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Decentralized Control Problems with Substitutable Actiors

Seyed Mohammad Asghari and Ashutosh Nayyar

Abstract— We consider a decentralized system with multiple though the problem we formulate does not belong to one
controllers and define substitutability of one controller by  of the simpler classes mentioned earlier (partially nested
another in open-loop strategies. We explore the implicatios o a4ratic invariant etc.), (i) our results show that linear

of this property on the optimization of closed-loop strateges. trateqi timal: (i id lete stat
In particular, we focus on the decentralized LQG problem with ~ Strategies are optimal; (i) we provide a complete state

substitutable actions. Even though the problem we formula¢  SPace characterization of optimal strategies; (iii) weoals

does not belong to the known classes of “simpler” decentraled identify a family of information structures that all achév

problems such as partially nested or quadratically invariant  the same cost as the centralized information structure. Our

problems, our results show that, under the substitutability results suggest that open-loop substitutability can wask a

assumption, linear strategies are optimal and we provide a . . .

complete state space characterization of optimal strategs. We a counte.rpar_t _Of t.he information §tructure requiremenss th

also identify a family of information structures that all give €nable simplification of decentralized control problems.

the same optimal cost as the centralized information struatre Our work shares conceptual similarities with the work

under the substitutability assumption. Our results suggesthat  on internal quadratic variance [10], [11] which identified

open-loop substitutability can work as a counterpart of the  ,5hems that are not quadratically invariant but can still

information structure requirements that enable simplification . . .

of decentralized control problems, be reduced tp (infinite dlmer?sllonql) convex programs. In
contrast to this work, we explicitly identify optimal cootr

I. INTRODUCTION strategies.

The difficulty of finding optimal strategies in decentratize A Notation

control problems has been well-established in the liteeatu U lett denot d iables/vect q
[1], [2], [3]- In general, the optimization of strategiesnche ppercase Jetiers denote random variables/vectors an
heir corresponding realizations are represented by loager

a non-convex problem over infinite dimensional spaces [4]. U | | dtod .
Even the celebrated linear quadratic Gaussian (LQG) mo ters. Uppercase letters are aiso use 0 er_lote matrices
-] denotes the expectation of a random variable. When

of centralized control presents difficulties in the decalited ; ) . .
setting [1], [2], [5]. There has been significant interes[an_dom var_lapleX is normally distributed with meap and
in identifying classes of decentralized control problemé’a”ancez' itis shown asX ~ N (g, %). .
that are more tractable. Information structures of deedntr For a sequence of column VeCtais Y, Z, ..., the notation
ized control problems, which describe what information ié’eqX’Y’Z’ --) denotes vecto{XT.,YT,ZT, -JT. Further-
available to which controller, have been closely assodiatd! "€ the vectoved Xy, Xa, ..., Xy) is demted A The
with their tractability. Problems with partially nested] [6r transpose and MOOF?-PGI’]I’OS(_—:‘ pseudo-l_nvers_,e of mm
stochastically nested information structures [7] and [eois denoted byAT and A', respeciively. The |den_t|ty matrix an_d
that satisfy quadratic invariance [8] or funnel causal®y [ zero vector are _denoted biyand 0 respectively and their
properties have been identified as “simpler” than the getzner‘:l'mens'onS are inferred from the context.
decentralized control problems. Il. SUBSTITUTABLE ACTIONS

In this paper, instead of starting from the information We consider a stochastic system withcontrollers. The
structure of the problem, we first look at open-loop straggi dvnamics of the svstem are given as: '
under which controllers take actions without any observa” Y 9 '
tions. Stated another way, we start with a trivially simple X, ., = f(X;,U},...,.U"W;), t=1,..., T —1. (1)
information structure: no controller knows anything (epge
of course, the model of the system and the cost objective

We define a property of open-loop decentralized contro ¢ ;
namely the substitutability of one controller by anotherThe state takes value in the s&{ the control action of the
and explore its implications on optimization of closedgoo th controller takes value in the sed* and the noiselV;
strategies (under which controllers take actions as fansti '@kes value in the sety. We useU; to denote the vector
of their observations). In particular, we focus on the de-

vedU}L, ..., UM).
centralized LQG problem with substitutable actions. Even

)/yhereXt is the state of the system at timel; is the action
pf controller: at timet and W, is a random noise variable.

The system operates in discrete time for a horiZon
At time stept, the system incurs a cost given as a func-
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Engineering, University of Southern California, Los Arggl CA 90089 The control objective is to minimize the expected value
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We say that controlleris using open-loop control strategy and the second controller cannot be restricted to the “away
if its control actions are a function only of time and notzero” strategy without losing optimality.
of any information (observations) obtained from the system The statement of Lemma 1 can be intuitively interpreted
Otherwise, we say that controlléris using a closed-loop as follows: The open-loop substitutability of controllebg
control strategy. Based on the dynamics and the cost funeantroller 1and the fact that controller 1 is better informed
tion, we can define a notion of open-loop substitutabilitymake controller 2 essentially redundant for the purpose of
among controllers. cost optimization.

Definition 1: We say that controller 1 can substitute for Lemma 1 suggests that open-loop substitutability, com-
controller 2 in open-loop control if for every! € ', u? €  bined with the information structure of the problem, canéhav
U?, there exists a control actiont € /' for controller1  implications about the closed-loop problem. In the reshef t

such that for alle € X, w e W, v* € U*,i =3,...,n, paper, we consider a LQG control problem with multiple
controllers and obtain results much sharper than Lemma 1
flzut,u? u?, . u™ w) = fla, ', 0,0, ™, w), for such problems.
(2a)
and C(x7u17u27u37 coou™) = ez, v, 0,03, ... ,u™). (2b) I11. LQG PROBLEM WITH STATE FEEDBACK

vl is a function only ofu! andu?, that is,v! = I%2(u!, u?), A. System Model
for some functioni’2. We will call 112 the substitution We consider a stochastic system wittcontrollers where

functionfor controller 1 and 2. 1) The state dynamics are given as
A similar notion of open-loop substitutability can be define
for any pair of controllers in the system. Xip1 = AXe + BU+ W, t=1,...,T -1, (4)

If we are considering only open-loop control strategies for where X;, W, € Ré andU, € R%.
all controllers and if controller 1 can substitute for catigr ’
2 in open-loop control (as per Definition 1), then there is
no loss of optimality in fixing all actions of controller 2 to (X, Up)) = (MX: + NU)T(MX: + NU;).  (5)
0. This is the intuitive meaning of substitutability — since

controller 1 can substitute for controller 2, controller @4 3) The initial stateX, and the noise variabled/;,t =
not need to do anything. 1,...,T — 1 are independent and have Gaussian dis-

tributions.

2) The cost at timé is given as

The open-loop substitutability property has some closed-
loop implications. Let us denote b¥ the collection of all We will make the following assumption about the system.
observations and past control actions that are available toAssumption 1:Each controller can substitute for any other
controlleri at timet. Under a closed-loop strategy, controllercontroller in open loop control. In other words, for every
i selects its control action as a function &f that is, U/ =  vectoru = vedu',u?,...,u"), there exist control actions
gi(I}). The collection of functiong’ := {gi,g4,..., g%} is  v* =1'(u) for controlleri, i = 1,...,n, such that
referred to as controllers (closed-loop) strategy. 0 0

Lemma 1:Suppose that controller 1 can substitute for
controller 2 in open-loop control and that for all time ings : :

t, I} D I?, then for any strategieg®, h?,...,h" of n Bu=B |[v'| and Nu= N |v*]. (6)
controllers, there exists strategig's g for controllers 1 and . .

2, with g2(I2) = 0 for all ¢, such thatg!, g2, h3,... h" 0 0

achieve the same cost &%, h?,..., A"
Proof: Consider any arbitrary strategiés$, h?,. .., h" Lemma 2:We can write theB and N matrices in terms
for the n controllers. Define new strategy for controller 1 af their blocks as
follows:
B=[B' ... B",
g (11) = 1), B D)), ® | |
N=|[N' ... N"].

where (%2 is the substitution function from Definition 1.
Firstly, note that (3) is a valid strategy for controller 1 |f Assumption 1 is true, them’ = A% ! satisfies (6) for

becausel? C I}. If this was not the case, the right hand; = 1,... n where
side of (3) would be using information that controller 1 may _ Bl B
not have. A= |:Ni:| [N} , (7)

The result of the lemma then follows from the observation
H 1 _ 1/71 2 __ H
that the pall’(Ut =9 (It. )7 Ut - ) will always have the 1n the previous version of this work [12], we stated that ifsAmption
same effects on dynamics and cost(8s = hi(I}),U? = 1istrue, thensi = (B')f Bu = (N%)f Nuand(B?) B = (N%) N. This
hi(I?)) because of the substitutability conditions. ~ m  statement is correct only 5" and N are invertible so tha(5')! =
iy—1 i _ iy—1 H H
The condition/} D I? is necessary for Lemma 1 to hold. (BY) ~ and (NY)! = (N°) . However, in general, the statement is

) c incorrect. The correct expression fof is v = A’u whereA® is as given
It is easy to construct examples whefedoes not includd? by (7).



Proof: The system of equations of (6) is equivalent taController i chooses its action according to stratefgfy =
a matrix equation of the form (hY,....hY),

Bi] . [3] . Ui = hi(l).

Pv' = b,where P = [Ni N (8) The objective is to select controller strategies that miném

The general solution of (8) is® = Pfb + (I — PTP)y for J(h',... h")

arbitraryy [13]. By settingy = 0, we havev' = PTb. m ) T
An example of a system satisfying Assumption 1 is a two- = E" »" Z(MXt + NU)T(MX:+ NU;)| (13)
controller LQG problem where the dynamics and the cost t=1

are functions only of the sum of the control actions, that isyhere the expectation is with respect to the joint probabil-
(u; + u?). This happens ifB' = B> and N' = N?. In this ity distribution on (Xy.7, Uy.r) induced by the choice of
case, using; = v; = u; +u; satisfies (6), which meansthatp! ... pn,
controller 1 can substitute for controller 2 and vice versa. ]
D. Main results

B. Information Structure In this section, we will show that we can construct optimal

We assume that the state vectlif consists ofn sub- strategies in Problem 1 from the optimal control strategies
vectors, that isX; = vedX} X?,...,X"). X{ can be of the centralized problem (Problem 2). We start with the

interpreted as the state of thith sub-system. We assume afollowing observations.

local state feedback with perfect recall information stive, Lemma 3: 1) The optimal cost in Problem 2 (with
that is, the information available to controlleat timet is: centralized information structure) is a lower bound
_ . . on the optimal cost in Problem 1 (with decentralized
If = {X1.4, Ufs 1} i=12,...,n 9) information structure).

2) The optimal strategies in Problem 2 are linear func-

Controlleri chooses actio®/} as a function of the informa- : :
tions of the state, that is, the control vecttf =

tion available to it. Specifically, foi = 1,...,n,

vedU}, ..., Ul is given as
U, = g,(1}), t=1,...,T. (10) UtZKtXt:[Ktl-.-KZL]Xt
The collectiong’ = (gt, ..., g%) is called the control strategy =KX} +.. .+ K'X]". (14)
of controlleri. The performance of the control strategigs ) . . ) P
&,...,g" is measured by the expected cost gécf the centralized gain matrix anfl} is its ith
VAU We can now state our main result for the state feedback
T case.
— Ry e" (MX, + NU)T(MX, + NU,) (11) Theorem 1:The optimal control strategies in Problem 1
t=1 are given as

where the expectation is with respect to the joint probabil- i = |/(KiX}) = AKX}, i=1,2,...,n, (15)
ity distribution on (Xy.7,Uy.7) induced by the choice of

gl gm where A? is given by (7) andK; is the ith block of

the centralized gain matrix in (14). Moreover, the optimal
C. Optimal Strategies strategies in Problem 1 achieve the same cost as the optimal

The optimization problem is defined as follows. strategies in _Prc?blgm 2. o

Problem 1: For the model described in section IlI-A and Proof Outllne_. Firstly, observe _that the strategles given
III-B, find control strategieg!, . .., g" for the n controllers by (15) are valid control strategies under the information
that ,minimize the expected éost ’given by (11) structure of Problem 1. The optimal control vectgrunder

Remark 1:Since we have not imposed any constraint{€ centralized strategy is a superposition of terms of the
on the matricesdA and B in system dynamics, Problem 1 orm K;X;. Note that th_e termk; X; consists ofn .S'Ub'
may not have partially nested information structure. Thué/,ectors (one corresponding to each controller's action).

we cannot guarantee, at this point, the optimality of linear K
control strategies for this problem. o K? _
. . . . 1 1 1
In addition to the decentralized information structure de- K Xy=| . | X¢.

scribed above, we will also consider the centralized infiorm
tion structure where all controllers have access to theeenti
state and action history. Such a control vector cannot be implemented in the de-
Problem 2: For the model described in section IlI-A, centralized information structure since it requires eaah-c
assume that the information available to each controller istroller to have access td{;. We now exploit the open
- loop substitutability of the problem to state that the vecto
Iy = { X1, Urie—a }- (2)  veqo,...,li(KiX}),...,0) will have the same effect as

mn
Kt



K}X}. This allows us to construct a decentralized strateg@ontrolleri chooses its action according to strategy =
with the same performance as the centralized one. We(I;). The objective is to select control strategies that
provide a detailed proof for the more general case of thainimize (13).

output feedback problem in the next section.

The following lemma follows directly from the problem

We can also derive the following corollary of Theorem 1descriptions above and well-known results for the cerzieali
Corollary 1: For the model described in section IlI-A, LQG problem with output feedback [14].

consider any information structure under which the infor- Lemma 4:

mation of controlleri at timet, I?, satisfies
{X{} C I} € { X1, U},

foralli =1,...,n andt = 1,...,T. Then, the optimal
strategies in this information structure are the same as in
Theorem 1.

Corollary 1 identifies memoryless local state feedback as
the minimal information structure that achieves the optima
centralized cost. In other words, it describes the minimal
communication and memory requirements for controllers to
achieve the optimal centralized cost.

2)

IV. LQG PROBLEM WITH OUTPUT FEEDBACK
A. System Model

We consider the system model described in section IlI-A
and assume that each controller makes a noisy observation
of the system state given as

Y =C' X, + V, i=1,...,n. (16)
Combining (16) for all controllers gives:
Cl
02
Y, = Xy + V4, a7
Cn

where Y; denotesvedY,',Y?,...,Y") and V; denotes
vedV,, V2 ..., V/*). The initial state X; and the noise
variablesW;,t = 1,..., 7 -1, and V;,t = 1,...,T — 1,

are mutually independent and jointly Gaussian with the
following probability distributions:

Xy ~N(0,%,), Wy~N(0,2,), Vi~N(0,%,).
The information available to théh controller at timet is:
IZ {Yli:ta Uli:tfl} (18)

Each controlleri, chooses its actiod; according toU;

1=1,...,n.

1) The optimal cost in Problem 4 (with
centralized information structure) is a lower bound
on the optimal cost in Problem 3 (with decentralized
information structure).

The optimal strategies in Problem 4 have the form
of U, = K,Z, where Z, = E(X,|I;). Z, evolves
according to the following equations:

Z1 =L
Ziy1 = I — Li11C)(AZy + BU) + Ly y1Yiqa.
(20)

We defineX;, = E[(X, — Z,)(X, — Z,)7|I;] which
satisfies the following update equations:
Y =1 - LC)%,

Sei1 = (I — Lyt O)(ASAT +5,). (21)

The matricesL, ..
forward recursion:

., L7 in (20) and (21) satisfy the

L =X,0T[CE.CT + 5,71
Ly =

(AS AT + 8,)CT[C(AZ AT + 5,)CT +5,] 7L
(22)

B. Main results

In this section, we show that it is possible to construct
optimal strategies in Problem 3 from the optimal control
strategy of Problem 4.

Theorem 2:Consider Problems 3 and 4, and consider the
optimal strategyl/; = K;Z;, of Problem 4, where; and
Z are as defined in Lemma 4. We wrifg ., of Lemma 4
asLiyy = [Liy Ly
strategies of Problem 3 can be written as

L7, ,]. The optimal control

Ul = NK,S! (23)

whereA® is given by (7) andb; satisfies the following update

gi(I}) and the performance of the control strategies of agquations:

controllers, ¢, ..., g"), is measured by (11).

The optimization problem is defined as follows.

Problem 3: For the model described above, find control
strategiegy!, . .., g” for the n controllers that minimize the
expected cost given by (11).

In addition to the decentralized information structure de-
scribed above, we will also consider the centralized inform
tion structure and the corresponding strategy optimigatio

Problem 4: For the model described above, assume thd
the information available to each controller is

Si =LY}
Stp1 = (I = Lin1C)(AS} + B'U}) + Ly Yy

(24)

Moreover, the optimal strategies in Problem 3 achieve the
same cost as the optimal strategies in Problem 4.

Observe that the strategies given by (23) and (24) are
@Iid control strategies under the information structufe o
Problem 3 because they depend onlygy, Ui.,_; which

are included inZ}. The statesS; defined in (24) are related

I = {Yi4,Urt—1}. (19)

to the centralized estimatg, by the following result.



Lemma 5:The centralized state estimafe and the states and VT(z, st s?) forr = T,T —1,...,1, are defined as

S¢ defined in (24) satisfy the following equation: follows:
no V,.(z) =
Zi=> S} (25) T
i=1 — —
Proof: We prove the result by induction. For= 1, E{Z(MXt + NU)T(MX; + NU)|Z, = 2,U, = Krz},
from (20), we haveZ; = L1Y; and according to (24), = (31)
Zsi LY L LYP 44 LYP = LYh. (26) whereUt is given by (29) for allt, and
' V. (z,s',8%) =
. T
Now assume thaZ, = " ;S;. We need to show that T S B
Zip1 =Y, Si.,. From (20), it follows that E{;(MXt +NU)T(MX;+ NU)|Z, = 2,5} = s',
Zyy1 = (I — Liy1C)AZ, + BU) + Ly Y. (7)) S? =52 U = A'K,s', U? = A’K,s*|, (32)
From (24), we have wherel, is given by (30) for alk. The functionV,.(z, s, s?)

" in (32) is defined only forz = s' + s2; V,(z,s',s?) is
Z St = Z (I = LyaC)(AS! + B'UY) + Li,,Y7,,]  undefined forz st + s2.

=1 We will show that for r = 1,..T, V() =
n. n. n_ _ V,(z, s, s)stseRdmsuchthatz—s + 5% We
=(I- Lt+10)(AZSZ + ZBlUZ) + ZLiHYZ—H] follow a backward induction argument. For= T, we have,
=1 =1 =1
= (I = Lis1C)(AZ, + BU) + Lyis1Yiy1. (28) Vr(2) = B[(MXy + NUr)TY(MXy + NU7)| Zr = 2,
UT = KTZ] (33)
Therefore,Z, 11 = 31" | Sty [ ] Vo (2,5, 57) =
Remark 2:For the case of state feedback, it can be easily L L
shown thatS! = ved0, ..., X},...,0). E[(MX7 + NUp)" (M Xy + NUr)|Zp = 2,57 = s,
The following result is an immediate consequence of 57 = s*,Ur = A'Krps', Uz = A*Kps?). (34)

Theorem 2.

Corollary 2: For the model described in section IV-A,
consider any information structure under which the infor;
mation of controlleri at timet, I?, satisfies

Since the only difference between (33) and (34) is with
respect to their different control strategies, it suffieceshow
that the termNUr is the same under these two control

strategies.
Yi, U ciic{y U 7 Under control astlomT = K7z,we haveNur = NKrz.
R e e Under control actionsit. = A'Kpst u2 = A2Krs?, we
forall i = 1,...,n and¢t = 1,...,T. Then, the optimal have
strategies in this information structure are the same as in

Nur = [Nl N2] ur = N'ujp + N?u?

Theorem 2.
= N'A'Kps' + N?2A2Kps? (35)

C. Proof of Theorem 2 From the substitutability assumption (Assumption 1) and
For notational conveniences, we will describe the prodiemma 2, for any vectow, Nu = N''(u) = N°'A'u.
for n = 2. If Uy = K7, is the optimal control strategy of Therefore,

Problem 4, then from Lemma 5, we have: N'A'Kps! = NKps',

Uy = K1 Z; = K,(S} + 52) (29) N?A’Krs® = NKrs®. (36)
We claim that the decentralized control strategies defined (35) ¢an now be written as,
Theorem 2, that is N'A'Kps' + N2A2Kps® = N(KT51 i KTSQ) — NKyz
U} A'K,S} (37)
Ui = U? - A’K,S?|’ (30) where the last equality is true because s'+s2. Therefore,

Vr(z) = Vr(zs',s?) Vz,s',52 € R% such thatz =
yield the same expected cost as the optimal centralized + s2.
control strategied/; = K, Z;. Now, assume that  Viii(2) =

To establish the above claim, we define cost-to-go fuch,ﬁtl(z st s2) Vz, 8!, 52 € Rd= such that: = s +52 We
tions under the optimal centralized strategy and the gfiede need to show thaVk( ) = Vi(z,s!,s2) Vz,s', 52 € Ro
defined in Theorem 2. These functions, denotedWhy(z)  with z = s! + s2. For this, note that one can use dynamic



programming arguments to write the cost-to-go functiongt2) can now be written as
V. and V, in terms of instantaneous cost and the next

stage cost-to-go functions: E[Vii1 ((I — Ly410)(Az + BKys' + BEys®)+
1 2

Vi(2) =E[(MX, + NU)T(MX, + NU)| Zy, = 2,Uj, = Ly41(CAXy + CBKys' + CBKs® + CWy, + Vk+1))|
K12l + E[Vis1(Zies1)| 21 = 2, Uy, = Ky 2], (38) Zk==z_S, =55 =5 U} =NKys",
and U2 = A2Ks?] = E[Vi ((Az + BKj2)+

L, L1 CA(Xy, — 2) + L1 (CWy + Vkﬂ)) Zy = 2]. (44)
Vi(z,s7,8%) =

E[(MX; + NU)T(MX; + NU)|Zy = 2,5} = s*, (44) is the same as (40). Thereforer( ) =
§2 = 2, Ul = A Kust, U2 = A2K ), s2] Vi(z,s',s%) Vz,s', s> € R% such that: = s' + s2.

. L 0 1 - 5 Now, the expected cost under the centralized control

+ E[Vit1(Zkt1, Spq1, Sir )| 2k = 2,8, = 57, 5 = 57, strategy,U; = K, Z;, can be written as,

Ul = M Kys', U = A Ky.s). (39)

Z (X1, K1 Zy)

The first expectation on the right hand side of (38) can be —

shown to be equal to the first expectation on the right hand
side of (39) by repeating the arguments used at fimgsing
Lemma 4, the second expectation on the right hand side of
(38) can be written as,

T
B> e(Xi KiZo)| 21, Us = Ka 21

= E[Vi(Z1)], (45)
E[Viit1(Zk1)|Zk = 2, Up = Ky2| while the expected cost under the decentralized strategies
_ E[Vk+1((f — Ly O)(AZy + BU)+ Theorem 2 can be written as
Ly (CX V; Zy=2Uy =K 3 ATK S}
k41 (C Xk + k+1))| k=2, U = Kz E ;c Xy, A2K, 52
= B[V ((I — L1 O)(A + BKy)z + Lisr (CAX )+ " ol
=B[E[Y ¢ X A Ko |21,51, 83,01 =
CBKyz+ CW, + Vkﬂ)) \Z = 2,Up, = K12 2 ' IA2K, 52 P10 Ul
= E[VkJrl ((A + BKk)Z + Lk+1CA(Xk - Z) AlKlsll, U12 = A2K1512H
¥ Lisr (CW + v,m)) \Zy = z]. (40) = E[Vi(Z1, 51, 57)] (46)

. . . BecauseV,(z) = Vi(z,s',s?) Vz,s!,s2 such thatz =
Furthermore, because of the induction hypothesis, thenseco + 2, (45) and (46) are equal, Thus, the decentralized

expectation on the right hand side of (39) can be written a%bntrol strategies of Theorem 2 achieve the same expected

E[Vii1(Zis, St S22k = 2, Sh =51, 82 = 2, cost as the optimal centralized strategies.
Ul = M Kys', U = A Ky5%] V. CONCLUDING REMARKS
= E[Vi1(Zi1)| 2k = 2,55 = s, 57 = &7, We considered a decentralized system with multiple con-
Ul = N'Kys', U2 = A’K,.5%). (41) trollers and defined a property called substitutability aEo
controller by another in open-loop strategies. For the LQG
(41) can be further written as problem, our results show that, under the substitutability
assumption, linear strategies are optimal and we provide a
E[Vii1 ((I — Ly 11C)(Az + B'U + BUR)+ complete state space characterization of optimal stedegi

Our results suggest that open-loop substitutability carkwo

1771 2772
Li+1(CAXy + OB U + CB Uy, + CWi + Vk+1))| as a counterpart of the information structure requirements

Zp =12, = 8,87 =52, Ul = A Kys', U = A*Kys?]. that enable simplification of decentralized control profde
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