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Abstract— Equilibrium stabilisation of nonlinear systems via
energy shaping is a well–established, robust, passivity–based
controller design technique. Unfortunately, its application is
often stymied by the need to solve partial differential equations.
In this paper a new, fully constructive, procedure to shape the
energy for a class of port–Hamiltonian systems that obviates the
solution of partial differential equations is proposed. Proceeding
from the well–known passive, power shaping output we propose
a nonlinear static state–feedback that preserves passivity of this
output but with a new storage function. This function contains
some tuning gains used to ensure it is positive definite, hence
a suitable Lyapunov function for the closed–loop. Connections
with other standard passivity–based controllers are indicated
and it is shown that the new controller design is applicable to
two benchmark examples.

Index Terms— Passivity, nonlinear systems, passivity–based
control, Hamiltonian systems.

I. INTRODUCTION

Control of physical systems via energy shaping is a well–

established technique whose roots can be traced back to

Lagrange’s and Dirichlet’s work [1]. In the control com-

munity this fundamental concept was first introduced by

Takegaki and Arimoto in [2] for mechanical systems and

by Jonckheere in [3] for electromechanical systems. In [2]

the Hamiltonian formalism is used to describe the system

dynamics while the Euler–Lagrange formulation is used in

[3]. To date, these two mathematical descriptions of the sys-

tem dynamics are favoured to carry out the energy–shaping

task with a lot of research devoted to the particular case

of mechanical systems, see e.g., [4], [5], [6] and references

therein.

One of the central features of existing energy shaping

techniques is the preservation in closed–loop of the original

systems structure—either Lagrangian or Hamiltonian—and a

key step is the identification of the energy (or Lagrangian)

functions that can be assigned via feedback. This assignable

energy functions are the solutions of the so–called matching

equations, which are a set of partial differential equations

(PDEs) that need to be solved to complete the controller

design. A lot of research effort has been devoted to the

solution of the matching equations—see e.g., [7], [8], [9],

[10], [11], [12], [13]. Also, there is a large list of applications

where it has been possible to solve these equations, including

(almost) all basic pendular systems considered in the liter-

ature, motors, generators, power systems, power converters,

level control systems, etc.—see [14] for a partial list. In spite

of that, this difficult key step remains the main stumbling

block for the wider application of these methods.

In the recent paper [15] it has been proposed for mechan-

ical systems to abandon the objective of structure preser-

vation and attention has been concentrated on the energy

shaping objective only. That is, we look for a static state–

feedback that stabilizes the desired equilibrium assigning

to the closed–loop a Lyapunov function of the same form

as the energy function of the open–loop system but with

new, desired inertia matrix and potential energy function.

However, it was not required that the closed–loop system is

a mechanical system with this Lyapunov function qualifying

as its energy function. In this way, the need to solve the

matching equations is avoided.

In this paper we pursue the same research line considering

the more general case of port–Hamiltonian (pH) systems

[16] of the form ẋ = F (x)∇H(x) + g(x)u, where F (x) +
F⊤(x) ≤ 0 and F (x) is full rank. The starting point of

the design is the well–known power shaping output [17],

which is known to define a passive output for the pH system

with storage function its energy function H(x). Assuming

that this output is “integrable”, the next step is the design of

a nonlinear static state–feedback that preserves this passive

output but now with a new storage function. The latter

is constructed as the weighted sum of the original energy

function and a quadratic term of the shifted “integral” of

the power shaping output. The weighting gains and the

aforementioned shifting constant are the degrees of freedom

introduced to ensure positive definiteness of the new energy

function, which then qualifies as a Lyapunov function for

the closed–loop system. The condition of integrability of the

power shaping output boils down to a classical integrability

condition of the vector fields F−1(x)gi(x), with gi(x) the

columns of the matrix g(x), hence it can be readily verified.

The remaining of the paper is organized as follows.

Section II presents the problem formulation and main

assumptions on the pH system. The design of the energy

shaping feedback is carried out in Section III. Section IV

contains the main stabilization result. Section V explores the

relationship between the new controller design and the two

well–known passivity–based control (PBC) techniques of

energy balancing (EB–PBC) [18], [19] and interconnection

and damping assignment (IDA–PBC) [14]. In Section VI
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we show that the method is applicable to two benchmark

examples and, to study the limitations of the technique,

consider the case of LTI systems. In particular, we prove

that, unlike general IDA–PBC of LTI systems but similarly

to the case of IDA–PBC of mechanical systems [20],

stabilisability of the LTI system is not enough to ensure that

the proposed controller yields a stable closed–loop system.

The paper is wrapped–up with concluding remarks and

future research in Section VII.

Notation For x ∈ R
n, S ∈ R

n×n, S = S⊤ > 0, we

denote the Euclidean norm |x|2 := x⊤x, and the weighted–

norm ‖x‖2S := x⊤Sx. For a scalar function H : Rn → R

we denote ∇xH(x) =
(

∂H(x)
∂x

)⊤
. For vector functions

C : Rn → R
m, we define its (transposed) Jacobian matrix

∇C(x) = [∇C1(x), . . . ,∇Cm(x)]. For any mapping F :
R

n → R
p×q and the distinguished element x∗ ∈ R

n we

denote the constant matrix F∗ := F (x∗). We define the

pseudoinverse of a full-rank matrix G ∈ R
n×m as G† :=

(G⊤G)−1G⊤. When clear from the context the subindex

of the operator ∇ and the arguments of the functions will

be omitted. All the functions in the paper are assumed

sufficiently smooth.

II. PROBLEM FORMULATION AND MAIN ASSUMPTIONS

The standard representation of pH systems is of the form

ẋ = [J (x)−R(x)]∇H(x) + g(x)u, (1)

where x ∈ R
n is the state vector, u ∈ R

m, m ≤ n, is the

control vector, H : Rn → R is the systems stored energy,

J ,R : Rn → R
n×n, with J (x) = −J⊤(x) and R(x) =

R⊤(x) ≥ 0, are the interconnection and damping matrices,

respectively, and g : Rn → R
n×m is the input matrix, which

is full rank. To simplify the notation in the sequel we define

the matrix F : Rn → R
n×n

F (x) := J (x)−R(x).

The control objective is to stabilise an equilibrium x∗,

which is an element of the set of assignable equilibria given

by

E :=
{

x ∈ R
n | g⊥(x)F (x)∇H(x) = 0

}

. (2)

The following assumptions identify the class of pH

systems for which the proposed control strategy is applicable.

Assumption 1: The matrix F (x) is full rank.

Assumption 2: The vector fields F−1(x)gi(x), with

gi(x), i = 1, . . . ,m, the columns of the matrix g(x), are

gradient vector fields. That is,

∇
(

F−1(x)gi(x)
)

= [∇
(

F−1(x)gi(x)
)

]⊤.

If Assumption 1 holds, it is possible to define the power

shaping output as follows

yPS := −g⊤(x)F−⊤(x) [F (x)∇H(x) + g(x)u] . (3)

As shown in [17], [19] yPS is a cyclo–passive output for the

pH system (1) with storage function H(x). More precisely,

the following dissipation inequality holds

Ḣ ≤ u⊤yPS. (4)

Noting that yPS may be written as

yPS = −g⊤(x)F−⊤(x)ẋ (5)

and recalling Poincare’s Lemma it is easy to see that As-

sumption 2 ensures the existence of a function γ : Rn → R
m

such that

γ̇ = (∇γ)⊤ẋ = yPS, (6)

with yPS defined in (3).

III. ENERGY SHAPING

In this section we define a static state–feedback such that

the system (1) in closed–loop with this control preserves

passivity of the mapping v 7→ yPS but with a suitably

modified storage function.

Proposition 1: Suppose Assumptions 1 and 2 hold. Define

the mapping uBC : R
n → R

m

uBC(x) := [keI − kag
⊤(x)F−⊤(x)g(x)]−1 [v−

KI(γ(x) + C) + kag
⊤(x)F−⊤(x)F (x)∇H(x)

]

(7)

where1

∇γ(x) := −F−1(x)g(x) (8)

and ka, ke ∈ R+, C ∈ R
m, KI ∈ R

m×m with KI = K⊤
I >

0 are free parameters. The system (1) in closed–loop with the

control u = uBC(x) defines a cyclo–passive mapping v 7→ yPS
with storage function

Hd(x) = keH(x) +
1

2
‖γ(x) + C‖2KI

. (9)

Proof: From (9) we get

Ḣd = keḢ + y⊤
PS
KI(γ + C)

≤ y⊤
PS
[keu+KI(γ + C)]

= y⊤
PS

[

v + kag
⊤F−⊤F∇H + kag

⊤F−⊤gu
]

= y⊤
PS
(v − kayPS)

≤ y⊤
PS
v,

where we used (6) in the first equality, (4) in the first

inequality and (7) and (3) for the second and third equality,

respectively.

From (6) we have that

γ(x(t)) =

∫ t

0

yPS(x(τ))dτ + γ(x(0)),

where we recall that yPS is defined in (3). Hence, the second

term in the new storage function (9) may be interpreted as

the integral of yPS. This establishes a connection with the

PI–like controllers proposed for mechanical systems in [15].

1Notice that the existence of γ(x) is ensured by Assumption 2.
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IV. STABILIZATION

From Proposition 1 it is clear that if the new storage

function Hd(x) is positive definite (with respect to the

desired equilibrium x∗) it qualifies as a bona fide Lyapunov

function for the closed–loop system (with v = 0) that

ensures stability of x∗. This fact is enunciated in the

proposition below where we also give easily verifiable

conditions for .

Proposition 2: Consider the system (1), verifying As-

sumptions 1 and 2, in closed–loop with the control u =
uBC(x), with v = 0, where uBC(x) is given by (7).

(i) If x∗ ∈ E and

x∗ = argminHd(x), (10)

with Hd(x) defined in (9), then x∗ is stable (in the

sense of Lyapunov) with Lyapunov function Hd(x).
It is asymptotically stable If yPS, defined in (3) is

detectable, that is, if the following implication is true
[

yPS(t) ≡ 0 ⇒ lim
t→∞

x(t) = x∗

]

.

(ii) Condition (10) holds if the following inequality is

satisfied

(∇2Hd)∗ > 0. (11)

Proof: The proof of (i) follows from the fact that Hd(x)
is positive definite with

Ḣd = −ka|yPS|2 ≤ 0,

and classical Lyapunov theory [21].

To establish (ii) first notice that from (5) and (6) the control

(7) reduces to

u = − 1

ke
[KI(γ + C) + kayPS] . (12)

Since at the equilibrium yPS∗ = 0, then (12) becomes

u∗ = − 1

ke
KI(γ∗ + C) (13)

also, from (1)

(∇H)∗ = −F−1
∗ g∗u∗

=
1

ke
F−1
∗ g∗KI(γ∗ + C) (14)

where the last equation was obtained from the substitution

of (13). On the other hand,

(∇Hd)∗ = ke(∇H)∗ + (∇γ)∗KI(γ∗ + C)

= ke(∇H)∗ − F−1
∗ g∗KI(γ∗ + C). (15)

Replacing (14) in (15) we have (∇Hd)∗ = 0 which ensures

that x∗ is a critical point of the closed–loop system. The

proof is completed noting that, the inequality (11) implies

that (10) holds.

Remark 1: From (15) it is clear that—for the purpose of

stabilization—the constant vector C, which ensures x∗ is an

equilibrium point of the closed–loop, is uniquely defined by

C := keK
−1
I g†∗F∗(∇H)∗ − γ∗. (16)

V. RELATION WITH CLASSICAL PBCS

In this section we discuss the relationship between the new

controller and the classical PBC techniques of EB and IDA.2

It should be underscored that, in contrast with these PBC

design techniques, the proposed method does not preserve—

in general—the pH structure in closed–loop, but we will

show that for some particular choice of the tuning gains it

does.

A. Energy–balancing PBC

The basic idea of EB–PBC (with the output yPS) is to look

for state feedbacks uEB : R
n → R

m such that

Ḣa = −u⊤
EB
yPS,

for some “added” energy function Ha : R
n → R. In

this case, setting u = uEB(x) transforms the cyclo–pasivity

inequality (4) into

Ḣ + Ḣa ≤ 0,

and if H(x) + Ha(x) is positive definite the closed–loop

system will have a stable equilibrium at x∗. The following

proposition states that, for a suitable choice of the tuning

gains, the new controller.

Proposition 3: Consider the pH system (1) verifying As-

sumptions 1 and 2. Fix the gains of the mapping uBC(x) as

ke = 1 and ka = 0. Then, the control u = uBC(x), with

v = 0, is an EB–PBC with added energy function

Ha(x) :=
1

2
‖γ(x) + C‖2KI

. (17)

Proof: For v = 0, ka = 0 and ke = 1 the mapping

uBC(x) reduces to

uBC(x) = −KI [γ(x) + C].

On the other hand, from (17) we have

Ḣa = y⊤
PS
KI(γ + C) = −y⊤

PS
uBC,

completing the proof.

B. Interconnection and damping assignment PBC

In IDA–PBC we fix desired interconnection and damping

matrices, hence, fix a matrix Fd : Rn → R
n×n such that

Fd(x) + F⊤
d (x) ≤ 0,

and look for a control u = uIDA(x) such that the closed–loop

has the form

ẋ = Fd(x)∇HIDA(x);

for some energy function HIDA : R
n → R, which has a

minimum at the desired equilibrium. It is easy to show that

the assignable energy functions HIDA(x) are characterised by

the solutions of the following PDE

g⊥(x) [Fd(x)∇HIDA(x)− F (x)∇H(x)] = 0, (18)

and the control is univocally defined as

uIDA(x) := g†(x) [Fd(x)∇HIDA(x)− F (x)∇H(x)] (19)

2The interested reader is referred to [18], [19] for further details on EB–
PBC and IDA–PBC.
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The proposition below establishes the relation between

IDA–PBC and Proposition 1.

Proposition 4: Consider the pH system (1) verifying As-

sumptions 1 and 2. Fix the gain of the mapping uBC(x) as

ka = 0 and select the desired interconnection and damping

matrices as

Fd(x) =
1

ke
F (x).

Then, the energy function Hd(x) defined in (9) and the

control u = uBC(x), with v = 0, given in (7) satisfy the

IDA–PBC equations (18) and (19), respectively.

Proof: Replacing the gradient of Hd(x), given by

∇Hd(x) = ke∇H(x)− F−1(x)g(x)KI(γ(x) + C),

in the PDE (18) we get

g⊥
{

Fd

[

ke∇H − F−1gKI(γ + C)
]

− F∇H
}

=

g⊥
{

1

ke
F
[

ke∇H − F−1gKI(γ + C)
]

− F∇H

}

= 0.

On the other hand, the control law (7) is given by

uBC(x) = − 1

ke
KI(γ(x) + C), (20)

furthermore

uIDA = g†
{

Fd

[

ke∇H − F−1gKI(γ + C)
]

− F∇H
}

= g†
{

1

ke
F
[

ke∇H − F−1gKI(γ + C)
]

− F∇H

}

= − 1

ke
g†gKI(γ + C) (21)

which coincides with (20).

VI. EXAMPLES

In this section we apply the proposed controller to two

physical systems and investigate, with the example of LTI

systems, the limitations of the method.

A. Micro electro–mechanical optical switch [22]

Consider the optical switch system with pH model

ẋ =





0 1 0
−1 −b 0
0 0 − 1

r



∇H(x) +





0
0
1
r



u

and energy function

H(x) =
1

2m
x2
2 +

1

2
a1x

2
1 +

1

4
a2x

4
1 +

1

2c1(x1 + c0)
x2
3,

where a1 > 0, a2 > 0 are the spring constants, b > 0, r > 0
are resistive elements, c0 > 0, c1 > 0 are constants that

determine the capacitance function and, finally, m > 0
denotes the mass of the actuator. It is important to underscore

the physical constraint x1 > 0. The set of equilibria for this

system is

x2∗ = 0, x3∗ = (c0 + x1∗)
√

2c1x1∗(a1 + a2x
2
1∗
)

and the goal is to stabilize at x1∗ > 0.

Some simple calculations prove that yPS = ẋ3, therefore

γ(x) = x3. Also, F is clearly full rank. Hence, Assumptions

1 and 2 hold. It only remains to show that (ii) of Proposition

2 holds. Since at the equilibrium

(∇2Hd)∗ =ke





a1 + 3a2x
2
1∗ + d21d2 0 −d1d2
0 1

m
0

−d1d2 0 d2





+KIdiag(0, 0, 1)

where

d1 :=
√

2c1x1∗(a1 + a2x
2
1∗
), d2 :=

1

c1(c0 + x1∗)
,

then for all KI > 0, ke > 0 the condition (11) holds. Hence,

x∗ is a stable equilibrium for the closed–loop system.

B. Magnetic levitation system [23]

In this example we show that, including coordinate

changes—as proposed in [5]—it is possible to add a new

degree of freedom to the design. First, we will prove that

in the natural cordinates considered in [23] the proposed

method is not applicable. The pH model is given by

ẋ =









0 1 0 0
−1 0 0 0
0 0 −r2

1
c

0 0 − 1
c

− 1
r1c2









∇H(x) +









0
0
0
1

r1c









u,

with energy function

H(x) =
1

2m
x2
2 +mgx1 +

1

2n
x2
3(1− x1) +

c

2
x2
4,

where m > 0 is the mass of the ball, r1 > 0 and c > 0 are

the parasite resistance and capacitance, respectively; n > 0 is

constant which depends on the number of coil turns, r2 > 0
is the coil resistance and g is the gravitational acceleration.

A physical constraint of this model is that 1 > x1 > 0.

The set of equilibria is given by

x2∗ = 0, x3∗ =
√

2d0, x4∗ = r2(1− x1∗)

√

2mg

n

where d0 = nmg and the control goal is to stabilize the

system at an assignable equilibrium with a desired ball

position, x1∗ , satisfying the constraints.

In this example

yPS =
1

r̄
(ẋ3 + r2cẋ4), (22)

whose time integration defines γ(x) as follows

γ =
1

r̄
(x3 + r2cx4)
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where r̄ = r1 + r2. The Hessian of the energy function (9)

is, then, given by

∇2Hd =ke









0 0 − 1
n
x3 0

0 1
m

0 0
− 1

n
x3 0 1

n
(1− x1) 0

0 0 0 c









+
KI

r̄2









0 0 0 0
0 0 0 0
0 0 1 r2c

0 0 r2c r22c
2









which clearly is not positive definite, consequently the pro-

posed method is not applicable to this system.

The source of the problem stems from the fact that with the

power shaping output given by (22) the respective γ cannot

shape the energy in the first coordinate, which is needed

to ensure (11). To overcome this problem we propose the

coordinate change

z = col(x1, x2, x3

√
1− x1, x4). (23)

The system in the new coordinates is given by

ż = F̄∇H̄(z) + ḡu

where ḡ := col(0, 0, 0, 1
r1c

) and

F̄ :=











0 1 0 0
−1 0 z3

2(1−z1)
0

0 − z3
2(1−z1)

−r2(1− z1)
√
1−z1
c

0 0 −
√
1−z1
c

− 1
r1c2











.

Its energy function and power shaping output are, respec-

tively,

H̄(z) =
1

2m
z22 +mgz1 +

1

2n
z23 +

c

2
z24 ,

ȳPS =
1

r̄

[

1

2

z3

(1− z1)
3

2

ż1 +
1√

1− z1
ż3 + r2cż4

]

.

Since Assumptions 1 and 2 are invariant under the change

of coordinates (23), they are still satisfied. Furthermore,

γ̄(z) =
1

r̄

(

z3√
1− z1

+ r2cz4

)

.

Notice that it is possible to shape the energy in the first

coordinate since the second partial derivative of γ̄ with

respect to z1 is different to zero.

The set of equilibria in the new coordinates is z2∗ = 0,

z3∗ = x3∗

√

1− z1∗ , z4∗ = r2(1− z1∗)

√

2mg

n
.

Some simple computations prove that

(∇2Hd)∗ = kediag(0,
1

m
,
1

m
, c)

+
KI

r̄2













d1

(1−z1∗ )
2 0 d2

(1−z1∗ )
3

2

d3

1−z1∗

0 0 0 0
d2

(1−z1∗ )
3

2

0 1
1−z1∗

r2c√
1−z1∗

d3

1−z1∗
0 r2c√

1−z1∗
r22c

2













where we defined

d1 :=
3

4
r̄
√
2d0 +

1

2
d0, d2 :=

1

2
r̄ +

√

d0

2
, d3 := r2c

√

d0

2
.

It is easy to see that, with an appropriate selection of ke and KI ,
condition (11) holds and so, the stabilisation objective is achieved
with the proposed controller.

C. LTI systems: Stabilisability is not enough

In the important paper [24] it was shown that IDA–PBC for LTI
systems is a universal stabiliser, in the sense that it is applicable
to all stabilisable systems. On the other hand, it was shown in
[20] that stabilisability is not enough for IDA–PBC of mechanical
system, but a stronger condition must be imposed on the system
for stabilisation with IDA–PBC—see Proposition 4.1 in [20].

The difference between these two cases is that, while for general
IDA–PBC there is no constraint on the structure of the desired
energy function, for mechanical systems a particular structure is
imposed to it. Since in the methodology proposed in this paper there
is also a constraint on the desired energy function, namely (9), it
is expected that a condition stronger than stabilisability should be
imposed for the method to apply.

Now, recall that for LTI systems the energy function is of the
form H(x) = 1

2
x⊤Qx, the matrices F and g are constant and,

without loss of generality, we can take x∗ = 0. Therefore, the
control (7) becomes a simple linear, state–feedback of the form
uBC(x) = Kx with

K :=
(

keI − kag
⊤
F

−⊤
g
)

−1

(kag
⊤
F

−⊤
FQ+KIg

⊤
F

−⊤),

(24)
where we have set the vector C = 0. To prove the aforementioned
conjecture we will construct an LTI, stabilisable pH system for
which the controller (24) yields an unstable closed–loop system for
all values of the tuning gains ke, ka,KI . It is important to note that
the Lyapunov stability test utilised in Proposition 2 is sufficient, but
not necessary—even for LTI systems. Therefore, instability must be
proved checking directly the closed–loop system matrix. Also, the
sign constraints imposed to the tuning gains, which are required to
ensure positivity of the shaped energy function, need not be imposed
in the LTI case where, as indicated above, a stability analysis—other
than Lyapunov—will be carried out.

Consider the following controllable, LTI system

ẋ =

[

0 1
a1 1− a1

]

x+

[

0
1

]

u. (25)

Some simple calculations show that it admits a pH representation

ẋ = FQx+ gu (26)

with g := col(0, 1),

F :=

[

−1 a1

1

2
a1 −a2

1

]

, Q := − 2

a2

1

[

a2

1 a1

a1 1− a1

2

]

, (27)

which satisfies F + F⊤ < 0 and Assumption 1.3

Proposition 5: Consider the LTI, pH system (26), (27) in
closed–loop with the controller (24). For all values of the controller
gains ke, ka and KI the closed–loop system is unstable.

Proof: The closed–loop system is given by

ẋ =

[

0 1

a1 − a1k̃ 1− a1 − k̃

]

x

where

k̃ :=
2

a2

1

(

ke +
2ka
a2

1

)

−1

(KI + ka).

3Assumption 2 is always satisfied for single input LTI systems.
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Clearly, the closed–loop system matrix is Hurwitz if and only if the
following conditions can be satisfied

a1 − a1k̃ < 0, 1− a1 − k̃ < 0.

If the system is open–loop stable, that is, a1 < 0, these inequalities
are equivalent to

k̃ < 1, k̃ > 1− a1,

Since 1−a1 > 1 the inequalities cannot be simultaneously satisfied.

VII. CONCLUDING REMARKS AND FUTURE RESEARCH

We have presented in this paper a new energy shaping method
to stabilize pH systems that, in contrast with the classical PBC
methods, does not require the solution of PDEs. The key modifica-
tion introduced here is to abandon the objective of preservation in
closed–loop of the pH structure, which is the condition that gives
rise to the PDEs.

The class of systems for which the method is applicable is
identified by Assumptions 1 and 2, which can be easily verified
from the systems data. The invertibility Assumption 1 is rather
weak, and is satisfied in many practical examples. Notice that if it
does not hold then there exists equilibria for the open–loop system,
which are not extrema of the energy function—a situation that its
not reasonable in physical systems. The integrability Assumption
2 is a technical condition needed to create the term added to the
open–loop energy function (9). As indicated at the end of Section
III, this term may be interpreted as an integral term on the power
shaping output. Unfortunately, besides this nice interpretation, we
don’t have at this point any physical, nor practical motivation, for
Assumption 2. The controller design parameters are introduced to
ensure that Hd(x) is positive definite, hence, it is a Lyapunov
function candidate—with the vector C (essentially) needed to make
(∇Hd)∗ = 0.

A lines of research that is currently being pursued is to base the
construction of the controller on other passive outputs, besides yPS.
It was recently revealed in [25], [26] that there exists a large class
of passive outputs that can be used for this purpose.
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