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Decentralized Control Problems with Substitutable Actions

Seyed Mohammad Asghari and Ashutosh Nayyar

Abstract— We consider a decentralized system with multiple
controllers and define substitutability of one controller by
another in open-loop strategies. We explore the implications
of this property on the optimization of closed-loop strategies.
In particular, we focus on the decentralized LQG problem with
substitutable actions. Even though the problem we formulate
does not belong to the known classes of “simpler” decentralized
problems such as partially nested or quadratically invariant
problems, our results show that, under the substitutability
assumption, linear strategies are optimal and we provide a
complete state space characterization of optimal strategies. We
also identify a family of information structures that all gi ve
the same optimal cost as the centralized information structure
under the substitutability assumption. Our results suggest that
open-loop substitutability can work as a counterpart of the
information structure requirements that enable simplification
of decentralized control problems.

I. I NTRODUCTION

The difficulty of finding optimal strategies in decentralized
control problems has been well-established in the literature
[1], [2], [3]. In general, the optimization of strategies can be
a non-convex problem over infinite dimensional spaces [4].
Even the celebrated linear quadratic Gaussian (LQG) model
of centralized control presents difficulties in the decentralized
setting [1], [2], [5]. There has been significant interest
in identifying classes of decentralized control problems
that are more tractable. Information structures of decentral-
ized control problems, which describe what information is
available to which controller, have been closely associated
with their tractability. Problems with partially nested [6] or
stochastically nested information structures [7] and problems
that satisfy quadratic invariance [8] or funnel causality [9]
properties have been identified as “simpler” than the general
decentralized control problems.

In this paper, instead of starting from the information
structure of the problem, we first look at open-loop strategies
under which controllers take actions without any observa-
tions. Stated another way, we start with a trivially simple
information structure: no controller knows anything (except,
of course, the model of the system and the cost objective).

We define a property of open-loop decentralized control,
namely the substitutability of one controller by another,
and explore its implications on optimization of closed-loop
strategies (under which controllers take actions as functions
of their observations). In particular, we focus on the de-
centralized LQG problem with substitutable actions. Even
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though the problem we formulate does not belong to one
of the simpler classes mentioned earlier (partially nested,
quadratic invariant etc.), (i) our results show that linear
strategies are optimal; (ii) we provide a complete state
space characterization of optimal strategies; (iii) we also
identify a family of information structures that all achieve
the same cost as the centralized information structure. Our
results suggest that open-loop substitutability can work as
a counterpart of the information structure requirements that
enable simplification of decentralized control problems.

Our work shares conceptual similarities with the work
on internal quadratic variance [10], [11] which identified
problems that are not quadratically invariant but can still
be reduced to (infinite dimensional) convex programs. In
contrast to this work, we explicitly identify optimal control
strategies.

A. Notation

Uppercase letters denote random variables/vectors and
their corresponding realizations are represented by lowercase
letters. Uppercase letters are also used to denote matrices.
E[·] denotes the expectation of a random variable. When
random variableX is normally distributed with meanµ and
varianceΣ, it is shown asX ∼ N (µ,Σ).

For a sequence of column vectorsX,Y, Z, ..., the notation
vec(X,Y, Z, ...) denotes vector[X⊺, Y ⊺, Z⊺, ...]⊺. Further-
more, the vectorvec(X1, X2, ..., Xt) is denoted byX1:t. The
transpose and Moore-Penrose pseudo-inverse of matrixA are
denoted byA⊺ andA†, respectively. The identity matrix and
zero vector are denoted byI and 0 respectively and their
dimensions are inferred from the context.

II. SUBSTITUTABLE ACTIONS

We consider a stochastic system withn controllers. The
dynamics of the system are given as:

Xt+1 = f(Xt, U
1
t , . . . , U

n
t ,Wt), t = 1, . . . , T − 1. (1)

whereXt is the state of the system at timet, U i
t is the action

of controller i at time t andWt is a random noise variable.
The state takes value in the setX , the control action of the
ith controller takes value in the setU i and the noiseWt

takes value in the setW . We useUt to denote the vector
vec(U1

t , . . . , U
n
t ).

The system operates in discrete time for a horizonT .
At time step t, the system incurs a cost given as a func-
tion of the state and control actions:c(Xt, U

1
t , . . . , U

n
t ).

The control objective is to minimize the expected value
of the total cost accumulated over theT time steps:
E[
∑T

t=1
c(Xt, U

1
t , . . . , U

n
t )].
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We say that controlleri is using open-loop control strategy
if its control actions are a function only of time and not
of any information (observations) obtained from the system.
Otherwise, we say that controlleri is using a closed-loop
control strategy. Based on the dynamics and the cost func-
tion, we can define a notion of open-loop substitutability
among controllers.

Definition 1: We say that controller 1 can substitute for
controller 2 in open-loop control if for everyu1 ∈ U1, u2 ∈
U2, there exists a control actionv1 ∈ U1 for controller 1
such that for allx ∈ X , w ∈ W , ui ∈ U i, i = 3, . . . , n,

f(x, u1, u2, u3, . . . , un, w) = f(x, v1, 0, u3, . . . , un, w),
(2a)

andc(x, u1, u2, u3, . . . , un) = c(x, v1, 0, u3, . . . , un). (2b)

v1 is a function only ofu1 andu2, that is,v1 = l1,2(u1, u2),
for some functionl1,2. We will call l1,2 the substitution
function for controller 1 and 2.
A similar notion of open-loop substitutability can be defined
for any pair of controllers in the system.

If we are considering only open-loop control strategies for
all controllers and if controller 1 can substitute for controller
2 in open-loop control (as per Definition 1), then there is
no loss of optimality in fixing all actions of controller 2 to
0. This is the intuitive meaning of substitutability — since
controller 1 can substitute for controller 2, controller 2 does
not need to do anything.

The open-loop substitutability property has some closed-
loop implications. Let us denote byIit the collection of all
observations and past control actions that are available to
controlleri at timet. Under a closed-loop strategy, controller
i selects its control action as a function ofIit , that is,U i

t =
git(I

i
t ). The collection of functionsgi := {gi1, g

i
2, . . . , g

i
T } is

referred to as controlleri’s (closed-loop) strategy.
Lemma 1:Suppose that controller 1 can substitute for

controller 2 in open-loop control and that for all time instants
t, I1t ⊇ I2t , then for any strategiesh1, h2, . . . , hn of n

controllers, there exists strategiesg1, g2 for controllers 1 and
2, with g2t (I

2
t ) = 0 for all t, such thatg1, g2, h3, . . . , hn

achieve the same cost ash1, h2, . . . , hn.
Proof: Consider any arbitrary strategiesh1, h2, . . . , hn

for then controllers. Define new strategy for controller 1 as
follows:

g1t (I
1
t ) = l1,2(h1

t (I
1
t ), h

2
t (I

2
t )), (3)

where l1,2 is the substitution function from Definition 1.
Firstly, note that (3) is a valid strategy for controller 1
becauseI2t ⊆ I1t . If this was not the case, the right hand
side of (3) would be using information that controller 1 may
not have.

The result of the lemma then follows from the observation
that the pair(U1

t = g1t (I
1
t ), U

2
t = 0) will always have the

same effects on dynamics and cost as(U1
t = h1

t (I
1
t ), U

2
t =

h2
t (I

2
t )) because of the substitutability conditions.

The conditionI1t ⊇ I2t is necessary for Lemma 1 to hold.
It is easy to construct examples whereI1t does not includeI2t

and the second controller cannot be restricted to the “always
zero” strategy without losing optimality.

The statement of Lemma 1 can be intuitively interpreted
as follows: The open-loop substitutability of controller 2by
controller 1and the fact that controller 1 is better informed
make controller 2 essentially redundant for the purpose of
cost optimization.

Lemma 1 suggests that open-loop substitutability, com-
bined with the information structure of the problem, can have
implications about the closed-loop problem. In the rest of the
paper, we consider a LQG control problem with multiple
controllers and obtain results much sharper than Lemma 1
for such problems.

III. LQG PROBLEM WITH STATE FEEDBACK

A. System Model

We consider a stochastic system withn controllers where

1) The state dynamics are given as

Xt+1 = AXt +BUt +Wt, t = 1, . . . , T − 1, (4)

whereXt,Wt ∈ R
dx andUt ∈ R

du .
2) The cost at timet is given as

c(Xt, Ut) = (MXt +NUt)
⊺(MXt +NUt). (5)

3) The initial stateX1 and the noise variablesWt, t =
1, . . . , T − 1 are independent and have Gaussian dis-
tributions.

We will make the following assumption about the system.
Assumption 1:Each controller can substitute for any other

controller in open loop control. In other words, for every
vector u = vec(u1, u2, . . . , un), there exist control actions
vi = li(u) for controlleri, i = 1, . . . , n, such that

Bu = B

















0
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vi

...
0

















and Nu = N
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0

















. (6)

Lemma 2:We can write theB andN matrices in terms
of their blocks as

B =
[

B1 . . . Bn
]

,

N =
[

N1 . . . Nn
]

.

If Assumption 1 is true, thenvi = Λiu 1 satisfies (6) for
i = 1, . . . , n where

Λi =

[

Bi

N i

]† [

B

N

]

. (7)

1 In the previous version of this work [12], we stated that if Assumption
1 is true, thenvi = (Bi)†Bu = (N i)†Nu and(Bi)†B = (N i)†N . This
statement is correct only ifBi and N

i are invertible so that(Bi)† =
(Bi)−1 and (N i)† = (N i)−1. However, in general, the statement is
incorrect. The correct expression forvi is vi = Λiu whereΛi is as given
by (7).



Proof: The system of equations of (6) is equivalent to
a matrix equation of the form

Pvi = b,where P =

[

Bi

N i

]

, b =

[

B

N

]

u. (8)

The general solution of (8) isvi = P †b + (I − P †P )y for
arbitraryy [13]. By settingy = 0, we havevi = P †b.

An example of a system satisfying Assumption 1 is a two-
controller LQG problem where the dynamics and the cost
are functions only of the sum of the control actions, that is,
(u1

t + u2
t ). This happens ifB1 = B2 andN1 = N2. In this

case, usingv1t = v2t = u1
t+u2

t satisfies (6), which means that
controller 1 can substitute for controller 2 and vice versa.

B. Information Structure

We assume that the state vectorXt consists ofn sub-
vectors, that isXt = vec(X1

t , X
2
t , . . . , X

n
t ). X i

t can be
interpreted as the state of theith sub-system. We assume a
local state feedback with perfect recall information structure,
that is, the information available to controlleri at time t is:

Iit = {X i
1:t, U

i
1:t−1}, i = 1, 2, . . . , n. (9)

Controlleri chooses actionU i
t as a function of the informa-

tion available to it. Specifically, fori = 1, . . . , n,

U i
t = git(I

i
t ), t = 1, . . . , T. (10)

The collectiongi = (gi1, ..., g
i
T ) is called the control strategy

of controlleri. The performance of the control strategiesg1,
g2, . . . , gn is measured by the expected cost

J (g1, . . . , gn)

= Eg1,...,gn

[

T
∑

t=1

(MXt +NUt)
⊺(MXt +NUt)

]

(11)

where the expectation is with respect to the joint probabil-
ity distribution on (X1:T , U1:T ) induced by the choice of
g1, . . . , gn.

C. Optimal Strategies

The optimization problem is defined as follows.
Problem 1: For the model described in section III-A and

III-B, find control strategiesg1, . . . , gn for then controllers
that minimize the expected cost given by (11).

Remark 1:Since we have not imposed any constraints
on the matricesA and B in system dynamics, Problem 1
may not have partially nested information structure. Thus,
we cannot guarantee, at this point, the optimality of linear
control strategies for this problem.

In addition to the decentralized information structure de-
scribed above, we will also consider the centralized informa-
tion structure where all controllers have access to the entire
state and action history.

Problem 2: For the model described in section III-A,
assume that the information available to each controller is,

Ĩt = {X1:t, U1:t−1}. (12)

Controller i chooses its action according to strategyhi =
(hi

1, . . . , h
i
T ),

U i
t = hi

t(Ĩt).

The objective is to select controller strategies that minimize

J (h1, . . . , hn)

= Eh1,...,hn

[

T
∑

t=1

(MXt +NUt)
⊺(MXt +NUt)

]

(13)

where the expectation is with respect to the joint probabil-
ity distribution on (X1:T , U1:T ) induced by the choice of
h1, . . . , hn.

D. Main results

In this section, we will show that we can construct optimal
strategies in Problem 1 from the optimal control strategies
of the centralized problem (Problem 2). We start with the
following observations.

Lemma 3: 1) The optimal cost in Problem 2 (with
centralized information structure) is a lower bound
on the optimal cost in Problem 1 (with decentralized
information structure).

2) The optimal strategies in Problem 2 are linear func-
tions of the state, that is, the control vectorUt =
vec(U1

t , . . . , U
n
t ) is given as

Ut = KtXt = [K1
t . . .K

n
t ]Xt

= K1
t X

1
t + . . .+Kn

t X
n
t . (14)

Kt is the centralized gain matrix andKi
t is its ith

block.
We can now state our main result for the state feedback

case.
Theorem 1:The optimal control strategies in Problem 1

are given as

U i
t = lit(K

i
tX

i
t) = ΛiKi

tX
i
t , i = 1, 2, . . . , n, (15)

where Λi is given by (7) andKi
t is the ith block of

the centralized gain matrix in (14). Moreover, the optimal
strategies in Problem 1 achieve the same cost as the optimal
strategies in Problem 2.

Proof Outline: Firstly, observe that the strategies given
by (15) are valid control strategies under the information
structure of Problem 1. The optimal control vectorUt under
the centralized strategy is a superposition of terms of the
form Ki

tX
i
t . Note that the termKi

tX
i
t consists ofn sub-

vectors (one corresponding to each controller’s action).

Ki
tX

i
t =











Ki1
t

Ki2
t

...
Kin

t











X i
t .

Such a control vector cannot be implemented in the de-
centralized information structure since it requires each con-
troller to have access toX i

t . We now exploit the open
loop substitutability of the problem to state that the vector
vec(0, . . . , lit(K

i
tX

i
t), . . . , 0) will have the same effect as



Ki
tX

i
t . This allows us to construct a decentralized strategy

with the same performance as the centralized one. We
provide a detailed proof for the more general case of the
output feedback problem in the next section.

We can also derive the following corollary of Theorem 1.
Corollary 1: For the model described in section III-A,

consider any information structure under which the infor-
mation of controlleri at time t, Îit , satisfies

{X i
t} ⊆ Îit ⊆ {X1:t, U1:t−1},

for all i = 1, . . . , n and t = 1, . . . , T . Then, the optimal
strategies in this information structure are the same as in
Theorem 1.

Corollary 1 identifies memoryless local state feedback as
the minimal information structure that achieves the optimal
centralized cost. In other words, it describes the minimal
communication and memory requirements for controllers to
achieve the optimal centralized cost.

IV. LQG PROBLEM WITH OUTPUT FEEDBACK

A. System Model

We consider the system model described in section III-A
and assume that each controller makes a noisy observation
of the system state given as

Y i
t = CiXt + V i

t , i = 1, . . . , n. (16)

Combining (16) for all controllers gives:

Yt =













C1

C2

...

Cn













Xt + Vt, (17)

where Yt denotes vec(Y 1
t , Y

2
t , . . . , Y

n
t ) and Vt denotes

vec(V 1
t , V

2
t , . . . , V

n
t ). The initial stateX1 and the noise

variablesWt, t = 1, . . . , T − 1, and Vt, t = 1, . . . , T − 1,
are mutually independent and jointly Gaussian with the
following probability distributions:

X1 ∼ N (0,Σx), Wt ∼ N (0,Σw), Vt ∼ N (0,Σv).

The information available to theith controller at timet is:

Iit = {Y i
1:t, U

i
1:t−1} i = 1, . . . , n. (18)

Each controlleri, chooses its actionU i
t according toU i

t =
git(I

i
t ) and the performance of the control strategies of all

controllers, (g1, . . . , gn), is measured by (11).
The optimization problem is defined as follows.
Problem 3: For the model described above, find control

strategiesg1, . . . , gn for then controllers that minimize the
expected cost given by (11).

In addition to the decentralized information structure de-
scribed above, we will also consider the centralized informa-
tion structure and the corresponding strategy optimization.

Problem 4: For the model described above, assume that
the information available to each controller is

Ĩt = {Y1:t, U1:t−1}. (19)

Controller i chooses its action according to strategyU i
t =

hi
t(Ĩt). The objective is to select control strategies that

minimize (13).
The following lemma follows directly from the problem
descriptions above and well-known results for the centralized
LQG problem with output feedback [14].

Lemma 4: 1) The optimal cost in Problem 4 (with
centralized information structure) is a lower bound
on the optimal cost in Problem 3 (with decentralized
information structure).

2) The optimal strategies in Problem 4 have the form
of Ut = KtZt where Zt = E(Xt|Ĩt). Zt evolves
according to the following equations:

Z1 = L1Y1

Zt+1 = (I − Lt+1C)(AZt +BUt) + Lt+1Yt+1.

(20)

We defineΣt = E[(Xt − Zt)(Xt − Zt)
⊺|Ĩt] which

satisfies the following update equations:

Σ1 = (I − L1C)Σx

Σt+1 = (I − Lt+1C)(AΣtA
⊺ +Σw). (21)

The matricesL1, . . . , LT in (20) and (21) satisfy the
forward recursion:

L1 = Σ1C
⊺[CΣ1C

⊺ +Σv]
−1

Lt+1 =

(AΣtA
⊺ +Σw)C

⊺[C(AΣtA
⊺ +Σw)C

⊺ +Σv]
−1.

(22)

B. Main results

In this section, we show that it is possible to construct
optimal strategies in Problem 3 from the optimal control
strategy of Problem 4.

Theorem 2:Consider Problems 3 and 4, and consider the
optimal strategy,Ut = KtZt, of Problem 4, whereKt and
Zt are as defined in Lemma 4. We writeLt+1 of Lemma 4
asLt+1 =

[

L1
t+1 L2

t+1 . . . Ln
t+1

]

. The optimal control
strategies of Problem 3 can be written as

U i
t = ΛiKtS

i
t (23)

whereΛi is given by (7) andSi
t satisfies the following update

equations:

Si
1 = Li

1Y
i
1

Si
t+1 = (I − Lt+1C)(ASi

t +BiU i
t ) + Li

t+1Y
i
t+1. (24)

Moreover, the optimal strategies in Problem 3 achieve the
same cost as the optimal strategies in Problem 4.

Observe that the strategies given by (23) and (24) are
valid control strategies under the information structure of
Problem 3 because they depend only onY i

1:t, U
i
1:t−1 which

are included inIit . The statesSi
t defined in (24) are related

to the centralized estimateZt by the following result.



Lemma 5:The centralized state estimateZt and the states
Si
t defined in (24) satisfy the following equation:

Zt =
n
∑

i=1

Si
t . (25)

Proof: We prove the result by induction. Fort = 1,
from (20), we haveZ1 = L1Y1 and according to (24),

n
∑

i=1

Si
1 = L1

1Y
1
1 + L2

1Y
2
1 + ...+ Ln

1Y
n
1 = L1Y1. (26)

Now assume thatZt =
∑n

i=1
Si
t . We need to show that

Zt+1 =
∑n

i=1
Si
t+1. From (20), it follows that

Zt+1 = (I − Lt+1C)(AZt +BUt) + Lt+1Yt+1. (27)

From (24), we have

n
∑

i=1

Si
t+1 =

n
∑

i=1

[(I − Lt+1C)(ASi
t +BiU i

t ) + Li
t+1Y

i
t+1]

= (I − Lt+1C)(A
n
∑

i=1

Si
t +

n
∑

i=1

BiU i
t ) +

n
∑

i=1

Li
t+1Y

i
t+1]

= (I − Lt+1C)(AZt +BUt) + Lt+1Yt+1. (28)

Therefore,Zt+1 =
∑n

i=1
Si
t+1.

Remark 2:For the case of state feedback, it can be easily
shown thatSi

t = vec(0, . . . , X i
t , . . . , 0).

The following result is an immediate consequence of
Theorem 2.

Corollary 2: For the model described in section IV-A,
consider any information structure under which the infor-
mation of controlleri at time t, Îit , satisfies

{Y i
1:t, U

i
1:t−1} ⊆ Îit ⊆ {Y1:t, U1:t−1},

for all i = 1, . . . , n and t = 1, . . . , T . Then, the optimal
strategies in this information structure are the same as in
Theorem 2.

C. Proof of Theorem 2

For notational conveniences, we will describe the proof
for n = 2. If Ut = KtZt is the optimal control strategy of
Problem 4, then from Lemma 5, we have:

Ut = KtZt = Kt(S
1
t + S2

t ) (29)

We claim that the decentralized control strategies defined in
Theorem 2, that is

Ut =

[

U1
t

U2
t

]

=

[

Λ1KtS
1
t

Λ2KtS
2
t

]

, (30)

yield the same expected cost as the optimal centralized
control strategiesUt = KtZt.

To establish the above claim, we define cost-to-go func-
tions under the optimal centralized strategy and the strategies
defined in Theorem 2. These functions, denoted byVr(z)

and V̂r(z, s
1, s2) for r = T, T − 1, . . . , 1, are defined as

follows:

Vr(z) =

E
[

T
∑

t=r

(MXt +NUt)
⊺(MXt +NUt)|Zr = z, Ur = Krz

]

,

(31)

whereUt is given by (29) for allt, and

V̂r(z, s
1, s2) =

E
[

T
∑

t=r

(MXt +NUt)
⊺(MXt +NUt)|Zr = z, S1

r = s1,

S2
r = s2, U1

r = Λ1Krs
1, U2

r = Λ2Krs
2

]

, (32)

whereUt is given by (30) for allt. The functionV̂r(z, s
1, s2)

in (32) is defined only forz = s1 + s2; V̂r(z, s
1, s2) is

undefined forz 6= s1 + s2.
We will show that for r = 1, ..., T , Vr(z) =

V̂r(z, s
1, s2) ∀z, s1, s2 ∈ R

dx such thatz = s1 + s2. We
follow a backward induction argument. Forr = T , we have,

VT (z) = E[(MXT +NUT )
⊺(MXT +NUT )|ZT = z,

UT = KT z] (33)

V̂T (z, s
1, s2) =

E[(MXT +NUT )
⊺(MXT +NUT )|ZT = z, S1

T = s1,

S2
T = s2, U1

T = Λ1KT s
1, U2

T = Λ2KT s
2]. (34)

Since the only difference between (33) and (34) is with
respect to their different control strategies, it suffices to show
that the termNUT is the same under these two control
strategies.

Under control actionuT = KT z, we haveNuT = NKT z.
Under control actionsu1

T = Λ1KT s
1, u2

T = Λ2KT s
2, we

have

NuT =
[

N1 N2
]

uT = N1u1
T +N2u2

T

= N1Λ1KT s
1 +N2Λ2KT s

2 (35)

From the substitutability assumption (Assumption 1) and
Lemma 2, for any vectoru, Nu = N ili(u) = N iΛiu.
Therefore,

N1Λ1KT s
1 = NKT s

1,

N2Λ2KT s
2 = NKT s

2. (36)

(35) can now be written as,

N1Λ1KT s
1 +N2Λ2KT s

2 = N(KT s
1 +KT s

2) = NKT z

(37)

where the last equality is true becausez = s1+s2. Therefore,
VT (z) = V̂T (z, s

1, s2) ∀z, s1, s2 ∈ R
dx such thatz =

s1 + s2.
Now, assume that Vk+1(z) =

V̂k+1(z, s
1, s2) ∀z, s1, s2 ∈ R

dx such thatz = s1 + s2. We
need to show thatVk(z) = V̂k(z, s

1, s2) ∀z, s1, s2 ∈ R
dx

with z = s1 + s2. For this, note that one can use dynamic



programming arguments to write the cost-to-go functions
Vk and V̂k in terms of instantaneous cost and the next
stage cost-to-go functions:

Vk(z) = E[(MXt +NUt)
⊺(MXt +NUt)|Zk = z, Uk =

Kkz] + E[Vk+1(Zk+1)|Zk = z, Uk = Kkz], (38)

and

V̂k(z, s
1, s2) =

E[(MXt +NUt)
⊺(MXt +NUt)|Zk = z, S1

k = s1,

S2
k = s2, U1

k = Λ1Kks
1, U2

k = Λ2Kks
2]

+ E[V̂k+1(Zk+1, S
1
k+1, S

2
k+1)|Zk = z, S1

k = s1, S2
k = s2,

U1
k = Λ1Kks

1, U2
k = Λ2Kks

2]. (39)

The first expectation on the right hand side of (38) can be
shown to be equal to the first expectation on the right hand
side of (39) by repeating the arguments used at timeT . Using
Lemma 4, the second expectation on the right hand side of
(38) can be written as,

E[Vk+1(Zk+1)|Zk = z, Uk = Kkz]

= E[Vk+1

(

(I − Lk+1C)(AZk +BUk)+

Lk+1(CXk+1 + Vk+1)
)

|Zk = z, Uk = Kkz]

= E[Vk+1

(

(I − Lk+1C)(A+BKk)z + Lk+1(CAXk+

CBKkz + CWk + Vk+1)
)

|Zk = z, Uk = Kkz]

= E[Vk+1

(

(A+BKk)z + Lk+1CA(Xk − z)

+ Lk+1(CWk + Vk+1)
)

|Zk = z]. (40)

Furthermore, because of the induction hypothesis, the second
expectation on the right hand side of (39) can be written as,

E[V̂k+1(Zk+1, S
1
k+1, S

2
k+1)|Zk = z, S1

k = s1, S2
k = s2,

U1
k = Λ1Kks

1, U2
k = Λ2Kks

2]

= E[Vk+1(Zk+1)|Zk = z, S1
k = s1, S2

k = s2,

U1
k = Λ1Kks

1, U2
k = Λ2Kks

2]. (41)

(41) can be further written as

E[Vk+1

(

(I − Lk+1C)(Az +B1U1
k +B2U2

k )+

Lk+1(CAXk + CB1U1
k + CB2U2

k + CWk + Vk+1)
)

|

Zk = z, S1
k = s1, S2

k = s2, U1
k = Λ1Kks

1, U2
k = Λ2Kks

2].
(42)

From the substitutability assumption (Assumption 1) and
Lemma 2, for any vectoru, Bu = Bili(u) = BiΛiu.
Therefore,

B1Λ1Kks
1 = BKks

1,

B2Λ2Kks
2 = BKks

2. (43)

(42) can now be written as

E[Vk+1

(

(I − Lk+1C)(Az +BKks
1 +BKks

2)+

Lk+1(CAXk + CBKks
1 + CBKks

2 + CWk + Vk+1)
)

|

Zk = z, S1
k = s1, S2

k = s2, U1
k = Λ1Kks

1,

U2
k = Λ2Kks

2] = E[Vk+1

(

(Az +BKkz)+

Lk+1CA(Xk − z) + Lk+1(CWk + Vk+1)
)

|Zk = z]. (44)

(44) is the same as (40). Therefore,Vk(z) =
V̂k(z, s

1, s2) ∀z, s1, s2 ∈ R
dx such thatz = s1 + s2.

Now, the expected cost under the centralized control
strategy,Ut = KtZt, can be written as,

E

[

T
∑

t=1

c(Xt,KtZt)

]

= E

[

E

[

T
∑

t=1

c(Xt,KtZt)
∣

∣

∣
Z1, U1 = K1Z1

]]

= E[V1(Z1)], (45)

while the expected cost under the decentralized strategiesof
Theorem 2 can be written as

E

[

T
∑

t=1

c

(

Xt,

[

Λ1KtS
1
t

Λ2KtS
2
t

])]

= E
[

E
[

T
∑

t=1

c

(

Xt,

[

Λ1KtS
1
t

Λ2KtS
2
t

])

∣

∣

∣
Z1, S

1
1 , S

2
1 , U

1
1 =

Λ1K1S
1
1 , U

2
1 = Λ2K1S

2
1

]

]

= E[V̂1(Z1, S
1
1 , S

2
1)] (46)

BecauseV1(z) = V̂1(z, s
1, s2) ∀z, s1, s2 such thatz =

s1 + s2, (45) and (46) are equal. Thus, the decentralized
control strategies of Theorem 2 achieve the same expected
cost as the optimal centralized strategies.

V. CONCLUDING REMARKS

We considered a decentralized system with multiple con-
trollers and defined a property called substitutability of one
controller by another in open-loop strategies. For the LQG
problem, our results show that, under the substitutability
assumption, linear strategies are optimal and we provide a
complete state space characterization of optimal strategies.
Our results suggest that open-loop substitutability can work
as a counterpart of the information structure requirements
that enable simplification of decentralized control problems.
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