;(t) cos ¢; — b; sin p;(t) sin ¢; (44) s B s —0 (51)
J - -
Also the time derivative of the position state variables are Y dbo,; da,; Y
calculated as below: Osj _ sin(2rnfp; () + ¢V ) 9s; _ 0 (52)
§7(t) = —a;p;(t)sinp;(t) cos g; + bjp;(t) cos p;(t) sin ¢; aagn-,j ’ " 8“3%
(45) %) = b, i cos(2mnfYp;(t) + Y . . _O 53
S';J (t) = —ajpj (t) sin 12 (t) sin (bj + bjpj (t) COS Pj (t) COS ij a(bij " ( f] pj( ) ¢n,]) 6¢ ( )
(46) 9si _ o 54
The gradient of the last term in th& in g3_2]) needs to be ofr - (54)
calculated separately. We have fpe£ [, 36 =0 and for Also the time derivative of the position state variables are
j=1r calculated as below:
%:2{2 (= cos gb]aAl ) - . J - . .
3 Ly (t) = p;(t) Z 2mnfian,; cos(27mfj P;j (t)—i—gbn)j), (55)
%ZQC(_COS ¢JaB ]) nr:yl
ac, of f . . : z
= 2C;( — cos? ¢>ja—{ — sin® ¢>j87% — sin 2¢, 8—) () = pi(t) Y 2mnflan j cos(2mnfp;(t)+4 ;). (56)
(9(37 . af n=1
= 2C; ( cos? gi)j 8b — sin? o= ab — sin 2¢] o5, )

56— 20,((f} ~ £3)sin 20, — 2f} cos2s))

where APPENDIXIII
6fj1 - 2(w§ . Al,-) 8fj1 - 2(wg B Bj) IPA EVENTS AND DERIVATIVES
04; a? /)7 0B; b2 In this section, we derive all event time derivatives and
of! (w® — A;)? of1 (w¥ — B;)? state derivatives with respect to the controllable paramet
L= (), L= © for each event by applying the IPA equations.
8aj CL? 8bj b?
af (wg - Aj) 0ff _ _Q(U’g - Bj) 1. Event £2: This event causes a transition frakf) (¢) >
DA, b3 " OB; a 0,t < 7 to X;(t) =0, t > 7. The switching function is

af2 2((wg —Bj)Q) of2 ((wx —Aj)Q) g95(,X) = X; s0 9% = 1. From [25) and[{4):

0. 3 , ) 3 / gk Ogr, Ok _
o R g =~ (5x. 1 ) (ae ox, i)
%__((bj—%)(wé’—Bg)) i) 1 (57)
0A; a?b? __ i(T)
5f§ (52 — az)](ujm — 4 oi(Tk) — pij Pij (k)
I _( J J/ "B J ) where agentj is the one connected tbat ¢t = 7, and we
OB; (l?b? have used the assumption that two events occur at the same
ofy _2((w§ — Aj)(wl — By)) time w.p.0, henceo; (7, ) = o;(7:). From [26)42V), since
8aj B a? Xi(t) =0, for 7y, <t < Tpyq:
3 x . . d X
O (i = A = By 9 i) = §X8X<>+X<> 0 @8)
b, by
X{(T]j) =X|(m, )+ |:(O'1'(Tk — 1i; P, ) }
APPENDIX I o XQ(TE)(Ui(Tk)—Hinj(Tk)) B
FOURIER SERIESTRAJECTORIES = Xi(n,) = =0

oi(Tk) — pij Pij (7h)
(59)
We calculate the position of agent j's ForX,(t), r # ¢, the dynamics of,.(¢) in (4) are unaffected
derivative  with respect to all the Fourier and we have:

parameters. The parameter vector 9, = X/ (r5)=X.(7,) (60)
[fF5 a0, .,apjz_,boyj, N R .,¢p;,§17j, ...»&rv].  If X,.(7%) > 0 and agent is connected to it, then
So we have: ’ ’ d IX,(t )
ds% D5t — X, (t) = ( )X;(t) + X/ (t)
Oag j Obo ; o ( ® ( )) 0
0s% 0s% = — Vo, (t) — i Pri(T = —pun Pyt
% sin(2nnfi p;(t) + én ;) i (48) . 00\ i k ot
é?an,j - Oby,; and if X,.(t) = 0 in [, 7+1] or if no agents are connected
s% 7

_0 (a9) then and< X/ (t) = 0.
8¢y ForY,.(t), r = 1,..., M, the dynamics ofY,.(¢) in (@) are

J —q, 2 T (t T
a¢i3 a s3] COS( ﬂ—nf_] p]( )+¢n,7)



not affected by the everf® at 7, hence [ replaced byi andj. For X,.(t), r # i, if X,(7) > 0 and
Y (r) =Y/ (7)) (62) agentl is connected to thenX,.(7.) = o (7k) — ptr1 Pri (),

and sinceY; (t) = B,(t), for 7, < t < Thi1: therefor we getX/(r;") from (60) while in [ry, 741) we
d oY, (1) ' have £ X/ (t) from (63). If X,(7x) = 0 or if no agent is

thT( )= 8YT( )Yr’(t) +Y!(t) = B.(t) (63) connected to target X, (x) = 0. Thus, X/(7;") = X/(1)

and £ X/(t) =

Eor Zi{( ), we m(;JSt zafvezm(rk) > 0'since X;(7;)) > 0, pqp Y,(t), r = 1,..., M the dynamics ofY,(t) in (7) are
encefii; (7 ) > 0 and from [2): not affected by the event ai, hence, we can get;(r;")

Zlfj(r,j) =Zi(m,) + |:Z.Z‘j(7'k_) — Z'ij(T,j)} T and thT’( ) in [1%, T41) from (€2) and[(6B) respectively.
. o , (64)  For Z;;(t) assuming agent is the one connected to target
=Z;;j(m, )+ [Nij (71, ) — iz (7 )} Py (k)7 1, we have:
Since Xi(ri ) > 0, flom (@) we havepi, (7, ) = . Z(r) = Zly(r) + [Zy(ry) — Zy(r)] ok
At 7,7, j remains connected to targétwith f;;(;") = '
oi(1;7)/Pij () = ou(7k)/ Pij () and we get = Zi;(1,) + {ﬂij(ﬁ;) - ﬂij(sz)}Pij(Tk)Té = Zi;(1,)
X)) [ Pa(n) = () 7y

Zi () = Zi () + In the above equationii;; (1;") = p;; becauseX;(r,") > 0.

Also, 11;; P;j (1) = oi(me) and fi;5(7; ) = ;ij((fk)) results
(65) in [Llj(Tk) = u,;;. For Z(t), I # j , agent! cannot be

connected to targetat 7, so we haveZ/,(r,") = Z},(7;)

and £ Z/,(t) = 0 in [rg, Tit1). FOr Z,y(t) ;v # i andl # j

oi(T) — pij Pij (k)

= Z}y(m) + X))

From [26) forrm, <t < 7gy1:

d () = 0Zi;(t) 1 (1) 0Z;;(t) using the assumption that two events occur at the same time
dt 0Zi;(t) ¥ 90 (66) W.p. 0, the dynamics of,(t) are not affected at;, hence
_0Zy(t) 0 we getjtz;l( ) from (68) for: and; replaced byr andl.
= 10 = S (R (P4 () = BB, ()
Since fi;j(t) = o4(t)/P;;(t) for the agent which re-  3.Event(): This event causes a transition frat; (¢) >
mains connected to target after this event, it follows 0fort < 7 to Zl (t) = 0 for t > 7. The switching function
that ;& [fi;;(t)Pi; ()] = 0. Moreover, P, (t) = 0 by our is g,(6,X) = Z;(t) so ggk = 1. From [25):
assumptlon that agents cannot be within range of the base 3gk dge  Ogi B
and targets at the same time and we get Tk = ( (7% )) (8@ 9Z; i3 (7 ))
d
T Zi(t) =0 6 ") oz 1P
Otherwise, forr # j, we havej;-(t) = 0 and we get: fuij (T VPij (157) — Bij By, (137)  Bij By, ()
d L2 () = —Bu P (1) (68) Since Z;;(t) is being emptied at;,, by the assumption that
dt " B agents can not be in range with the base and targets at the

Fina”y, fOI‘ er(t), r 7& 1 we ha.Ve ( ) ZI ( ) |f same time' we havé)ij(,rk) =0. Then from m)
Zp;(t) = 0in [14, Tk+1), then L 7! ( ) =0. OtherW|se we

dt“rj Z'(rH) = Z (17 — B;: P, —0l|ln’

get £ 7/ .(t) from (68) with i replaced byr. (e ) = Zij(me ) + [ Big B, (7i) }T’“ 73)

;o
+o Thi " =Z..(10) — |Bij Py, (1) 2y
2. Event £ This event causes a transition fralf) (¢) = ij\"k i B \Tk Bi; Py (1)

0, t < to X;(t) >0, t > 75,. Note that this transition can Since Zi; (1) = 0 in [ri, 711 ): i

occur as an exogenous event when an empty quée Ud 82 b 8Z

gets a new arrival in which case we simply haye = 0 e i (t )Z’ i) _ _0 74

since the exogenous event is independent of the contrellabl ¢ ()

parameters. In the endogenous case, however, we have b Zri(t), r # i or I # j, the dynamics in[{6) are not
switching functiong,(©,X) = o:(t) — pi; Py (t) in which affected atr;, hence:

agent;j is connected to targetat ¢ = 7. Assuming s () = Zy(ry) (75)
[83 s } ands; = 57 5 ]T from (28): if Zni(x) > 0, the value for Z/ (¢) is calculated by[(86)
90 96 5 as P . with » and! replacingi andj respectively. IfZ,;(r;,) = 0
= )( Ik ; (Tk)) (69) then< 7 (t) = 0.
85 8@ 0s; e

For Y;(t) we haveg;(r;}) = 0 since the agent has emptied
its queue, hence:

Y{(1) = Y{(r0) + [Yilrg) = Vi) ok

At 7, we haveo; (1) = wij Pij (k). 'Therefore from[(27):
Xi{(m) = X{(m,) + [ ( ) — Xi(nD)lm!
=X (1 )+ (0 —oi(Tk) + Mz'jPij(Tk))Tk' = X;(1)
(70) =Y/ () + [Bij By, () — 016”7

HavingX (t) > 0in [1, k1) We know X;(t) = o;(t) — V)4 2 r
1135 P;(t) therefor, we can geg: X/(t) from (61) withr and = i Tk )



In (75, Tk+1) We can getL Y/ (t) = 0. For Y,.(t), r # i the

affected in both cases, henck,](70) holdsXif(t) > 0 in

dynamics ofY,.(¢) in (@) are not affected by the event at|r, 7441) we calculate%X{(t) using [61) with! being the

7, hence,Y/(r;") and £Y//(t) in [ry, 7441) are calculated
from (62) and [(6B) respectively. The dynamics &f.(¢),
r =1,...,M is are not affected at, since the event at
7 is happening at the base. We ha¥é(r;") = X/ (7).
If X,(rx) > 0 then we havel X/(t) from (61) and if
XT(Tk) =0 then %X;(t) =0in [TkaTk-i—l)-

4.Event §;: This event causes a transition fraby’ (t) =
0 for t < 7, to Df(t) > 0 for to ¢t > 7. It is the moment
that agentj leaves targei's range. The switching function
is gk(@, X) = Dij (t) —Tij » from (E)
/ 6DU (Q)Sj 6DU .
ds; 00 ( ds; 0 (T’“)) (77)
If agentj was connected to targéft 7, then by leaving the
target, it is possible that another agémthich is within range
with targeti connects to that target. This meaks(r,")
Ui(Tk) _Milpil(Tk) andXi(T,;) = Ui(Tk) —,uijPij(Tk), with
P;;(1i) = 0, from (27) we have
Xi(r") = Xi(r,) — paPa(m)7y, (78)
If Xi(me) > 0, £X/(t) in [r,7k41) is as in [61) withr
replaced byi and if X;(r;) = 0 then £.X/(t) = 0. On the
other hand, if agent was not connected to targeat 7, we
know that somd # j is already connected to targetThis
means agenj leaving targeti cannot affect the dynamics
of X;(t) so we haveX/(r;") = X/(r, ) and £ X/(t) is
calculated from[{@1) with- replaced byi.

Tk

appropriate connected agent to targetf X;(r,) = 0,
4 X!(t) = 0. For X,.(t), r # i the dynamics in[{4) are not
affected by the event at,. Hence, we getX/(r;") from
©0). If X, (rx) > 0 we calculate X/.(t) from (61) with i
replaced byr and if X,.(r;) = 0 then £ X/(t) = 0.

ForY,(t), » = 1,..., M again the dynamics iri{7) are not
affected attauy so both [6R) and(683) hold.

For Z,;(t), with agentj being connected or not to targeat
7, the dynamics ofZ;;(t) are unaffected at;, hence[(7b)
holds fori andj and in[r, 7x+1) the %Zgj(t) is calculated
through [66). ForZ,,(t), r # i or I # j the dynamics are
unaffected[(75) holds again. Im, Tx11), %Z;l(t) is given
through [66) with: and j replaced byr and!.

6. Event A;F: This event causes a transition from
ng(t) =0fort < 7 to ng(t) > 0 fort > 7. The
switching function isgx (0, X) = Dy, (t) — 75,
, 0Dg; 0s; 6DBj . -1

- (9Sj %( (9Sj SJ(Tk))
Similar to the previous event, the dynamics &f(t) are
unaffected atr, hence, we haveX/(r;") calculated from
Q). If X;i(t) > 01in [r4, 7141) We calculatel X/(t) through
©1) and if X;(;, ) = 0, £.X/(t) = 0.

ForY,(t),r=1,...,, M, the dynamics of,.(¢) in (@) are
not affected atr, hence, we get,(r;") from (62) and in

[Tk, Tht1), Y/ (t) is calculated from[(83).

(80)

Tk

For X,.(t), r # i the dynamics in[{4) are not affected by theFor Z;; (t), Using the fact that ageritcan only be connected

event atr, hence, we geX/ (7;") from (60). If X,.(74) >0
the time derivative X/ (t) in [r;, 711) can be calculated
from (1) and if X, (rx) = 0 then £ X/ () = 0.
ForY,.(t),r=1,...
affected by the event at, hence, we ge¥,.(r;") from (62)
and in 7y, 744+1) the £Y/(¢) is calculated from[{83).
For Z;;(t), the dynamics in({6) are not affectat, regardless
of the fact that agentis connected to targétr not. We have
Zij(7y ) = Rz (1) Pij () With Pij(1) = 0 and Z;; (1) =
0, hence from[(27):

Ziy(r) = Ziy(m) + | Ziglri) = Zis() |k

= Z;(7y ) + g (Te) Pij () 73 = Zi5(1y,)
and in [, 7x41) , we have £Z/.(t) = 0 using [66)
knowing P;;(1x) = B, (k) = 0. For Z(t), r #i orl # j,
the dynamics ofZ,,(t) are not affected at; hence [(7b)
holds and in[rx, 7x+1) again we can usé (66) withand j
replaced byr and!.

(79)

5. Event &): This event causes a transition from

Dfi(t) > 0 fort < 7, to Dj(t) = 0 for to t > 7. The
event is the moment that agejtenters target’s range.
The switching function isy,(0,X) = D;;(t) — ri;. From

(25) we can get,’ from (Z12). If no other agent is already

connected to target agentj connects to it. Otherwise, if
another agent is already connected to taigab connection
is established. ForX;(¢), the dynamics in[{4) are not

,, M, the dynamics in[{7) are not also

to one target or the base, we havg (1, ) = Bi; (7&) Py, (k)
with P, (1x) = 0 and Z;;(r;") = 0, hence[(Z5) holds witt
andj replacingr and!. In 7, 7%+1) from (28):

d_, . 0Zyt) 0Zi;(t)
i = 0Z;;(t) AT (81)
_ 2250 _ —Bi; By, ()

As for Z,,(t), r # i or | # j the dynamics are unaffected so

d 7/
we can calculate; 7,

(73) holds. In[7, Tx+1)
(€8) with j replacingl.

(t) through

7.Event A9: This event causes a transition frabg; (¢) >
0 for t < 74 to Df.(t) = 0 for t > 7. The switching
function is gx(©,X) = D,,(t) — r,,. Using [25) we can
get 7’ from (80). Similar with the previous event we have
X/(r;}) from (70). If X;(t) > 0 we can getd X/(t) from
(61) and if X;(r;, ) = 0 then £ X/(t) = 0.
For Y.(t), r = 1,...,, M, we again follow the previous
event analysis sd_(62) and {63) hold.
For Z;;(t), the analysis is similar to everzﬂt\;r SO we can
calculateZ,(;") and £ 7/ (t) in [ry,, 7k41) from (Z1) and
(66) respectively. Also forZ,,(t), » # i or I # j, (ZB)
holds with same reasoning as previous eventirln7x1)

we calculated Z/,(t) from (€8).
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