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Network Entropy: A System-Theoretic Perspective

Mathias Hudoba de Badyn, Airlie Chapman, and Mehran Mesbahi

Abstract— In this paper, we highlight the importance of
two measures associated with networked dynamic systems,
namely the loop entropy and the Kolmogorov-Sinai entropy,
that quantify the notion of information content in the network.
We then proceed to show connections between these measures
and certain system theoretic properties that these networks
exhibit for two classes of network dynamics. Throughout the
paper, we also provide relevant bounds and insights into what
these network measures quantify.

I. INTRODUCTION

Networked dynamic systems are ubiquitous in many ar-
eas of engineering, and one can argue that they are of
paramount importance for understanding complex phenom-
ena in a wide range of disciplines including sociology (social
networks [1]), physics (quantum networks [2], [3]), and
biology (gene networks [4]).

As such, there has been a surge of research activities in
distinct scientific areas with two fundamental questions at
their core. Firstly, what is the role of the network and its
structure in characterizing the behavior that these networked
systems exhibit? Secondly, to what extent can this structure
be used for the purpose of control?

Furthermore, it is desired to provide such a characteriza-
tion with an eye towards large networks. Some of the such
open problems are: to what extent can these characterizations
be done efficiently as the number of nodes and edges
in the network grow? Do the computational requirements
corresponding to this characterization depend on the local
network structure? Does the study of system measures lead
to a conceptual framework to examine dynamic networks and
their system theoretic properties [5]?

In this paper, we highlight the importance of two measures
associated with the network that we believe have not been
examined more thoroughly in the context of their system
theoretic significance. These measures quantify a notion of
“information content” in the network- and as such, they
are referred to as the loop entropy and the Kolmogorov-
Sinai (KS) entropy. Both measures have been extensively
employed in the physics literature-however, we believe they
should be more systematically studied in the networked
dynamic systems due to their inherent connections with basic
system theory of networks; a related work in this direction
include that of Siami and Motee [6].
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The contribution of the paper is twofold. First, we examine
the connection between loop entropy and noise propagation
properties of networks. The loop entropy is defined sepa-
rately for both the structure of the network, as well as for how
the dynamics respond to a noise input. We show in Section III
that these entropies are the same for the consensus dynamics.
Secondly, we consider the KS entropy in Section IV in the
context of networks evolving via their adjacency matrix.
Some examples of entropies are given in Section V.

II. NETWORK MODEL

In this section, we provide the necessary background on
the underlying model that will be considered in this paper.

A. Mathematical Notation and Graph Theory

The identity matrix is defined as I and ei is the column
vector with all zeros except a 1 in the ith position. A
symmetric matrix A is positive semi definite if for all v ∈ Rn,
vTAv ≥ 0. The positive semi-definite ordering is defined on
two symmetric matrices A,B such that A � B if A − B
is positive semi-definite. The matrix A{n−1} is a matrix
constructed from A by removing the first row and column.

The fundamental algebraic structure that represents a
network is the graph G(V,E,W ) with a vertex set V of
cardinality |V | = n, an edge set E of cardinality |E| = m,
and a set of weights W on the edges. The edge set consists
of pairs of vertices i and j that are called adjacent if {i, j} ∈
E ⊆ V 2, and this edge has weight wij ∈WG . The number of
adjacent nodes to node i is called the degree, and is denoted
by di. The degree matrix is denoted as ∆ = Diag(di). The
weights define an m × m weight matrix WG with the lth
edge {i, j} having weight wij on the diagonal entry (WG)ll.
The adjacency matrix A is defined such that aij has weight
wij if there is an edge {i, j} and 0 otherwise. The graph
Laplacian LG is given by ∆−A.

The graph is said to be connected if there exists a
path of edges from every node to every other node. The
graph Laplacian is a positive semi-definite matrix, and the
multiplicity of the zero eigenvalue denotes the number of
connected components of the graph. The eigenvalues of the
Laplacian are ordered such that 0 = λ1 ≤ · · · ≤ λn.
Similary, we order the eigenvalues of the adjacency matrix
such that µ1 ≤ · · · ≤ µn.

B. Network Models

In this paper, we consider we consider four models. The
first is the controlled consensus dynamics [7]:

ẋ = −LGx(t) +Bu(t) +Gω(t), (1)



where ω(t) is a zero-mean Gaussian random vector depicting
a random disturbance to the network, x(t) is the states of
the nodes of the network, and u(t) is the control input. For
compactness of presentation, the time t indication on the
states will be henceforth removed.

The single integrator leader-follower dynamics can be
interpreted as a leader agent xl which provides an input
signal to the set of follower agents xf via their adjacent
edges. This allows the graph Laplacian to be partitioned into
two sub-Laplacians for the leaders and followers:

LG =

[
a −BTG
−BG AG

]
(2)

with a perturbation matrix BG encoding the connections
between the leader and the followers:

ẋf = −AGxf +BGu+Gω. (3)

Here we take G = I .1 The matrix AG is known as the
Dirichlet matrix, or grounded Laplacian [8], [9]. It has the
property of being strictly positive definite when the graph
is connected, and hence is invertible unlike the original
Laplacian LG .

Similarly, we can define the double integrator dynamics
as,[
ẋf
ẍf

]
=

[
0 I
−AG −AG

] [
xf
ẋf

]
+

[
0
BG

]
u+

[
0
G

]
ω

: = −ĀG
[
xf
ẋf

]
+ B̄Gu+ Ḡω (4)

The controlled adjacency dynamics are given by

ẋ = Ax+Bu. (5)

There has been a large body of work centered around
finding connections between network structure and the sys-
tem properties of the corresponding networked system. For
example, it has been shown that symmetry structures in
the graph topology undermine the controllability of the
network [10]. Various notions of robustness measures have
been introduced in an effort to describe the performance
of networks, such as the convergence time τ = 1/λ2, and
the utility of these measures often depends on the network
topology [7], [5].

One quantity that captures system behavior with relation
to system topology in other fields of science is that of
entropy. Fundamentally, entropy is a measure that captures
the randomness or disorder of a system. For example, a
polymer can be modeled as a vector random walk where each
iteration of the walk adds a monomer of some small length
from tip-to-tail of the previous iteration [11]. If the polymer
is extremely straight, its ‘disorder’ is very low and hence
the entropy is small. On the other hand, a very disordered or
loopy polymer has high entropy. The entropy of a polymer
has a direct analytical effect on the dynamics of how the

1This can be done without loss of generality since if G is non-identity,
the effect of multiplying it with ω can be propagated into the covariance of
the noise of ω.

polymer behaves and evolves in a fluid at some temperature.
In this paper, we explore two notions of entropy defined for a
network, and show that for the leader-follower dynamics we
can indeed link the topological disorder to control-theoretic
properties of the network.

III. LOOP ENTROPY AND SPANNING TREES

In this section, we define the standard notion for the
entropy of a network. Using a well-known result by Kirchoff,
we show that this notion of entropy is related to the number
of spanning trees in the graph representing the Laplacian.
Although a similar line of inquiry has been pursued in [6]
(for a different notion of entropy) and [7], there are several
interpretations of this result with respect to leader-follower
dynamics that have not been explored in the literature.

Definition 1: The entropy of a network G is given by the
sum SG =

∑n
i=2 log λi.

The non-zero eigenvalues of LG are related to those of a
submatrix L

{n−1}
G of LG . For clarity, we will refrain from

connecting L
{n−1}
G to AG as seen in the partition in (2)

until we complete the exposition of the properties of SG .
We will make this connection at the end of the section.
The matrix L{n−1}G is constructed by removing an arbitrary
ith row and column of LG . The eigenvalues of L{n−1}G are
strictly positive, and satisfy:

1

n
λ2(LG) · · ·λn(LG) = detL

{n−1}
G (6)

= λ1(L
{n−1}
G ) · · ·λn−1(L

{n−1}
G ).

It is important to note that the eigenvalues of L{n−1}G are
all positive because it is a Dirichlet matrix (or grounded
Laplacian) of LG . It should now be clear that

SG =
∑n
i=2 log λi(LG) =

∑n−1
i=1 log λi(L

{n−1}
G ) + log n.

We can connect this definition to a well-known result by
Kirchoff. First, recall that a tree is a connected undirected
graph with no cycles. Furthermore, a spanning tree of a graph
G is a tree containing every vertex of G. Let τ(G) denote
the number of unique spanning trees of G. A well-known
result by Kirchoff states that the detL

{n−1}
G = τ(G). The

following observation is thus immediate.
Theorem 2: Let LG be the unweighted network Laplacian

for the consensus dynamics. The network entropy is given
by SG = log (nτ(G)).
Theorem 2 motivates a new paradigm in terms of interpret-
ing the entropy measure of a networked system. We can
now begin to view the entropy as being a fundamentally
topological quantity. This formulation of entropy also has
a very elegant analogy to Boltzmann entropy in statistical
physics. Boltzmann defined the entropy of a physical system,
say a gas, to be S = kb logWs where Ws is the number of
microstates of the physical system and kb is a constant [12].
The formula given in Theorem 2 is the number of possible
paths a signal can take to propagate throughout the network.
In this sense, we have a notion of systemic ‘disorder’
that captures the idea of enumerating possible states of the



system, where in our case the quantity evolving the system
is the control signal.

The system-theoretic interpretation motivating the exam-
ination of the determinant of the submatrix L

{n−1}
G in the

entropy formula is the following. We take our system and
designate a single node as the leader, and the rest of the nodes
as followers. If we enumerate the leader node to correspond
to the first vertex, then our Laplacian matrix is partitioned
exactly according to:

LG =

[
a δT

δ L
{n−1}
G

]
where AG = L

{n−1}
G in the dynamics (3), and the formula

of entropy is SG = log detAG . In the next section, we will
motivate another graph-centric notion of this entropy, and
then discuss how these notions relate to graph controllability.

A. Counting Loops
In this section, we describe a method of associating the

notion of entropy to a notion of loops in the network. We do
this indirectly: we identify the Dirichlet matrix of a network
Laplacian to a non-unique flow graph. For the purposes in
this paper, we can consider a flow graph to be a directed
graph with self-loops on each node. From this flow graph,
the usual notion of the Coates Determinant is then examined;
we will see that this will depend on the number of loops in
the flow graph. This will shed light on a relation between
the number of loops in the flow graph and the the number
of spanning trees.

Definition 3: A connection C of a flow graph G is a
subgraph of G with the following properties:

1) Each node of C is in G
2) Each node of C has a single edge originating from it

and terminating at it.
Definition 4: A directed loop of G is a subgraph of G

whose edges b1, . . . , bl can be ordered such that
1) The tip of bk is the origin of bk+1, for k = 1, . . . , l−1
2) The origin of b1 is the tip of bl.
3) Each node tip along the loop is encountered only once.

A fundamental result by Coates allows us to compute the
determinant of L{n−1}G using a digraphic interpretation of
this Dirichlet matrix. We can construct the flow graph
corresponding to L

{n−1}
G as follows: Take each diagonal

element (L
{n−1}
G )ii and identify it to a self-loop on the ith

node with weight (L
{n−1}
G )ii. Then, each node i is connected

to node j in one direction with weight (L
{n−1}
G )ij and in the

other direction with weight (L
{n−1}
G )ji.

Lemma 5 (Coates Determinant): Let G{n−1} be the flow
graph associated with the Dirichlet matrix L

{n−1}
G . Let the

subscript ρ denote a connection of the flow graph G. Then,
let the total gain C(G)ρ of the connection ρ be the product of
all the edge weights (L

{n−1}
G )ij in the connection ρ. Finally,

let Lρ be the number of directed loops in the connection ρ.
Then, the determinant of L{n−1}G is given by:

detL
{n−1}
G = ∆c = (−1)n−1

(∑
ρ(−1)LρC(G{n−1})ρ

)
,

Fig. 1. The two flow graphs of the transfer function of a 4-cycle controlled
from a single node.

where the sum is taken over all connections ρ.
Proof: A proof of this lemma is given in [13].

This determinant formula is interesting because it depends on
the number of directed loops in the flow graph - a topological
feature.

Theorem 6: Let LG be the Laplacian for the consensus
dynamics; let G{n−1} be the flow graph associated with the
Dirichlet matrix L{n−1}G . Then,

SG = − log
[
(−1)n

∑
ρ(−1)LρC(G{n−1})ρ

]
. (7)

An application of the Coates determinant formula is for
computing the transfer function of the controlled consensus
dynamics (1). Assuming the system output is given as y =
BTG x, the transfer function for the network assumes the form,

T (s) =

∣∣∣∣ sI + LG −B
BT 0

∣∣∣∣ /|sI + LG |. (8)

To use the Coates determinant formula, we must create two
flow graphs corresponding to the numerator and denominator
of H(s). The flow graph of the denominator will have self-
loops at each ith node with gain s + LG ii, and each edge
{i, j} of LG will be replaced by a digon (pair of directed
edges pointing in opposite directions) with gains LG ij . The
numerator will have an additional node for each column of
B (corresponding to separate input channels) connected with
a digon to each leader node with gains ±1. An example is
shown in Figure 1, where a 4-cycle is controlled,2 with B =
[1, 0, 0, 0]T . The center and right flow graphs correspond
to the denominator and numerator in (8), respectively. The
Coates formula provides the coefficients of the polynomials
in the transfer function, which in this case is

T (s) =
4 + 10s+ 6s2 + s3

16s+ 20s2 + 8s3 + s4
=

(2 + s)(2 + 4s+ s2)

s(2 + s)2(4 + s)
.

B. Loop Entropy and Network Gramians

In this section, we highlight a result that connects the
loop entropy to controllability properties of the consensus
dynamics. Recalling the previous discussion highlighting the
two interpretations of the loop entropy submatrix L

{n−1}
G ,

without loss of generality let us assume that the loop entropy
takes the form SG = log detAG =

∑n
i=1 log λi(AG).

Definition 7 (Controllability Gramian): Consider the full
single integrator consensus dynamics driven by white noise.
Then, the controllability Gramian is the unique positive
semi-definite matrix Σ satisfying

−AGΣ− ΣAGT = −GGT . (9)

2This system is uncontrollable to illustrate the pole-zero cancellation.



The controllability Gramian describes the mapping from
inputs to steady state behavior of the internal states. In the
meantime, it turns out that there is an intimate relationship
between the controllability Gramian and the loop entropy of
the system.

Theorem 8 (Controllability Gramian and Loop Entropy):
Let AG be the Dirichlet matrix of LG in the full single
integrator dynamics (3), let Σ be its controllability Gramian,
and let G = I . Then, the loop entropy is given by
SG = − log (2n det Σ).

Proof: Since AG is positive definite, the controllability
Gramian satisfies (9), and hence is given by Σ = 1

2AG
−1

and so (2n det Σ)
−1

= detAG . Taking the logarithm of both
sides yields the result.

Theorem 9 (Loop Entropy for the Double Integrator):
Let ĀG be the dynamics matrix from the full double
integrator dynamics (4):

ĀG =

[
0 −I
AG AG

]
. (10)

Next, let Σ̄ be the controllability Gramian satisfying

−ĀGΣ̄− Σ̄ĀTG = −ḠḠT , (11)

where Ḡ = [0, I]T (4). Then, the loop entropy satisfies
SG = log

(
2−2n det Σ̄−1

)
.

Proof: The controllability Gramian for the double
integrator dynamics is

Σ̄ =
1

2

[
I 0
0 AG−1

]
, (12)

and a similar computation as from the previous proof yields
the result that SG =

(
2−2n det Σ̄−1

)
.

The log determinant of the covariance matrix is proportional
to the volume of the controllability ellipsoid. Recall that
one interpretation of the controllability Gramian Σ is that
it is the steady state covariance of x(t) when the consensus
dynamics is driven by white noise. Hence, when the steady
state covariance of the state is small, the entropy is large, and
vice versa. In this sense, a more disordered network is more
robust to noise. Recalling our result linking the entropy to the
number of spanning trees, a high entropy also corresponds
to a large number of spanning trees, or a large number of
possible paths noise can take as it propagates throughout the
network.

Intuitively, one can think of the leader-node symmetries,
described by Rahmani et. al [10], as being noise amplifiers,
while disorder and large numbers of spanning trees act to
dampen noise. Hence, when designing network topologies,
it is beneficial to add edges between nodes such that entropy
is maximized. In Section V, we illustrate this with some
examples.

Next, we will discuss solutions to the Lyapunov equation
when G 6= I . Choose G to be

∑
i∈S eie

T
i for some set of

indices S corresponding to follower nodes. To do this, we
define the covariance entropy.

Definition 10 (Covariance Entropy): Let (−L{n−1}G , G)
be as before, and a controllable pair. Denote

ΣS to be the solution of the Lyapunov equation
−L{n−1}G ΣS − ΣSL

{n−1}
G = −GGT . Define the covariance

entropy to be MS = log 2n det Σ−1S .
Clearly, when G = I , the covariance entropy is equal to the
loop entropy. For a certain class of networks, the covariance
entropy has a natural ordering property.

Theorem 11 (Covariance Entropy Ordering): Construct
L
{n−1}
G as before, but with the stipulation that (−L{n−1}G , G)

be controllable for any G =
∑
i∈S eie

T
i with indices S

corresponding to follower nodes. Let MS and MS∪{k}
denote the covariance entropies with input edge sets S and
S ∪ {k}, respectively. Then, MS ≥ MS∪{k}. In particular,
the loop entropy minimizes the covariance entropy.

Proof: As before, choose G to be
∑
i∈S eie

T
i for some

set of indices S. Since −L{n−1}G is stable, it follows that the
solution to the Lyapunov equation

−L{n−1}G Σ{i} − Σ{i}L
{n−1}
G = −GGT (13)

is given by Σ{i} =
∫∞
0
e−tL

{n−1}
G eie

T
i eie

T
i e
−tL{n−1}

G dt and
is positive semi-definite and so ΣS∪{k} − ΣS = Σ{k} is
positive semi-definite. It follows that ΣS∪{k} � ΣS . Lastly,
since the system is controllable, log 2nΣ−1S � log 2nΣ−1S∪{k}.

IV. KOLMOGOROV-SINAI ENTROPY

In this section, we examine the Kolmogorov-Sinai entropy
that is related to the adjacency matrix spectrum. We will
also compute this entropy for a variety of simple graphs,
which will elucidate the topological features it capture. Using
results from [14], we will derive bounds on the value of this
entropy and show that the bound is sharp for both regular and
highly-irregular graphs. At the end of this section, we will
show the relation between the Kolmogorov-Sinai entropy and
the stability of adjacency driven networks.

The Kolmogorov-Sinai entropy is a generalization of
information-theoretic notion of the Shannon entropy on a
network [15]. It characterizes the rate at which information
is generated by the network. In the context of a network,
information corresponds to a sequence of nodes visited by
some Markov process on the network. The Kolmogorov-
Sinai entropy is invariant under transformations that preserve
the frequencies with which the network generates time-
ordered sequences of nodes.

The stochastic process defining the information source is
given by a Markov matrix M satisfying the properties

pij ≥ 0,
∑
j pij = 1, and π = πP (14)

where π is the chain’s stationary distribution. Consider the set
of stochastic matrices MA, where A is the adjacency matrix
of the network graph, that have the property aij = 0 if and
only if pij = 0. Let µn be the dominant eigenvalue of A with
eigenvector v. Let MA be a family of stochastic matrices
with the property that pij = 0 if and only if aij = 0 in the
network adjacency matrix. The Kolmogorov-Sinai Entropy
defined presently is a measure that satisfies a variational



principle analogous to that of the Gibbs principle in statistical
mechanics [16]:

logµn = sup
P∈MA

[
−
∑
ij πipij log pij +

∑
ij πipij log aij

]
.

The supremum over all admissible stochastic matrices is
given by the unique matrix P satisfying p∗ij =

aijvj
µnvi

, and
hence we have

logµn = −
∑
ij πip

∗
ij log p∗ij +

∑
ij πip

∗
ij log aij . (15)

By convention, 0 log 0 = 0. If the adjacency matrix is
unweighted, in the sense that aij = 1 if there is an edge
at {i, j} and aij = 0 otherwise, then the term on the right
hand side of (15) is zero. The term remaining is called the
dynamical entropy of the Markov process, and is given by

HP = −
∑N
i=1 πi

∑
j p
∗
ij log p∗ij . (16)

The Kolmogorov-Sinai Entropy is defined as follows [15]:
Definition 12 (Kolmogorov-Sinai Entropy): The

Kolmogorov-Sinai Entropy of a weighted adjacency
matrix A is defined by

H = logµn −
∑
ij πip

∗
ij log aij , (17)

where p∗ij =
aijvj
µnvi

.
For an unweighted graph, the right-hand side vanishes:

H = logµn. (18)
In the next part of this section, we will give some bounds

on the value of the KS entropy. For the remainder of the
paper, we will assume unweighted adjacency matrices, and
hence the KS-entropy is given by H = logµn.

A. Bounds on the Kolmogorov-Sinai Entropy

The Kolmogorov-Sinai entropy is difficult to compute
in closed form for an arbitrary graph. Using results by
Nikiforov [14], we can compute upper bounds on the
Kolmogorov-Sinai entropy which is given in terms of topo-
logical quantities such as edge count and minimum degree.
We can now recall the two theorems by Nikiforov.

Definition 13 (Kp+1-Free Graphs): The G is called p+1-
free if it does not contain a complete subgraph on p + 1
vertices.

Theorem 14 (Edge Bound): Let G be p+1-free. Then, the
largest eigenvalue µn of the adjacency matrix of G satisfies
µn ≤

√
2p−1p |E|.

Theorem 15 (Minimal Degree Bound): Let G be p + 1-
free with minimal degree δ. Then, the largest eigenvalue µn
of the adjacency matrix of G satisfies

µn ≤
δ − 1

2
+

√
2|E| − nδ +

(δ + 1)2

4
. (19)

By the definition of the Kolmogorov-Sinai entropy, we
immediately have the following theorem:

Theorem 16 (Bounds on KS-Entropy): Let G be p+1-free
with minimal degree δ. Then, the Kolmogorov-Sinai entropy

satisfies the two inequalities:

H ≤ 1

2
log
[
2
p− 1

p
|E|
]

(20)

H ≤ log
[δ − 1

2
+

√
2|E| − nδ +

(δ + 1)2

4

]
. (21)

Equation (21) is in fact tight for regular graphs, and also
highly irregular graphs in the sense of maximizing the degree
variance. For example, let n ≥ k, and let Hn,k be the n-
node complement of the complete graph on n − k nodes
Kn−k. Then, the maximal adjacency eigenvalue of Hn,k is

µn(Hn,k) = k−1
2 +

√
(k−1)2

4 + k(n− k).

Now note that δ = k and 2|E| = kn− k2 − k and so we
get equality in (21). A result by Bell [17] states that Hn,k

maximizes the degree variance over all n-vertex graphs with
the same edge count as Hn,k, where the degree variance
is given by V = 1

n

∑n
i=1

(
di − 2 |E|n

)2
. Hence graphs that

maximize the KS-entropy include the regular graphs and
the highly irregular graphs (namely the ones that maximize
the degree variance over graphs with fixed vertex and edge
counts).

A lower bound on the maximum eigenvalue follows from
the Perron-Frobenius theorem. Let 〈d〉 denote the average
degree of the graph and let dmax denote its largest degree.
Then, the following inequality holds [18], [19]:

max{〈d〉,
√
dmax} ≤ µn ≤ dmax. (22)

Hence, we can bound the entropy by

max{log〈d〉, 0.5 log dmax} ≤ H ≤ log dmax. (23)

Therefore increasing the average degree (say, by adding
edges to every vertex) or increasing the maximum degree
(adding many edges to a single vertex) will drive the entropy
to increase from below.

B. Kolmogorov-Sinai Entropy of Adjacency-driven Networks

The system-theoretic interpretation of the Kolmogorov-
Sinai entropy relates to the adjacency dynamics (5). Consider
the dynamics where each node is driven by its neighbors as
ẋi =

∑
{i,j}∈E xj on a connected network. In the matrix

form, this is exactly the adjacency dynamics: ẋ = Ax.
Since TrA = 0 this dynamics is unstable as some eigenval-

ues are nonnegative. One way of stabilizing the system is to
add a self-loop with positive weights to each node that drives
the system to stability, as show in Figure 2. This corresponds
to the dynamics ẋi =

∑
{i,j}∈E xj − δxi, which in matrix

form is ẋ = (A− δI)x. This is equivalent to taking B = I
in the controlled adjacency dynamics (5) in with a feedback
gain of u = −δx. The minimum value that δ has to take in
order to drive the system to stability is precisely the largest
eigenvalue of A. Hence, the system is stable for any ε > 0
when ẋ = (A− (ε+ µn)I)x =

(
A− (ε+ eH)I

)
x.

V. EXAMPLES OF ENTROPIES FOR SIMPLE GRAPHS

In Table I, we show some examples of the loop entropy
for some simple graphs.



Fig. 2. Adding self-loops to stabilize the adjacency dynamics.

Fig. 3. Left: Adding a edge in a cycle increases entropy by adding spanning
trees. Middle: Adding an edge to a star graph adds two spanning trees.
Right: Creating a cycle out of a path adds n− 1 spanning trees.

In Figure 3, we show how adding edges increases the
entropy of some example graphs. A cycle of n nodes has
n spanning trees since removing any one of the n edges
creates a path on n nodes and hence a spanning tree. Turning
a path into a cycle greatly increases entropy as one goes
from one spanning tree to n spanning trees. Clearly, creating
larger cycles in a network increasing entropy. In the star
graph, connecting any two non-center nodes induces a 3-
cycle, which increases the number of spanning trees by two.
The star graph is already low-entropy, and it is hence robust
against edge perturbations in the sense that adding edges will
not significantly increase the number of spanning trees, say
compared to joining the ends of a path graph.

TABLE I
EXAMPLES OF LOOP ENTROPIES

Graph Spectrum of LG Entropy SG

Cycle
{
4 sin2

(
πk

2n

)}
2
∑n−1
k=1 log

[
2 sin

(
πk

2n

)]
Complete {n, 0} (n− 1) logn

Path
{
4 sin2

(
πk

4n

)} ∑n−1
k=1 log

[
2 sin

(
πk

4n

)]
Star {0, 1, n} logn

Assuming an unweighted graph, we can write the
Kolmogorov-Sinai entropy as H = logµn, where A is
the adjacency matrix of the graph. Using results from the
summary article by Brouwer et al. [20], we can write the
entropy of some graph families, as shown in Table II.

TABLE II
EXAMPLES OF KS ENTROPIES

Graph Spectrum of A Entropy H

Cycle
{
2 cos

(
2πj
n

)}
log 2

Complete {n− 1,−1} log(n− 1)

Path
{
2 cos

(
2πj
n+1

)}
log

[
2 cos

(
π

n+ 1

)]
Star {−

√
n− 1, 0,

√
n− 1} log

√
n− 1

Regular |µ(A)| ≤ k log k
Complete Bipartite {−

√
nm, 0,

√
nm} log

√
nm

VI. CONCLUSION

In this paper, we examined how two notions of network
entropy, namely loop entropy and Kolmogorov-Sinai entropy,
provide useful measures for noise propagation and stability
of networked systems. Along the way, we explored vari-
ous bounds on these measures in relation to the network
structure, and provided insights into what these measures
quantify. Our future works will extend this point of view
to evolving networks, and examine how various notions of
network entropy capture distinct facets of complex dynamics
that networked systems often exhibit.
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