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Hypergraph conditions for the solvability of the ergodic equation for
zero-sum games

Marianne Akian∗1, Stéphane Gaubert∗2 and Antoine Hochart∗†3

Abstract— The ergodic equation is a basic tool in the study
of mean-payoff stochastic games. Its solvability entails that
the mean payoff is independent of the initial state. Moreover,
optimal stationary strategies are readily obtained from its
solution. In this paper, we give a general sufficient condition
for the solvability of the ergodic equation, for a game with
finite state space but arbitrary action spaces. This condition
involves a pair of directed hypergraphs depending only on the
“growth at infinity” of the Shapley operator of the game. This
refines a recent result of the authors which only applied to
games with bounded payments, as well as earlier nonlinear
fixed point results for order preserving maps, involving graph
conditions.

Index Terms— Zero-sum games, stochastic control, ergodic
control, risk-sensitive control, nonlinear consensus, computa-
tional methods, directed hypergraphs.

I. I NTRODUCTION

a) Motivation: A general issue in the study of stochas-
tic control and zero-sum game problems is to give conditions
which guarantee that the mean payoff per time unit is
independent of the choice of the initial state. A basic tool to
address this issue is the ergodic eigenproblem. The latter is
a nonlinear equation, involving a function or vector called
biasor potential, and a scalar calledergodic constant. When
the ergodic equation has a solution, the ergodic constant
gives the mean payoff for every initial state. The ergodic
equation is often called theaverage case optimality equation
in stochastic control, see [1], [2]. It may be thought of as
a nonlinear extension of thePoisson equationarising in
potential theory.

Conditions which guarantee the solvability of the ergodic
equation are generally referred to asergodicity conditions.
Such conditions typically involve the transition probabilities.
One of the oldest conditions of this kind was obtained by
Bather [3], who showed that the ergodic equation has a
solution for the class of Markov decision processes that
are communicating, meaning that for every pair of states
i to j, there is a strategy and a horizonk under which
the probability to reachj from i is positive. An interest of
Bather’s condition is its structural nature: as it only depends
on the transition probabilities, it is insensitive to a pertur-
bation of the payments. However, a limitation of Bather’s
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communication condition is that it is tied to the one-player
case: the communication condition is almost never satisfied
for two-player problems (including zero-sum deterministic
games).

The question of finding generalized communication or
ergodicity conditions has emerged in a number of works
dealing with control and games [4], [5], [6], [7], [8], but also
discrete event systems [9], [10], mathematical economy [11],
and Perron-Frobenius theory [12], [13]. A similar problem
has also been studied in the infinite dimensional setting,
when dealing with Hamilton-Jacobi type PDE: equations
arising from deterministic optimal control problems were
dealt with in [14]; the understanding of ergodicity conditions
for PDE arising from differential games is a difficult question
of current interest, see [15].

b) Main result: In the present paper, we address the
question of the solvability of the ergodic equation for zero-
sum game problems withfinite state space, but with ar-
bitrary action spaces. Our main result, Theorem6, pro-
vides a general sufficient condition for the solvability of
the ergodic equation, involving an accessibility condition
in directed hypergraphs. These hypergraphs only depend
on the “behavior at infinity” of the dynamic programming
operator of the game. Intuitively, a hyperarc encodes the
possibility for one of the two players to force the access
in one step, with positive probability, to a given set of
states, independently of the action of the other player. When
the action spaces are finite, Theorem6 has a simple game
theoretic interpretation: it shows that the ergodic equation is
solvable for all perturbations of the payment function if, and
only if, we cannot find two disjoint subsets of statesI, J
such that PlayerMAX, starting from any state ofJ , has a
possibility to force the next state to avoid being inI, with
positive probability, whereas PlayerMIN, starting from any
state ofI, has a possibility to force the next state to avoid
being inJ , still with positive probability.

c) Related results:The present results refine or gen-
eralize several earlier ergodicity conditions. In particular,
the present hypergraph condition (Theorem6) refines the
“generalized Perron-Frobenius theorem” of Gaubert and Gu-
nawardena [13], which gave a sufficient condition for the
solvability of the ergodic equation in terms of graph accessi-
bility (hypergraphs lead to tighter conditions). It also extends
results of Cavazos-Cadena and Hernández-Hernández [7],
which apply to a subclass of operators arising from risk
sensitive control problems. It finally refines a recent result
of the authors [8], in which reachability conditions involving
more special hypergraphs were introduced for games with
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bounded payments. The present Theorem6 is more general,
since arbitrary payments are allowed, and when the payments
are bounded, the main result of [8] can be recovered as a spe-
cial case of the present one, as the hypergraph conditions of
Theorem6 reduce to the ones in [8]. The case ofunbounded
paymentsis very common when the state space is not
compact. Nevertheless, examples with unbounded payments
and finite state space arise typically in the modeling of safety
issues, where one player controls the transition probability to
an undesirable state with a cost blowing up as this probability
vanishes.

The proof of our main result further develops an idea
of [13]: checking the boundedness of the so called “slice
spaces” with respect to Hilbert’s seminorm. In this respect,
we solve one question left open in [13] (characterizing
combinatorially the boundedness of all slice spaces).

The paper is organized as follows. In SectionII , we
recall some basic definitions and results concerning zero-sum
stochastic games. In SectionIII , we state and establish the
main result (ergodicity condition, Theorem6). This section
includes a discussion of algorithmic and computational com-
plexity aspects. In SectionIV, we compare Theorem6 and
its corollary with earlier results, and provide an illustrative
example.

II. PRELIMINARIES ON ZERO-SUM STOCHASTIC GAMES

A. The mean payoff

In this paper, we consider zero-sum stochastic games with
perfect informationand finite state space. We will denote by
S := {1, . . . , n} the state space, and by∆(S) the set of
probability measures onS. For each statei ∈ S, we denote
by Ai (resp.Bi) the action space of PlayerMIN (resp.MAX)
in statei; rabi ∈ R the transition payment, paid by Player
MIN to PlayerMAX when the current state isi and the last
actions of the players area ∈ Ai and b ∈ Bi, respectively;
P ab
i ∈ ∆(S) the transition probability from statei to the

next state, assuming that the actionsa ∈ Ai and b ∈ Bi

were just chosen.
Starting from a given initial statei0, a zero-sum game with

perfect information is played in stages as follows: at stepℓ,
if the current state isiℓ, PlayerMIN chooses an actionaiℓ ∈
Aiℓ , and PlayerMAX subsequently chooses an actionbiℓ ∈
Biℓ . Then, PlayerMIN paysraℓbℓ

iℓ
to PlayerMAX and the next

state is chosen according to the probability lawP aℓbℓ
iℓ

. By
perfect information, we mean that both players are informed
of the current state and of the previous actions of the other
player. In particular, we assumed that PlayerMIN selects each
action before PlayerMAX, who is therefore informed of this
action.

A strategyσ of PlayerMIN (resp.τ of PlayerMAX) is a
selection rule determining the current action of PlayerMIN
(resp.MAX) as a function of the current and past information
available to him (resp. her). Given strategiesσ and τ of
the two players, thepayoffof the game in horizonk is the

following additive function of the transition payments:

Jk
i (σ, τ) = Ei,σ,τ

[ k−1
∑

ℓ=0

raℓbℓ
iℓ

]

,

whereEi,σ,τ denotes the expectation for the probability law
of the process(iℓ, aℓ, bℓ)ℓ>0, determined by the transition
probabilities, the strategiesσ and τ of the players, and the
initial statei0 = i. PlayerMIN intends to choose a strategy
minimizing the payoffJk

i , whereas PlayerMAX intends to
maximize the same payoff. The value of thek-stage game
(played in horizonk) starting at statei is thus defined as

vki = inf
σ

sup
τ

Jk
i (σ, τ) ,

the infimum and the supremum being taken over the set of
strategies of the playersMIN and MAX, respectively. Note
that here the infimum and the supremum commute, since
the information is perfect.

The study of the value vectorvk = (vki )i∈S involves the
dynamic programming operator, or Shapley operator. The
latter is a mapT : Rn → R

n whoseith coordinate is given
by

Ti(x) = inf
a∈Ai

sup
b∈Bi

(

rabi + P ab
i x

)

, x ∈ R
n . (1)

Note that an elementP ∈ ∆(S) is seen as a row vectorP =
(Pj)j∈S of Rn, so thatPx means

∑

j∈S Pjxj . The Shapley
operator allows one to determine recursively the value vector:
vk = T (vk−1) and v0 = 0. See [16], [17], [18] for more
background.

Here, we are interested in the asymptotic behavior of the
sequence of mean values per time unit(vk/k) as k → ∞.
When the latter ratio converges, the limit, denoted byχ(T ),
is called themean payoff vector. Note that, according to the
dynamic programming principle, the mean payoff vector is
given by

χ(T ) = lim
k→∞

T k(0)

k
,

whereT k := T ◦ · · · ◦ T denotes thekth iterate ofT .
The limit does exist for important classes of games. This

question was studied in now classical papers of Bewley
and Kohlberg [19] and Mertens and Neyman [20]. See also
Rosenberg and Sorin [21], Sorin [22], Renault [23], and
Bolte, Gaubert and Vigeral [24] for more recent develop-
ments. The existence ofχ(T ) is not guaranteed in general:
a recent result of Vigeral [25] shows that the limit may not
exist even if the action spaces are compact and the transition
payments and probabilities are continuous functions of the
actions.

B. Shapley operators

Given a zero-sum stochastic game with finite state space,
its Shapley operatorT , represented in (1), satisfies the
following two properties:

• additive homogeneity:T (x+λe) = T (x)+λe, λ ∈ R;
• monotonicity: x 6 y =⇒ T (x) 6 T (y);



whereRn is endowed with its usual partial order, ande is
theunit vectorof Rn, i.e., the vector with all its entries equal
to 1. The importance of these axioms in stochastic control
and game theory has been known for a long time [26].

Kolokoltsov showed in [4] that, conversely, every operator
from R

n to R
n that satisfies the latter two properties can be

written as a Shapley operator (1). Rubinov and Singer [27]
showed that the game may even be required to be determin-
istic. This motivates the following definition.

Definition 1: We call Shapley operatorover Rn any op-
erator fromR

n to R
n that is both monotone and additively

homogeneous.

C. The ergodic eigenproblem

Given a Shapley operatorT overRn, a basic question is
to understand when the mean payoff vector is independent
of the initial state. In other words, we ask whether[χ(T )]i =
[χ(T )]j holds for all i, j ∈ S, i.e., χ(T ) is proportional to
the unit vectore of Rn.

This question is related to the nonlinear spectral problem
consisting in finding an eigenpair(λ, u) ∈ R× R

n solution
of the ergodic equation

T (u) = λe + u . (2)

Indeed, when the ergodic eigenproblem (2) has a solution,
it is easy to see thatχ(T ) = λe (this follows for instance
from Proposition2 below). Hence, the scalarλ, called the
eigenvalueof T , yields the mean payoff per time unit for
any initial state. Moreover, the vectoru, calledbias vectoror
eigenvector, gives optimal, orε-optimal, stationary strategies
by identifying in (1) the actions for which the infimum (resp.
the supremum) is attained, or approached with an arbitrarily
small precision.

D. Boundedness of slice spaces in Hilbert’s seminorm

Our approach of the ergodic eigenproblem, following [13],
relies on the study of thesub-eigenspacesSα(T ), super-
eigenspacesSβ(T ) and slice spacesSβ

α(T ), for α, β ∈ R,
which are defined respectively by:

Sα(T ) = {x ∈ R
n | T (x) > αe + x} ,

Sβ(T ) = {x ∈ R
n | T (x) 6 βe + x} ,

Sβ
α(T ) = Sα(T ) ∩ Sβ(T ) .

(3)

These subsets are of intrinsic interest. Indeed, the following
standard proposition shows that by checking the nonempty-
ness of any of these sets, we can bound the mean payoff
from above, from below, or in both directions.

Proposition 2 ([22, Prop. 7]):Assume thatSα(T ) 6= ∅.
Then, lim infk→∞ T k(0)/k > αe. Similarly, if Sβ(T ) 6= ∅,
then, lim supk→∞ T k(0)/k 6 βe.
Therefore, an elementu such thatT (u) > αe + u may be
thought of as acertificatethat lim infk→∞ T k(0)/k > αe. A
dual interpretation holds whenT (u) 6 βe + u. Also, if the
ergodic equation (2) has a solution, we deduce thatSλ

λ 6= ∅,
and so, it follows from Proposition2 thatχ(T ) = λe.

Let us now introduce theHilbert’s seminormon R
n,

which is given by‖x‖H = maxi∈S xi − mini∈S xi. It is a

useful tool in nonlinear Perron-Frobenius theory [12], [13],
where it is sometimes calledHopf’s oscillation [28], [29].
It also appears in linear consensus theory under the name
of diameter or Tsitsiklis’ Lyapunov function[30]. In this
context, the setRe of scalar multiples of the unit vector
is known asconsensus states, and the Hilbert’s seminorm,
which vanishes onRe, is a measure of the distance to
consensus states. See [31], [32] for further developments
concerning Hilbert’s seminorm and the related Hilbert’s
projective metric in relation with consensus theory.

It is a standard result (see e.g. [13]) that any Shapley
operatorT : R

n → R
n is nonexpansive with respect to

Hilbert’s seminorm, meaning that, for everyx, y ∈ R
n,

‖T (x)−T (y)‖H 6 ‖x−y‖H. Thus, as a special case of Theo-
rem 4.1 in [12], we get that the ergodic eigenproblem (2) has
a solution if, and only if, one orbit ofT , {T k(x) | k ∈ N}
with x ∈ R

n, is bounded in Hilbert’s seminorm. Hence, the
solvability of (2) boils down to finding a nonempty invariant
set underT that is bounded in Hilbert’s seminorm. It is
readily seen that all the subsets in (3) are invariant under
T . Then, we have the following result.

Theorem 3 ([12, Th. 4.1], [13]):Let T : Rn → R
n be a

Shapley operator. Assume that there is a choice ofα, β ∈ R

such that the slice spaceSβ
α(T ) is nonempty and bounded

in Hilbert’s seminorm. Then, there existλ ∈ R andu ∈ R
n

such thatT (u) = λe+ u.
Note that the slice spaceSβ

α(T ) is nonempty as soon as
α 6 mini∈S Ti(0) andβ > maxi∈S Ti(0), since in this case
0 ∈ Sβ

α . Hence, the main difficulty when applying Theorem3
is to check that the boundedness condition does hold for
some specificα, β. We shall see in the next section that the
boundedness of the slices spacesfor all values ofα, β has
a combinatorial characterization. Also, we easily deduce the
following result.

Corollary 4: Let T : Rn → R
n be a Shapley operator.

If all the slice spacesSβ
α(T ) are bounded in Hilbert’s

seminorm, then, for every vectorg ∈ R
n, there is a scalar

λ ∈ R and a vectoru ∈ R
n such thatg + T (u) = λe + u.

III. H YPERGRAPH CONDITIONS FOR THE SOLVABILITY

OF THE ERGODIC EIGENPROBLEM

A. Hypergraphs associated with a Shapley operator

A directed hypergraphis a pair(N,D), whereN is a set
of nodesandD is a set of (directed)hyperarcs. A hyperarcd
is an ordered pair(t(d),h(d)) of disjoint nonempty subsets
of nodes;t(d) is the tail of d andh(d) is its head. We shall
often write for brevityt and h instead oft(d) and h(d),
respectively. Whent andh are both of cardinality one, the
hyperarc is said to be an arc, and when every hyperarc is
an arc, the directed hypergraph becomes a directed graph.
In the following, the termhypergraphwill always refer to
a directed hypergraph. For background on hypergraphs, we
refer the reader to [33] and the references therein, and in
particular to [34] for reachability problems.

To express the “behavior at infinity” of a Shapley operator
T : Rn → R

n, we introduce a pair of hypergraphs associated
with T , and denoted by(H+,H−). Before giving their



construction, let us fix some notation. We still denote by
S the set{1, . . . , n}, and if I is a subset ofS, we denote
by eI the indicator vector ofI, i.e., the vector ofRn such
that [eI ]i = 1 if i ∈ I and [eI ]i = 0 if i ∈ S \ I. If I = {i},
we will write ei instead ofe{i}.

We now explain the construction of the hypergraphsH+

andH− associated withT :

• the set of nodes for bothH+ andH− is S;
• the hyperarcs ofH+ are the pairs(J, {i}) such that

limα→+∞ Ti(αeJ ) = +∞;
• the hyperarcs ofH− are the pairs(J, {i}) such that

limα→−∞ Ti(αeJ) = −∞.

These hypergraphs have an intuitive game theoretic interpre-
tation when the action spacesAi andBi are finite. Then, it
can be readily checked that there is a hyperarc(J, {i}) in
H− if, and only if, PlayerMIN can choose an actiona ∈ Ai

in such a way that for all actionsb ∈ Bi of Player MAX,
[P ab

i ]j > 0 holds for at least one statej ∈ J . In other words,
such a hyperarc encodes the fact that starting from statei,
Player MIN can force the next state to belong toJ , with
positive probability. Similarly, there is a hyperarc(J, {i}) in
H+ if, and only if, for every actiona ∈ Ai, PlayerMAX
can choose an actionb ∈ Ai (depending ona) such that
[P ab

i ]j > 0 holds for at least one statej ∈ J . Therefore,
starting from statei, PlayerMAX can force the next state to
belong toJ , with positive probability.

B. Reachability conditions for bounded slice spaces

We first recall the definition of reachability in hypergraphs.
Let G = (N,D) be a hypergraph. Ahyperpathof lengthp
from a set of nodesI ⊂ N to a nodej ∈ N is a sequence of
p hyperarcs(t1,h1), . . . , (tp,hp), such thatti ⊂

⋃i−1

k=0
hk

for all i = 1, . . . , p + 1 with the conventionh0 = I and
tp+1 = {j}. We say that a nodej ∈ N is reachablefrom
a subsetI of N if there exists a hyperpath fromI to j.
Alternatively, the relation of reachability can be defined in
a recursive way:j is reachable fromI if either j ∈ I or
there exists a hyperarc(t,h) such thatj ∈ h and every
node oft is reachable from the setI. A subsetJ of N is
said to bereachablefrom a subsetI of N if every node of
J is reachable fromI. We denote byreach(I,G) the set of
reachable nodes fromI in G. A subsetI of N is invariant in
the hypergraphG if it contains every node that is reachable
from itself, i.e., reach(I,G) ⊂ I (hencereach(I,G) = I,
since the other inclusion always holds). One readily checks
that, forJ ⊂ N , reach(J,G) is the smallest invariant set in
G containingJ .

We also need the following definition.
Definition 5: A pair (I, J) of subsets ofS is said to be a

pair of conjugate subsetswith respect to the hypergraphs
(H+,H−) if I ∩ J = ∅, reach(J,H+) = S \ I and
reach(I,H−) = S \ J . Such a pair is said to betrivial if
one of the setsI, J is empty.

The following is our main result.
Theorem 6:Let T : Rn → R

n be a Shapley operator. All
the slice spacesSβ

α(T ) are bounded in Hilbert’s seminorm if,

and only if, there are only trivial pairs of conjugate subsets
with respect to the hypergraphs(H+,H−).

The proof will be given in the extended version of the
present conference article. Let us just mention that the “if”
part is proved by combinatorial means, and the “only if” part
by a topological degree theory argument.

Combining this theorem and Corollary4, we get the
following existence result for solutions of the ergodic eigen-
problem (2).

Corollary 7: Let T : Rn → R
n be a Shapley operator.

Assume that there are only trivial pairs of conjugate subsets
with respect to the hypergraphs(H+,H−). Then, for every
vectorg ∈ R

n, there is a scalarλ ∈ R and a vectoru ∈ R
n

such thatg + T (u) = λe+ u.
It has already been mention in the introduction (see

also SubsectionIV-C), that the hypergraph conditions of
Corollary 7 reduce to the ones in [8] when the payments
are bounded. Thus, the main result of [8] implies that the
converse property in Corollary7 does hold if, for every state
i ∈ S, the payment function(a, b) 7→ rabi is bounded. In a
forthcoming work, we show that the converse property is in
fact true with arbitrary payments.

C. Algorithmic aspects

Given a Shapley operatorT overRn, the basic issue under
consideration is to check whether the ergodic eigenprob-
lem (2) is solvable for all operatorsg + T with g ∈ R

n.
Corollary 7 provides a combinatorial condition for this

property to hold. This condition can be effectively checkedas
soon as the limitslimα→±∞ Ti(αeJ ) arising in the definition
of the hyperarcs ofH± can be computed. This is generally
the case in practice, as the Shapley operator is typically
given explicitly in terms of actions, payments, and transition
probabilities. To give an elementary example, we already
noted at the end of SubsectionIII-A that if all the action
spacesAi, Bi in (1) arefinite, then, checking whether there
is a hyperarc(J, {i}) in H± reduces to elementary tests.
Indeed, the discussion in that subsection implies that(J, {i})
is a hyperarc ofH− (resp.H+) if, and only if

max
a∈Ai

min
b∈Bi

P ab
i eJ > 0 (resp. min

a∈Ai

max
b∈Bi

P ab
i eJ > 0) .

Therefore, checking whether the hyperarc(J, i) belongs to
H± can be done inO(n |Ai| |Bi|) elementary operations,
where | · | denotes the cardinality of a set. However, the
limits limα→±∞ Ti(αeJ) are computable in more general
situations (see SectionIV-D), and so the interest of Corol-
lary 7 is to lead to an effective condition in such cases.

Let us now recall how reachability conditions can be
checked algorithmically once the hypergraphs have been
computed. Indeed, the conditions of Corollary7 boil down to
check that, for everyI ⊂ S, eitherreach(S \ I,H+) 6= S \ I
or reach(I,H−) = S.

It is known that in a hypergraphG = (N,D), the
set of reachable nodes from a subsetI can be computed
in O(size(G)) time, wheresize(G) denotes thesize of G,
and is equal to|N | +

∑

d∈D |t(d)| + |h(d)|, see [34].
Hence, the conditions of Corollary7 can be checked in



time O(2n size(H±)), counting for one time unit a call to
an oracle computing a limitlimα→±∞ Ti(αeJ ). However,
size(H±) may be exponential in the number of states, since
the number of hyperarcs is only bounded byn2n. The bound
O(2n size(H±)) may appear to be coarse at first sight, but it
cannot be reduced to a polynomial bound unless P= coNP.
Indeed, the restricted version of this problem concerning
deterministic operators with finite action spaces reduces to
the nonexistence of a nontrivial fixed point of a monotone
Boolean function, a problem which has been shown to be
coNP-hard by Yang and Zhao [10].

We refer the reader to [8] for more information on
complexity issues, and refinements in the case of finite
actions spaces (in this case, one arrives at better complexity
bounds, still exponential inn). We also point out that there
are simpler sufficient conditions, involving directed graphs
instead of a hypergraph [13]. Such conditions can be checked
using only a polynomial number of elementary operations
(still counting for one unit the call to the oracle computing
a limit), but they are less accurate.

IV. COMPARISON WITH EARLIER RESULTS AND

ILLUSTRATIVE EXAMPLE

We first show that several earlier results follow as special
cases of Theorem6. Then, we give a simple example in
which Theorem6 allows one to show the solvability of the
ergodic problem, whereas earlier conditions fail.

A. The ergodic eigenproblem and the recession operator

To address the problem of the solvability of the ergodic
equation (2), Gaubert and Gunawardena introduced in [13]
the recession operatorassociated with a Shapley operatorT
over Rn. This operator is defined, forx ∈ R

n, by T̂ (x) =
limα→+∞ T (αx)/α. Its existence is not always guaranteed,
but it does exist for any Shapley operator represented as in (1)
with bounded payments. Moreover, when it exists, it inherits
from T the additive homogeneity and monotonicity proper-
ties. Furthermore, it is positively homogeneous, meaning that
T̂ (αx) = αT̂ (x) for everyα > 0. As a consequence, any
vector proportional to the unit vector ofRn is a fixed point
of T̂ . We shall call such fixed pointstrivial fixed points.

Theorem 13 of [13] shows that if a Shapley operator
T has a recession function̂T whose only fixed points are
trivial, then all the slice spaces ofT are bounded in Hilbert’s
seminorm. An example given in the same paper shows
that this sufficient condition is not necessary. Therefore,the
present Theorem6 solves the issue raised there of giving a
necessary and sufficient condition.

B. Weakly convex maps and risk sensitive control

Cavazos-Cadena and Hernández-Hernández gave in [7],
under a weak convexity property, a necessary and suffi-
cient condition, in terms of graph, under which the ergodic
eigenproblem (2) is solvable for all the Shapley operators
g + T with g ∈ R

n. They also showed that this condition is
equivalent toT̂ having only trivial fixed points.

The weak convexity property was motivated by applica-
tions to risk sensitive control. A typical example of weakly
convex operator is the following Shapley operatorT :

Ti(x) = log
(

∑

j∈S

Mij exp(xj)
)

, i ∈ S , (4)

whereM = (Mij) is a nonnegative matrix without zero
row. A supremum of weakly convex Shapley operators is
weakly convex, hence, one can construct further examples
of weakly convex operators by taking suprema of operators
of the form (4).

It can be easily checked that under the weakly convex
hypothesis, our hypergraph conditions (Theorem6) reduce
to the graph conditions of [7]. However, this weak convexity
assumption is typically not satisfied for two-player Shapley
operators, or for dynamic programming operators of general
stochastic control problems.

C. Hypergraphs associated with a recession operator

A recent result of the authors [8] concerns the special case
in which the payment functions(a, b) 7→ rabi areboundedfor
all i ∈ S. Then, the recession map of the Shapley operator
T exists and each of its coordinate functions is given by

T̂i(x) = min
a∈Ai

max
b∈Bi

P ab
i x , i ∈ S .

Theorem 3.1 of [8] shows that the ergodic equation is
solvable for all operatorsg+T with g ∈ R

n if, and only if,
the recession operator̂T has only trivial fixed points. It is
also shown there that the latter condition can be characterized
in terms of reachability in directed hypergraphs, depending
only on the supports of the probability lawsP ab

i . We leave
it as an exercise to check that the hypergraph conditions of
Theorem6 reduces to the one of [8] in this special case.
It follows that the sufficient condition of Corollary7 is
necessary when the payment functions are bounded.

D. Example

Here, we illustrate the situation in which the conditions for
the solvability of the eigenproblem (2) given by Corollary7
are satisfied, whereas the conditions provided by [13], [7],
[8] do not apply. Consider the parametric family of Shapley
operatorsg + T , g ∈ R

3, with T : R3 → R
3 given by

T (x) =





sup0<p61

(

log p+ p(x2 ∧ x3) + (1− p)x1

)

inf0<p61

(

− log p+ px3 + (1− p)x1

)

x3





where∧ stands formin. The operatorg+T corresponds to a
game with three states: PlayerMAX partially control state1,
PlayerMIN controls state2 and state3 is an absorbing state.
In state1, PlayerMAX first receivesg1 from PlayerMIN,
then chooses an actionp ∈ (0, 1], and receives in addition
log p. Then, with probability1− p, the next state remains1,
and with probabilityp, it is chosen by PlayerMIN between
state2 and state3. Thus, maximizing the one day payoff
would lead to selectp = 1, but this leads to leave state1
with probability one. A dual interpretation applies to Player
MINin state2.



Figure1 shows a concise representation of the hypergraphs
H+ andH− associated withT , in which only the hyperarcs
with minimal tail (with respect to the inclusion partial order)
have been represented. To construct these hypergraphs, it is
convenient to notice thatT1(x) = h((x2 ∧ x3) − x1) + x1

and T2(x) = −h(x1 − x3) + x1, where h is the real
function defined byh(z) = sup0<p61(log p + pz). Also
note thath satisfiesh(z) = −1 − log(−z) for z 6 −1,
and h(z) = z for z > −1. Thus, for instance, there is
no arc from {2} to {1} in H+ since T1(αe2) = 0 for
all α > 0. However, there is a hyperarc from{2, 3} to
{1}, sinceT1(αe{2,3}) = α for all α > 0, which yields
limα→+∞ T1(αe{2,3}) = +∞. Alternatively, following the
discussion at the end of SubsectionIII-A , one may checked
that, starting from state1, PlayerMAX can force the next
state to belong to{2, 3} with positive probability, but he
cannot force it to be2.

1

2

3

H+

1

2

3

H−

Fig. 1. The hypergraphs associated withT

Then, one may check that there are no nonempty disjoint
subsets of statesI, J such thatreach(J,H+) = {1, 2, 3} \ I
andreach(I,H−) = {1, 2, 3} \ J . Hence, there do not exist
nontrivial conjugate subsets with respect to(H+,H−). By
application of Theorem6, we deduce that all the slice spaces
of T are bounded in Hilbert’s seminorm. It follows that the
ergodic equation (2) is solvable for all operatorsg+T , with
g ∈ R

3.
This conclusion cannot be obtained from the previous

theorems in [13], [7], [8]. Indeed, although the recession
operator ofT exists (it is given byT̂1(x) = x1 ∨ (x2 ∧ x3),
T̂2(x) = x1 ∧ x3 and T̂3(x) = x3), one may check that
any vector[α, 0, 0]⊤ with α > 0 is a fixed point ofT̂ . Thus,
ergodicity conditions requiring the nonexistence of nontrivial
fixed points of the recession operatorT̂ cannot be applied.
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