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Abstract

Let G be a finite abelian group. This paper is concerned with nonnegative functions on G that are
sparse with respect to the Fourier basis. We establish combinatorial conditions on subsets S and T of
Fourier basis elements under which nonnegative functions with Fourier support S are sums of squares
of functions with Fourier support T . Our combinatorial condition involves constructing a chordal cover
of a graph related to G and S (the Cayley graph Cay(Ĝ,S)) with maximal cliques related to T . Our
result relies on two main ingredients: the decomposition of sparse positive semidefinite matrices with a
chordal sparsity pattern, as well as a simple but key observation exploiting the structure of the Fourier
basis elements of G (the characters of G).

We apply our general result to two examples. First, in the case where G = Zn
2 , by constructing a

particular chordal cover of the half-cube graph, we prove that any nonnegative quadratic form in n binary
variables is a sum of squares of functions of degree at most dn/2e, establishing a conjecture of Laurent.
Second, we consider nonnegative functions of degree d on ZN (when d divides N). By constructing
a particular chordal cover of the dth power of the N -cycle, we prove that any such function is a sum
of squares of functions with at most 3d log(N/d) nonzero Fourier coefficients. Dually this shows that
a certain cyclic polytope in R2d with N vertices can be expressed as a projection of a section of the
cone of positive semidefinite matrices of size 3d log(N/d). Putting N = d2 gives a family of polytopes
in R2d with linear programming extension complexity Ω(d2) and semidefinite programming extension
complexity O(d log(d)). To the best of our knowledge, this is the first explicit family of polytopes (Pd) in
increasing dimensions where xcPSD(Pd) = o(xcLP(Pd)) (where xcPSD and xcLP are respectively the SDP
and LP extension complexity).

The authors are with the Laboratory for Information and Decision Systems, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139. Email: {hfawzi,jamess,parrilo}@mit.edu.
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1 Introduction

Let G be a finite abelian group. It is well-known that any function f : G→ C admits a Fourier decomposition
where the Fourier basis consists of the characters of G. Such a decomposition takes the form

f(x) =
∑

χ∈Ĝ

f̂(χ)χ(x) ∀x ∈ G

where Ĝ is the set of characters of G (known as the dual group of G) and f̂(χ) are the Fourier coefficients
of f . The function f : G → C is called sparse if only a few of its Fourier coefficients are nonzero. More
precisely we say that f is supported on S ⊆ Ĝ if f̂(χ) = 0 whenever χ /∈ S.

This paper is concerned with functions f : G → C that are sparse and nonnegative, i.e., f(x) ∈ R+ for
all x ∈ G. If f is a nonnegative function on G, a sum-of-squares certificate for the nonnegativity of f has
the form:

f(x) =

J∑

j=1

|fj(x)|2 ∀x ∈ G (1)

where fj : G→ C. Sum-of-squares certificates of nonnegative functions play an important role in optimiza-
tion and particularly in semidefinite programming [BPT13]. When the function f is sparse, it is natural
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to ask whether f admits a sum-of-squares certificate that is also sparse, i.e., where all the functions fj are

supported on a common “small” set T ⊆ Ĝ. This is the main question of interest in this paper:

Given S ⊆ Ĝ, find a subset T ⊆ Ĝ such that any nonnegative function G → R+

supported on S admits a sum-of-squares certificate supported on T .
(Q)

Our main result is to give a sufficient condition for a set T to satisfy the requirement above for a given S.
The condition is expressed in terms of chordal covers of the Cayley graph Cay(Ĝ,S). Recall that the Cayley

graph Cay(Ĝ,S) is the graph where nodes correspond to elements of Ĝ and where χ, χ′ are connected by an
edge if χ−1χ′ ∈ S. Our main result can be stated as follows:

Theorem 1. Let S ⊆ Ĝ. Let T be a subset of Ĝ obtained as follows: Let Γ be a chordal cover of Cay(Ĝ,S),

and for each maximal clique C of Γ, let χC be an element of Ĝ; define

T (Γ, {χC}) =
⋃

C
χCC (2)

where the union is over all the maximal cliques of Γ and where χCC := {χCχ : χ ∈ C} is the translation of
C by χC. Then any nonnegative function supported on S admits a sum-of-squares certificate supported on
T (Γ, {χC}).

Theorem 1 gives a way to construct a set T that satisfies the condition in (Q) for a given S ⊆ Ĝ. Such a

construction proceeds in two steps: first choose a chordal cover Γ of the graph Cay(Ĝ,S), and then choose

elements χC ∈ Ĝ for each maximal clique C of Ĝ. Different choices of Γ and {χC} will in general lead to
different sets T (Γ, {χC}). When using Theorem 1, one wants to find a good choice of Γ and {χC} such that
the resulting set T (Γ, {χC}) is as small as possible (or has other desirable properties).

One of the main strengths of Theorem 1 is in the ability to choose the elements {χC}. In fact the
conclusion of Theorem 1 is almost trivial if χC = 1Ĝ for all C, since in this case it simply says that any

nonnegative function has a sum-of-squares certificate supported on Ĝ, which is easy to see since G is finite.
As we will see in the applications, it is the ability to translate the cliques C of Γ via the choice of χC that is
key in Theorem 1 and allows us to obtain interesting results. Equation (2) gives us the intuition behind a
good choice of {χC}: in order to minimize the cardinality of T (Γ, {χC}) one would like to find the translations
χC that maximize the total overlap of the cliques (i.e., minimize the cardinality of their union).

Before describing the main idea behind Theorem 1 and its proof, we illustrate how one can use Theorem
1 in two important special cases, namely G = Zn2 (the boolean hypercube) and G = ZN .

• Boolean hypercube: Consider the case G = {−1, 1}n ∼= Zn2 . The Fourier expansion of functions on
{−1, 1}n take the form

f(x) =
∑

S⊆[n]
f̂(S)

∏

i∈S
xi. (3)

A function f is said to have degree d if f̂(S) = 0 for all S such that |S| > d. Many combinatorial
optimization problems correspond to optimizing a certain function f over {−1, 1}n. For example the
maximum cut problem in graph theory consists in optimizing a quadratic function over {−1, 1}n. In
[Lau03] Laurent conjectured that any nonnegative quadratic function on the hypercube is a sum of
squares of functions of degree at most dn/2e. Using our notations, this corresponds to asking whether
for S = {S ⊆ [n] : |S| = 0 or 2} one can find T ⊆ {S ⊆ [n] : |S| ≤ dn/2e} such that the conclusion

of Theorem 1 holds. By studying chordal covers of the Cayley graph Cay(Ĝ,S) we are able to answer
this question positively:

Theorem 2. Any nonnegative quadratic function on {−1, 1}n is a sum-of-squares of polynomials of
degree at most dn/2e.

Note that Blekherman et al. [BGP14] previously showed a weaker version of the conjecture that allows
for multipliers: They showed that for any nonnegative quadratic function f on the hypercube, there
exists h sum-of-squares such that h(x)f(x) is a sum-of-squares of polynomials of degree at most dn/2e.
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• Trigonometric polynomials: Another important application that we consider in this paper is the
case where G = ZN , the (additive) group of integers modulo N . The Fourier decomposition of a
function f : ZN → C is the usual discrete Fourier transform and takes the form:

f(x) =
∑

k∈ZN
f̂(k)e2iπkx/N (4)

where f̂(k) are the Fourier coefficients of f . A function f is said to have degree d if supp f ⊆
{−d,−(d − 1), . . . , d − 1, d}. Nonnegative trigonometric polynomials play an important role in many
areas such as in signal processing [Dum07], but also in convex geometry [Zie95, Bar02], in their relation
to (trigonometric) cyclic polytopes. We are interested in nonnegative functions on G of degree at most

d, i.e., functions supported on S = {−d,−(d−1), . . . , d−1, d}. By studying chordal covers of Cay(Ĝ,S)
(which is nothing but the d’th power of the cycle graph) and using Theorem 1 we are able to show the
following:

Theorem 3. Let N and d be two integers and assume that d divides N . Then there exists T ⊆ ZN with
|T | ≤ 3d log(N/d) such that any nonnegative function on ZN of degree at most d has a sum-of-squares
certificate supported on T .

Remark. Note that if one is interested in functions of degree at most d on ZN and d does not divide
N , then one can still apply Theorem 3 with d′ instead of d, where d′ is the smallest divisor of N that
is greater than d.

Dual point of view and moment polytopes Theorem 1 can be interpreted from the dual point of view
as giving a semidefinite programming description of certain moment polytopes. If S ⊆ Ĝ, define the moment
polytope M(G,S) to be the set of S-moments of probability distributions on G, i.e.,

M(G,S) =
{(

Ex∼µ
[
χ(x)

])
χ∈S ∈ CS : µ a probability measure supported on G

}
.

Note that M(G,S) is a polytope since it can be equivalently expressed as:

M(G,S) = conv
{

(χ(x))χ∈S ∈ CS : x ∈ G
}
.

Note that from a geometric point of view, nonnegative functions f : G→ R+ supported on S correspond to
valid linear inequalities for the polytope M(G,S). By giving a sum-of-squares characterization for all valid
inequalities ofM(G,S) Theorem 1 allows us to obtain a semidefinite programming description ofM(G,S).
The following statement can be obtained from Theorem 1 by duality (we call this result “Theorem 1D” to
reflect that it is a dual version of “Theorem 1”–we adopt this numbering convention throughout the paper):

Theorem 1D. Let S ⊆ Ĝ and let T = T (Γ, {χC}) be as defined in Theorem 1. Then we have the following
semidefinite programming description of the moment polytope M(G,S):

M(G,S) =
{

(`χ)χ∈S : ∃(yχ)χ∈T −1T such that yχ = `χ for all χ ∈ S , and

y1Ĝ = 1, and
[
yχχ′

]
χ,χ′∈T � 0

}
.

(5)

In terms of positive semidefinite lifts, Equation (5) shows thatM(G,S) has a Hermitian positive semidef-
inite lift of size |T |. We now illustrate this dual point of view for the two applications mentioned above,
G = {−1, 1}n and G = ZN :

• For the case of the boolean hypercube G = {−1, 1}n, if S = {S ⊆ [n] : |S| = 0 or 2}, the moment
polytope M({−1, 1}n,S \ {∅}) is nothing but the cut polytope for the complete graph on n vertices
which we denote by CUTn:

CUTn = conv
{

(xixj)i<j ∈ R(n2) : x ∈ {−1, 1}n
}
.

From the dual point of view, Theorem 2 shows that the dn/2e level of the Lasserre hierarchy for the
cut polytope is exact. This bound is tight since Laurent showed in [Lau03] that at least dn/2e levels
are needed.
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Theorem 2D. The dn/2e level of the Lasserre hierarchy for the cut polytope CUTn (as considered in
[Lau03]) is exact.

• Consider now the case G = ZN and S = {−d,−(d − 1), . . . , d − 1, d}. Here the moment polytope
M(G,S) is the trigonometric cyclic polytope of degree d which we denote by TC(N, 2d):

TC(N, 2d) = conv
{
M(2πx/N) : x = 0, 1, . . . , N − 1

}
⊂ R2d, (6)

where M(θ) is the degree d trigonometric moment curve:

M(θ) =
(

cos(θ), sin(θ), cos(2θ), sin(2θ), . . . , cos(dθ), sin(dθ)
)
.

When interpreted from the dual point of view, Theorem 3 shows that TC(N, 2d) has a Hermitian
positive semidefinite lift of size at most 3d log(N/d).

Theorem 3D. Let N and d be two integers and assume that d divides N . The trigonometric cyclic
polytope TC(N, 2d) defined in (6) has a Hermitian positive semidefinite lift of size at most 3d log(N/d).

Note that in the case d = 1 the polytope TC(N, 2d) is nothing but the regular N -gon in the plane.
Theorem 3D thus recovers, and extends to the case where N is not a power of two, a result from
[FSP14] giving a semidefinite lift of the regular N -gon of size O(logN).

For d > 1 our result is, as far as we are aware, the first nontrivial semidefinite programming lift of a
cyclic polytope. Furthermore, in the regime where N = d2 our lift is provably smaller than any linear
programming lift: Indeed, since TC(d2, 2d) is d-neighborly [Gal63], a lower bound from [FKPT13]
concerning neighborly polytopes shows that any linear programming lift of TC(d2, 2d) must have size
at least Ω(d2), whereas our semidefinite programming lift in this case has size O(d log d) = o(d2). To
the best of our knowledge this gives the first example of a family of polytopes (Pd)d∈N in increasing
dimensions where xcPSD(Pd) = o(xcLP(Pd)) where xcPSD and xcLP are respectively the SDP and LP
extension complexity (see Section 2.3 for the definitions). More precisely, we have:

Corollary 1. There exists a family (Pd)d∈N of polytopes where Pd ⊂ R2d such that

xcPSD(Pd)

xcLP(Pd)
= O

(
log d

d

)
.

The only nontrivial linear programming lift for cyclic polytopes that we are aware of is a construction
by Bogomolov et al. [BFMP14] for the polytope conv{(i, i2, . . . , id) : i = 1, . . . , N} which has size
(logN)bd/2c.

Main ideas We now briefly describe the main ideas behind Theorem 1, which can be summarized in three
steps:

1. A sum-of-squares certificate with a sparse Gram matrix : Given a nonnegative function f : G → R+

it is easy to see, since G is finite, that f can be written as a sum-of-squares. When the function f is
supported on S, one can show that f admits a specific sum-of-squares representation where the Gram
matrix Q, in the basis of characters, is sparse according to the graph Cay(Ĝ,S).

2. Chordal completion: Let Γ be a chordal cover of the graph Cay(Ĝ,S). Using well-known results
concerning positive semidefinite matrices that are sparse according to a chordal graph [GT84, GJSW84]
(see Section 2.2 for more details) one can decompose the Gram matrix Q into a sum of positive-
semidefinite matrices, where each matrix is supported on a maximal clique of Γ. In terms of sum-of-
squares representation, this means that the function f can be written as:

f =
∑

j

|fj |2 (7)

where each fj is supported on a maximal clique Cj of Γ.
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3. Translation of cliques: The problem with the decomposition (7) is that even though each maximal
clique Cj might be small, the union of the Cj ’s might be large, and thus the total support of (7) might

be large (in fact the union of the Cj is the whole Ĝ). In order to reduce the total support of the
sum-of-squares certificate (7), we use the following simple but crucial observation: if h is a function

supported on C and if χ ∈ Ĝ then χh is supported on χC and we have |χh|2 = |h|2. Thus if for each

maximal clique Cj of Γ we choose a certain χj ∈ Ĝ then, by translating each term in (7) by χj we obtain

a sum-of-squares representation of f of the form f =
∑
j |h̃j |2 where h̃j is supported in χjCj . Having

chosen the χj such that χjCj ⊆ T for all maximal cliques Cj (cf. Theorem 1), we get a representation
of f as a sum-of-squares of functions supported on T .

Organization The paper is organized as follows. Section 2 starts by giving a brief review of Fourier
analysis of finite abelian groups, as well as a review of chordal graphs, chordal covers and the main results
concerning decomposition/matrix completion with chordal sparsity structure [GT84, GJSW84]. In Section
3 we prove our main result, Theorem 1. We present the proof using the two dual viewpoints of sum-of-
squares certificates and in terms of moment polytopes. In Section 4 we look at the case of the hypercube
G = {−1, 1}n mentioned earlier, and we look in particular at quadratic functions on the hypercube. We
give an explicit chordal cover for the corresponding Cayley graph and we show how it leads to a proof of
Laurent’s conjecture. In Section 5 we look at the special case G = ZN and functions of degree d. We give
an explicit chordal cover for the corresponding graphs, and we discuss the consequences concerning positive
semidefinite lifts of the trigonometric cylic polytope.

Notations We collect some of the notations used in the paper. If z ∈ C we denote by z the complex
conjugate of z. Given a square matrix X ∈ Cn×n the Hermitian conjugate of X is denoted X∗, and X
is called Hermitian if X∗ = X. The space of n × n Hermitian matrices is denoted Hn and the cone of
Hermitian positive semidefinite matrices is denoted by Hn

+. Similarly we denote by Sn the space of n × n
real symmetric matrices and by Sn+ the cone of n× n real symmetric positive semidefinite matrices. If V is
an arbitrary set, we will denote by CV the space of complex vectors indexed by elements of V , and by HV

the space of Hermitian matrices where rows and columns are indexed by elements of V (and similarly for
HV

+ and SV ,SV+).

2 Preliminaries

In this section we present some background material needed for the paper: we first recall some of the
basic results and terminology concerning Fourier analysis on finite abelian groups [Rud90, Ter99], then we
review the definition of chordal graph and the main results concerning sparse positive semidefinite matrices
and matrix completion. We also review some of the terminology concerning lifts of polytopes/extended
formulations.

2.1 Fourier analysis on finite groups

Let G be a finite abelian group which we denote multiplicatively, and let F(G,C) be the vector space of
complex-valued functions on G. A character χ of G is a group homomorphism χ : G→ (C∗,×), i.e., it is an
element of F(G,C) which satisfies:

χ(xy) = χ(x)χ(y) ∀x, y ∈ G.

Since G is abelian, one can easily show that the (pointwise) product of two characters is a character and

that the (pointwise) inverse of a character is again a character. Thus if we denote by Ĝ the set of characters

of G, then Ĝ forms an abelian group, where the group operation corresponds to pointwise multiplication.
The group Ĝ is known as the dual group of G. Observe that since G is finite, if χ is a character then for any
x ∈ G we have χ(x)|G| = χ(x|G|) = χ(1G) = 1, which implies that |χ(x)| = 1. It follows that the inverse of
a character χ is simply its (pointwise) complex conjugate χ.
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Consider the standard inner product on F(G,C):

〈f, g〉 =
1

|G|
∑

x∈G
f(x)g(x) ∀f, g ∈ F(G,C). (8)

A crucial property of the set of characters Ĝ is that they form an orthonormal basis of F(G,C), which is

called the Fourier basis of G. Note that this implies in particular that |Ĝ| = |G|. We summarize this in the
following theorem:

Theorem 4. Let G be a finite abelian group and let Ĝ be the set of characters of G. Then Ĝ is an abelian
group with pointwise multiplication. Furthermore |Ĝ| = |G| and Ĝ forms an orthonormal basis of F(G,C)
for the standard inner product (8).

We now illustrate the previous theorem in the two examples G = {−1, 1}n (the hypercube) and G = ZN
presented in the introduction.

Example 1 (Fourier analysis on the hypercube). Let G = {−1, 1}n be the hypercube in dimension n which
forms a group of size 2n under componentwise multiplication, isomorphic to Zn2 . Observe that if S is a subset
of [n] then the function χS defined by:

χS : {−1, 1}n → C∗, χS(x) =
∏

i∈S
xi

satisfies χS(xy) = χS(x)χS(y), and thus is a character of G. For example χ∅ is the constant function equal
to 1, and χ[n] is the function χ[n](x) = x1 . . . xn. One can show that these are all the characters of G, i.e.,

Ĝ = {χS , S ⊆ [n]}. Thus the decomposition of a function f : {−1, 1}n → C in the basis of characters takes
the form:

f(x) =
∑

S⊆[n]
f̂(S)

∏

i∈S
xi,

where f̂(S) are the Fourier coefficients of f . ♦
Example 2 (Fourier analysis on ZN ). Let N be an integer and consider the (additive) group G = ZN of
integers modulo N . For k ∈ ZN , define χk by

χk : ZN → C∗, χk(x) = e2iπkx/N .

Note that χk satisfies χk(x+ y) = χk(x)χk(y) and thus χk is a character of ZN . It is not hard to show that

any character χ of ZN actually must have the form χ = χk for some k ∈ ZN . Thus the dual group ẐN of

ZN is ẐN = {χk, k ∈ ZN}. Note that χkχk′ = χk+k′ and (χk)−1 = χk = χ−k, and thus ẐN is isomorphic to
ZN . According to Theorem 4, any function f : ZN → C can be decomposed in the basis of characters:

f(x) =
∑

k∈ZN
f̂(k)e2iπkx/N ∀x ∈ ZN .

This decomposition is nothing but the well-known Fourier decomposition of discrete signals of length N . ♦
For a general finite abelian group G, the Fourier decomposition of a function f : G→ C, in the orthonor-

mal basis of characters takes the form:

f(x) =
∑

χ∈Ĝ

f̂(χ)χ(x).

The coefficients f̂(χ) are the Fourier coefficients of f . By orthonormality of the basis of characters, we have

for any χ ∈ Ĝ:

f̂(χ) = 〈χ, f〉 =
1

|G|
∑

x∈G
χ(x)f(x).

The support of a function f , denoted supp f is the set of characters χ for which f̂(χ) 6= 0:

supp f = {χ ∈ Ĝ : f̂(χ) 6= 0}.
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2.2 Chordal graphs and matrix completion

In this section we recall some of the main results concerning sparse matrix decomposition and matrix com-
pletion with a chordal sparsity structure. For more details, we refer the reader to [GJSW84, GT84] and
[AHMR88].

Chordal graphs Let G = (V,E) be a graph. The graph G is called chordal if any cycle of length at least
four has a chord. A chordal cover (also called triangulation) of G is a graph G′ = (V,E′) where E ⊂ E′ and
where G′ is chordal. Figure 1 shows a non-chordal graph G on four vertices and a chordal cover G′ of G.

1 2

34
G

1 2

34

G′

Figure 1. A non-chordal graph G and a chordal cover G′ of G.

A subset C ⊆ V is a clique in G if {i, j} ∈ E for all i, j ∈ C, i 6= j. The clique C is called maximal if it
is not a strict subset of another clique C′ of G. For example the maximal cliques of the graph G′ shown in
Figure 1 are {1, 2, 4} and {2, 3, 4}.

Sparse matrices Let Q ∈ HV be a Hermitian positive semidefinite matrix where rows and columns are
indexed by some set V . Assume furthermore that Q is sparse according to some graph G = (V,E), i.e.,

Qij 6= 0, i 6= j ⇒ {i, j} ∈ E.

One of the main tools used in this paper is a result from [GT84, GJSW84] which allows to decompose sparse
positive semidefinite matrices as a sum of positive semidefinite matrices supported on a small subset of
rows/columns. We say that a Hermitian matrix A is supported on C ⊆ V if Aij = 0 whenever i /∈ C or j /∈ C.
The result can be stated as follows:

Theorem 5. ([GT84, GJSW84]) Let Q be a Hermitian positive semidefinite matrix, and assume that Q is
sparse according to some graph G. Assume furthermore that G is chordal. Then for every maximal clique C
of G there exists a Hermitian positive semidefinite matrix QC supported on C such that:

Q =
∑

C
QC . (9)

Remark. If the sparsity pattern G of Q is not chordal, one can still apply the previous theorem by considering
a chordal cover G′ of G. Indeed if Q is sparse according to G then it also clearly sparse according to G′, since
G ⊆ G′. In this case the summation (9) is over the maximal cliques of G′.
Example 3. We can illustrate the previous theorem with a simple 4×4 matrix. Let Q be the 4×4 Hermitian
positive semidefinite matrix given by:

Q =




2 1− i 0 1 + i
1 + i 2 1− i 0

0 1 + i 2 1− i
1− i 0 1 + i 2


 .

Note that Q is sparse according to the “square graph” G shown in Figure 1(left). Since G is not chordal
we cannot directly apply Theorem 5 with G, but we can apply it with G′ shown in Figure1(right) which is
a chordal cover of G. In this case Theorem 5 asserts that one can decompose Q as a sum of two positive
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semidefinite matrices supported respectively on the maximal cliques, {1, 2, 4} and {2, 3, 4}. For this example,
it is not hard to find an explicit decomposition, for example we can verify that:

Q =




2 1− i 0 1 + i
1 + i 1 0 i

0 0 0 0
1− i −i 0 1




︸ ︷︷ ︸
�0

+




0 0 0 0
0 1 1− i −i
0 1 + i 2 1− i
0 i 1 + i 1




︸ ︷︷ ︸
�0

.

♦

Matrix completion One can also state Theorem 5 in its dual form, in terms of the matrix completion
problem. Given a graph G = (V,E), a G-partial matrix X is a matrix where only the diagonal entries, as
well as the entries Xij for {i, j} ∈ E are specified. Given a G-partial matrix X, the positive semidefinite
matrix completion problem asks whether X can be completed into a full |V | × |V | Hermitian matrix that
is positive semidefinite. Clearly a necessary condition for such a completion to exist is that X[C, C] � 0 for
all cliques C of G (note that if C is a clique of G, then all the entries of X[C, C] are specified). When G is
chordal, it turns out that this condition is also sufficient. The following theorem can actually be obtained
from Theorem 5 via duality:

Theorem 6. ([GJSW84]) Let G = (V,E) be a graph and let X be a G-partial matrix. Assume that G is
chordal. Then X can be completed into a full |V | × |V | Hermitian positive semidefinite matrix if, and only
if, X[C, C] � 0 for all maximal cliques C of G.

2.3 Lifts of polytopes

In this section we recall some of the definitions and terminology concerning lifts (or extended formulations)
of polytopes. The concepts defined here are not used in the proofs of our theorems, but simply make some
of the results more convenient to state. We refer the reader to [Yan91, GPT13] for more details.

Let P ⊂ Rd be a polytope. We say that P has a LP lift of size k if P can be expressed as the linear
projection of an affine section of the cone Rk+, i.e., if there exist π : Rk → Rd linear and an affine subspace
L ⊂ Rk such that:

P = π(Rk+ ∩ L). (10)

Note that this definition is equivalent to say that P is the projection of a polytope Q with k facets. The
smallest k such that P has a LP lift of size k is called the LP extension complexity of P and is denoted
xcLP(P ).

The definition of LP lift can be extended to PSD lifts, where instead we are looking to describe P using
linear matrix inequalities. Formally, we say that P has a Hermitian PSD lift of size k if P can be expressed
as the linear projection of an affine section of the Hermitian positive semidefinite cone Hk

+, i.e., if there exist
π : Hk → Rd linear, and an affine subspace L ⊂ Hk such that:

P = π(Hk
+ ∩ L). (11)

The smallest k for which P has a PSD lift of size k is called the PSD extension complexity of P and denoted
xcPSD(P ). Note that one can also define PSD lifts with the cone of real symmetric positive semidefinite
matrices Sk+ (instead of Hk

+) and in this case we call the lift a real PSD lift.

3 Main result for general finite abelian groups

In this section we state and prove our main result in the general setting of finite abelian groups G. We first
describe the primal point of view concerning sparse sum-of-squares certificates of nonnegative functions, and
then we present the dual point of view related to moment polytopes.
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3.1 Nonnegative functions and sum-of-squares certificates

Let G be a finite abelian group and let F(G,C) be the space of complex-valued functions on G. Given a
nonnegative function f : G→ R+, a sum-of-squares certificate for f takes the form:

f(x) =

K∑

k=1

|fk(x)|2 ∀x ∈ G. (12)

where f1, . . . , fK ∈ F(G,C).
It is well-known in the literature on polynomial optimization (see e.g., [Par00, Nes00, Las01]) that the

existence of sum-of-squares certificates can be expressed in terms of the existence of a certain positive
semidefinite matrix called a Gram matrix for f . This connection between sum-of-squares certificates and
positive semidefinite matrices will be important in this paper, and so we recall this connection more formally
in the next proposition:

Proposition 1. Let n = |G| and let b1, . . . , bn be a basis for F(G,C). Let f : G → R be a real-valued
function on G. Then f has a sum-of-squares representation (12), if, and only if, there exists a n × n
Hermitian positive semidefinite matrix Q such that

f(x) = [b(x)]∗Q[b(x)] =
∑

1≤i,j≤n
Qijbi(x)bj(x) ∀x ∈ G (13)

where [b(x)] := [bi(x)]i=1,...,n ∈ Cn. If (13) holds where Q is Hermitian positive semidefinite, we say that Q
is a Gram matrix for f in the basis b1, . . . , bn.

Proof. Assume first that f is a sum of squares, i.e., f(x) =
∑K
k=1 |fk(x)|2. Since (b1, . . . , bn) forms a

basis of F(G,C) we can write fk(x) =
∑n
i=1 akibi(x) for some coefficients aki ∈ C. Note that |fk(x)|2 =∑

1≤i,j≤n akiakjbi(x)bj(x) and thus f(x) =
∑
k |fk(x)|2 =

∑
1≤i,j≤nQi,jbi(x)bj(x) where Q is the Hermitian

matrix defined by: Qi,j =
∑
k akiakj . Note that Q is positive semidefinite since it has the form Q =

∑
k aka

∗
k

where ak is the vector (ak)i = aki.
We now show the converse. Assume f can be written as (13). Since Q is positive semidefinite, we can

find vectors ak such that Q =
∑K
k=1 aka

∗
k. If we define fk to be the function fk(x) =

∑n
i=1 akibi(x) then we

can verify that f =
∑K
k=1 |fk|2.

Given y ∈ G define the Dirac function δy at y by:

δy(x) =

{
1 if x = y

0 else.

Then it is easy to see that we have:

Proposition 2. Any nonnegative function f on G has a sum-of-squares certificate as:

f(x) =
∑

y∈G
|
√
f(y)δy(x)|2 ∀x ∈ G. (14)

Said differently, a nonnegative function f is a sum-of-squares because if we pick b1, . . . , bn to be the basis
of Dirac functions, then f satisfies Equation (13) where Q is the diagonal matrix consisting of the values
taken by f on G.

Since we are working with functions on a finite abelian group G, it is more natural (and more beneficial,
as we see later) to look at sum-of-squares representation in the basis of characters. One reason for this is
that typically the functions f we are interested in have a small support in the basis of characters and in
this case one can hope to find a sum-of-squares decomposition which also only involves a small number of
characters. The next theorem is simply a change-of-basis in the formula (14).
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Proposition 3. Let f : G → R and assume that f is nonnegative, i.e., f(x) ≥ 0 for all x ∈ G. Define the

Hermitian matrix Q ∈ R|G|×|G| indexed by characters χ ∈ Ĝ by:

Qχ,χ′ = f̂(χχ′). (15)

Then Q is positive semidefinite and we have for any x ∈ G:

f(x) =
1

|G| [χ(x)]∗Q[χ(x)] =
1

|G|
∑

χ,χ′∈Ĝ

Qχ,χ′χ(x)χ′(x). (16)

Proof. Consider the matrix X = [χ(x)]x∈G,χ∈Ĝ where rows are indexed by elements x ∈ G and columns

are indexed by characters χ ∈ Ĝ. Since the characters form an orthonormal basis of F(G,C) for the inner
product (8), this means that the matrix 1√

|G|
X is a unitary matrix. Note that we can rewrite the definition

(15) of Q in matrix terms as follows:

Q =
1

|G|X
∗ diag([f(x)]x∈G)X,

where diag([f(x)]x∈G) is the diagonal matrix with the values f(x) on the diagonal. This shows that the
eigenvalues of Q are the values {f(x), x ∈ G}, and thus Q is positive semidefinite. Since 1√

|G|
X is unitary

we also get that:

diag([f(x)]x∈G) =
1

|G|XQX
∗.

which, when evaluated at the diagonal entries is exactly Equation (16).

Example 4. We now include a simple example to illustrate the previous theorem. Let G = Z6 and consider
the function

f(x) = 1− 1

2
(χ1(x) + χ−1(x)) = 1− cos(2πx/6) ∀x ∈ Z6. (17)

Clearly f(x) ≥ 0 for all x ∈ Z6. Also note that f̂(0) = 1, f̂(1) = f̂(−1) = −1/2 and f̂(k) = 0 for all
k /∈ {−1, 0, 1}. The matrix Q defined in (15) associated to this function f takes the form:

Q =




1 −1/2 0 0 0 −1/2
−1/2 1 −1/2 0 0 0

0 −1/2 1 −1/2 0 0
0 0 −1/2 1 −1/2 0
0 0 0 −1/2 1 −1/2
−1/2 0 0 0 −1/2 1




(18)

♦
We are now interested in nonnegative functions f : G → R that are supported on a subset S ⊆ Ĝ, i.e.,

f̂(χ) = 0 for all χ /∈ S. For such functions we are interested in finding sparse sum-of-squares certificates for

f , i.e., we are interested in finding a set T ⊆ Ĝ such that any nonnegative function f supported on S has a
sum-of-squares certificate of the form:

f =

K∑

k=1

|fk|2 where supp fk ⊆ T ∀k = 1, . . . ,K. (19)

The main idea to obtain such a “sparse” sum-of-squares certificate of f is to exploit the sparsity of the
Gram matrix Q from Proposition 3. Indeed, note that if supp f = S, then the Gram matrix Q of Proposition
3 has a specific sparsity structure:

Qχ,χ′ 6= 0⇔ χχ′ ∈ S.
In other words, the sparsity structure of Q is given by the Cayley graph Cay(Ĝ,S). Recall the definition of
a Cayley graph:

11



Definition 1. Let H be a group and let S ⊂ H be a subset of H that is symmetric, i.e., x ∈ S ⇒ x−1 ∈ S.
The Cayley graph Cay(H,S) is the graph where vertices are the elements of the group H, and where two
distinct vertices x, y ∈ H are connected by an edge if x−1y ∈ S (or y−1x ∈ S, which is the same since S is
symmetric).

Remark. We do not require the set S to be a generator for the group H and hence the graph Cay(H,S)
may be disconnected. Also observe that the set S = supp f in our case is symmetric since f is real-valued;

indeed when f is real-valued we have f̂(χ) = f̂(χ) for all χ ∈ Ĝ and thus χ ∈ supp f ⇒ χ ∈ supp f .

To obtain a set T ⊆ Ĝ such that (19) holds for all functions f supported on S we will study chordal

covers of the graph Cay(Ĝ,S). We now introduce the key definition of Fourier support for a graph with

vertices Ĝ.

Definition 2. Let Γ be a graph with vertices Ĝ. We say that Γ has Fourier support (or frequencies) T ⊆ Ĝ
if for any maximal clique C of Γ there exists χC ∈ Ĝ such that χCC ⊆ T (where χCC := {χCχ : χ ∈ C} is the
translation of C by χC).

Note that one can also state the definition of Fourier support of Γ in terms of equivalence classes of
cliques: Given a subset C ⊆ Ĝ define the equivalence class of C to be all the subsets of Ĝ that can be
obtained from C by translation, i.e., it is the set [C] := {χC : χ ∈ Ĝ}. Using this terminology, the graph Γ
has Fourier support T if for any maximal clique C of Γ there is at least one representative from [C] that is
contained in T .

We are now ready to state and prove our main theorem (the theorem below was stated as Theorem 1 in
the introduction and we reuse the same numbering here since it is just a restatement).

Theorem 1. Let S be a symmetric subset of Ĝ and assume that Cay(Ĝ,S) has a chordal cover with Fourier

support T ⊆ Ĝ. Then any nonnegative function supported on S admits a sum-of-squares certificate supported
on T .

Proof. Let f : G→ R be a nonnegative function supported on S. Let Q be the Gram matrix (15) associated
to the sum-of-squares representation of f in the basis of characters. We saw that Q is sparse according to
the Cayley graph Cay(Ĝ,S). Since Γ is a cover of Cay(Ĝ,S), Q is also sparse according to Γ. Thus, since Γ
is chordal, using Theorem 5 we can find a decomposition of Q as follows:

Q =
∑

C
QC (20)

where the sum is over the maximal cliques C of Γ and where each QC is a positive semidefinite matrix
supported on C. Note that Equation (20) implies that for all x ∈ G:

[χ(x)]∗Q[χ(x)] =
∑

C
[χ(x)]∗QC [χ(x)],

where [χ(x)] := [χ(x)]χ∈Ĝ. Since f(x) = [χ(x)]∗Q[χ(x)]/|G| the above equation says that:

f(x) =
∑

C
fC(x)

where we let fC(x) := [χ(x)]∗QC [χ(x)]/|G|. Since QC is positive semidefinite and supported on C, this means

that each fC(x) is a sum-of-squares of functions supported on C ⊆ Ĝ, i.e.,

fC =
∑

k

|fC,k|2

where supp fC,k ⊆ C.
According to Definition 2, we know that there exist χC ∈ Ĝ for each maximal clique C of Γ such that

χCC ⊆ T . Now, observe that:

f =
∑

C
fC =

∑

C

∑

k

|fC,k|2
(i)
=
∑

C

∑

k

|χCfC,k|2
(ii)
=
∑

C

∑

k

|f̃C,k|2
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where in (i) we used the fact that |χC |2 = 1 and in (ii) we let f̃C,k = χCfC,k which is supported on χCC ⊆ T .
Thus we have shown that f is a sum-of-squares of functions supported on T .

Example 5. Let G = Z6 and let S = {−1, 0, 1} ⊂ Ẑ6. We will use the previous theorem to show that
any nonnegative function on Z6 supported on S = {−1, 0, 1} is a sum-of-squares of functions supported on

T = {−1, 0, 1, 3} ⊆ Ẑ6. The Cayley graph Cay(Ẑ6, {−1, 0, 1}) is the cycle graph on 6 nodes shown in Figure
2(left). Clearly the graph is not chordal since the cycle 0, 1, . . . , 5 has no chord. Figure 2(right) shows a

chordal cover Γ of Cay(Ẑ6, {−1, 0, 1}) where the maximal cliques are:

C1 = {0, 1, 3}, C2 = {1, 2, 3}, C3 = {3, 4, 5}, C4 = {0, 3, 5}.

0

12

3

4 5

0

12

3

4 5

Cay(Ẑ6, {−1, 0, 1}) Γ

Figure 2. Left: The Cayley graph Cay(Ẑ6, {−1, 0, 1}) is the cycle graph on 6 nodes.
Right: A chordal cover of the cycle graph, Γ.

Observe that if we translate the clique C2 = {1, 2, 3} by −2 we get {−1, 0, 1} and similarly if we translate
the clique {3, 4, 5} by −4 we also get {−1, 0, 1}. Thus by choosing

χC1 = 0, χC2 = −2, χC3 = −4, χC4 = 0

we get that χC + C ⊆ {−1, 0, 1, 3} for all maximal cliques C of Γ (we used the fact that 5 = −1 in Z6). In

other words we have shown that Γ is a chordal cover of Cay(Ẑ6, {−1, 0, 1}) with frequencies {−1, 0, 1, 3}.
Thus by Theorem 1, this means that any nonnegative function on Z6 supported on {−1, 0, 1} can be written
as a sum-of-squares of functions supported on {−1, 0, 1, 3}. ♦

3.2 Dual point of view: moment matrices and matrix completion

Section 3.1 shows that nonnegative functions f : G → R that have Fourier support S can be written as
sums of Hermitian squares of functions h : G→ C with Fourier support T , where T satisfies a combinatorial
property related to the Cayley graph Cay(Ĝ,S). In this section we describe the same results from the dual
point of view, arriving at a dual statement (Theorem 1D) of the main result of Section 3.1 (Theorem 1).
The dual result describes a certain moment polytope M(G,S) (see Definition 3 to follow) as the projection
of a section of the cone of positive semidefinite matrices indexed by T . We could obtain this dual result
by applying a conic duality argument directly to the statement of Theorem 1. The purpose of this section,
however, is to re-explain the results of Section 3.1 from an alternative viewpoint.

3.2.1 Moment polytopes

We begin by describing the moment polytopeM(G,S) where S ⊆ Ĝ is a collection of characters. Concretely
M(G,S) is the convex hull of a collection of complex vectors indexed by S:

M(G,S) = conv{(χ(x))χ∈S ∈ CS : x ∈ G}.

The following definition is equivalent, somewhat easier to work with, and more readily generalizable.

13



Definition 3. The moment polytope M(G,S) with respect to the characters S ⊆ Ĝ, is the convex polytope

M(G,S) = {(Eµ[χ])χ∈S ∈ CS : µ a probability measure supported on G}.

For example, in the case where G = Z6 and S = {−1, 1}, the moment polytope is

M(Z6, {−1, 1}) = conv{(e−2πki
6 , e

2πki
6 ) : k ∈ Z6}.

Nonnegative functions on finite abelian groups are sums of squares. Furthermore, we can express sums of
squares concretely in terms of a Gram matrix. There is a similarly concrete way to describe the constraints

that must be satisfied by a collection of complex numbers ` ∈ CĜ if they are a valid collection of moments of
a probability measure supported on G. This description is given naturally in terms of a matrix constructed
from (`χ)χ∈Ĝ.

Definition 4. If ` ∈ CĜ, the associated moment matrix is the square matrix with rows and columns indexed
by Ĝ of the form

[M(`)]χ,χ′ = `χχ′ for all χ, χ′ ∈ Ĝ.

If T ⊆ Ĝ and ` ∈ CT −1T , the associated truncated moment matrix is the square matrix with rows and
columns indexed by T of the form

[MT (`)]χ,χ′ = `χχ′ for all χ, χ′ ∈ T .

We now describe the dual version of the fact that any nonnegative function on G is a sum of squares.
Writing this in coordinates gives a concrete description in terms of moment matrices. That probability
measures are real-valued and nonnegative, and have total mass one corresponds to the conditions that for
any valid moment vector `, the moment matrix M(`) is Hermitian and positive semidefinite, and has unit
diagonal.

Proposition 4. The moment polytope can be expressed as

M(G, Ĝ) = {(`(χ))χ∈Ĝ : `(1Ĝ) = 1, `(|f |2) ≥ 0 for all f ∈ F(G,C)}.

Equivalently, defining coordinates `χ := `(χ) with respect to the character basis for F(G,C) we have

M(G, Ĝ) = {` ∈ CĜ : `1Ĝ = 1, M(`) � 0}.

Proof. See Appendix A.1

Some readers may recognize this as essentially a statement of Bochner’s theorem for finite abelian
groups [Rud90]. If we regard ` as a function ` : Ĝ → C, the condition that M(`) � 0 is exactly saying

that ` is a positive definite function on Ĝ. While we could use the language of positive definite functions
throughout this section, we instead use the more concrete language of moment matrices. We do this both
so that our descriptions are compatible with the literature on polynomial optimization, and so that they are
easy to implement in code.

The polytope M(G,S) is just the projection of M(G, Ĝ) onto the coordinates cooresponding to S.
Alternatively we can think of M(G,S) as those points in CS that can be completed to valid moment
sequences. This suggests describingM(G,S) in terms of a structured positive semidefinite matrix completion

problem. In this problem the diagonal is given, the entries corresponding to the edges of Cay(Ĝ,S) are given,
and the goal is to complete the matrix to a positive semidefinite moment matrix.

Corollary 2. The moment polytope with respect to S can be expressed as

M(G,S) = {` ∈ CS : ∃y ∈ CĜ s.t. `χ = yχ for all χ ∈ S, y1Ĝ = 1, M(y) � 0}. (21)
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In the example of M(Z6, {−1, 1}) we index characters by {0, 1, 2, 3, 4, 5} (so that −1 = 5). Then Corol-
lary 2 tells us that M(Z6, {−1, 1}) is the set of (`5, `1) such that

∃y2, y3, y4 ∈ C s.t.




1 `1 y2 y3 y4 `5
`5 1 `1 y2 y3 y4
y4 `5 1 `1 y2 y3
y3 y4 `5 1 `1 y2
y2 y3 y4 `5 1 `1
`1 y2 y3 y4 `5 1



� 0.

Note that we adopt the convention, throughout, that writing M(y) � 0 implies that M(y) is Hermitian.
This may, in turn, imply certain linear equalities on y. For instance, in the above example the notation
implies that `1 = `5 = `−1 and y2 = y4 = y−2 and y3 = y3.

3.2.2 Moment polytopes and matrix completion

In Proposition 3 we saw that any nonnegative (and hence sum of squares) function with Fourier support S has

a Gram matrix that is sparse with respect to the graph Cay(Ĝ,S). The dual statement is that the moment
polytope M(G,S) can be described in terms of an unstructured positive semidefinite matrix completion

problem. In this case we are given the diagonal and the entries correponding to the edges of Cay(Ĝ,S) and
just need to complete the matrix to be positive semidefinite, without requiring it to be a moment matrix.

Proposition 5. The moment polytope with respect to S can be expressed as

M(G,S) = {` ∈ CS : ∃Y ∈ HĜ
+ s.t. Yχ,χ′ = `χχ′ whenever χχ′ ∈ S and Yχ,χ = 1 for all χ ∈ Ĝ}.

Idea of proof. We describe the main idea of the proof, giving the details in Appendix A.1. The key issue is to

show that if ` ∈ CS has a completion to a positive semidefinite matrix Y ∈ HĜ
+ then ` also has a completion

to a positive semidefinite moment matrix M(y) (for some y ∈ CĜ). This can be established by observing

that the group Ĝ acts on the rows and columns of Hermitian matrices HĜ by permutations. This action
fixes, pointwise, positive semidefinite moment matrices. Averaging the orbit of Y under this group action
gives a moment matrix with the desired properties.

Recall that Theorem 1 gave a combinatorial condition under which any nonnegative function with Fourier
support S is not just a sum of squares, but a sum of squares of functions with Fourier support T . The dual
version says that under the same combinatorial condition, to check that ` ∈M(G,S) we are not required to
complete it to a full positive semidefinite moment matrix. Instead it is enough to complete it to a truncated
moment matrix MT (y) for some y ∈ CT −1T .

Theorem 1D. Let S be a symmetric subset of Ĝ. If Cay(Ĝ,S) has a chordal cover with Fourier support

T ⊆ Ĝ then

M(G,S) = {` ∈ CS : ∃y ∈ CT
−1T s.t. yχ = `χ for all χ ∈ S, y1Ĝ = 1, and MT (y) � 0}. (22)

Idea of proof. Again we summarize the key idea, deferring a detailed proof to Appendix A.1. The main issue
is to show that being able to complete ` to a truncated moment matrix MT (y) for some y ∈ CT −1T implies

we can complete it to a positive semidefinite matrix Y ∈ HĜ
+. Proposition 5 then implies we can complete

it to a positive semidefinite moment matrix.
The key observation, analogous to the translation of frequencies idea in the proof of Theorem 1, is that

given y ∈ CT −1T , the partial moment matrices MχT (y) for any χ ∈ Ĝ are all the same. Hence imposing

that MT (y) � 0, implies that MχT (y) � 0 for all χ ∈ Ĝ. Since Cay(Ĝ,S) has a chordal cover Γ with Fourier
support T , we construct from y a partial matrix supported on the maximal cliques of Γ. The conditions
that MχT (y) � 0 for all χ ∈ Ĝ are enough to show that all the principal submatrices supported on maximal
cliques of Γ are positive semidefinite. The chordal matrix completion result (Theorem 6) completes the
proof.
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Example (Example 5 cont.). Recall that the Cayley graph Cay(Ẑ6, {−1, 1}) is the 6-cycle. We label the

elements of Ẑ6 by {0, 1, 2, 3, 4, 5}. The Cayley graph has a chordal cover (see Figure 2) with Fourier support

T = {−1, 0, 1, 3} = {5, 0, 1, 3} (in Z6). Observe that T −1T = Ẑ6. Applying Theorem 1D we see that

M(Z6, {−1, 1}) =





(`5, `1) : ∃y2, y3, y4 ∈ C s.t.




1 `1 y3 `5
`5 1 y2 y4
y3 y4 1 y2
`1 y2 y4 1


 � 0




.

3.3 Real sums-of-squares and moment polytopes

The main results of Sections 3.1 and 3.2 work with sums of Hermitian squares of complex-valued functions and
complex Hermitian moment matrices respectively. While this is convenient mathematically, computationally
it is desirable to work with real-valued functions and real symmetric moment matrices. In this section we
give real versions of Theorem 1 and Theorem 1D. These are the forms most suited to implementation and
the forms we use when discussing the examples in Sections 4 and 5 to follow.

Basic observations The main additional observation we make is that the dual group Ĝ consists of two
types of characters: those that are real-valued, and those that are not. It is helpful to think of this decom-
position in terms of the involution χ 7→ χ−1 = χ on Ĝ. Real-valued characters are those that are fixed by
inversion (complex conjuation). The remaining characters come in inverse (complex conjugate) pairs.

To fix notation let Ĝ0 denote the real-valued characters and Ĝ−1∪Ĝ1 be a fixed partiton of the remaining

characters into conjugate pairs. In particular Ĝ−1 = Ĝ−11 . If S ⊆ Ĝ is symmetric (i.e. S−1 = S) then
inversion restricts to an involution on S and so we have the decomposition S = S0 ∪ S−1 ∪ S1 where

Si = Ĝi ∩ S for i = −1, 0, 1.

Sums-of-squares Suppose f is a sum of Hermitian squares of functions fj : G → C, each supported on

T ⊆ Ĝ. Then f can be expressed as a sum-of-squares of real-valued functions Re[fj ] and Im[fj ] as

f =
∑

j

|fj |2 =
∑

j

(
Re[fj ]

2 + Im[fj ]
2
)
.

Clearly Re[fj ] and Im[fj ] are supported on the symmetric subset T ∪ T −1 of characters. As such, the real
analogue of Theorem 1 is the following, the only modification being that we insist that T is symmetric.

Theorem 7. Let S ⊆ Ĝ be symmetric and let f : G → R be a non-negative function supported on S. If
T ⊆ Ĝ is symmetric and Cay(Ĝ,S) has a chordal cover with Fourier support T then f is a sum of squares
of real-valued functions supported on T .

Real moment matrices and moment polytopes We now develop the real analogue of moment poly-
topes and moment matrices. The discussion is more explicit (and more involved) than was required for the
sum-of-squares viewpoint. We begin by defining real moment polytopes. These are just linear transforma-
tions of the moment polytopes of Section 3.2. Throughout this section for any symmetric S ⊆ Ĝ partitioned
as S0 ∪ S−1 ∪ S1 fix a linear map RS : CS → R|S| defined by

RS(`) = ( (`χ)χ∈S0 , (Re[`χ], Im[`χ])χ∈S1 ) .

Observe that RS depends on the partitioning of S.

Definition 5. If S ⊆ Ĝ is symmetric and partitioned as S0 ∪ S−1 ∪ S1, the real moment polytope with
respect to S is the image of M(G,S) under RS , i.e.

MR(G,S) = RS(M(G,S)).
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This is a polytope in R|S| that is affinely isomorphic toM(G,S). For example, in the case where G = Z6

and S = {−1, 1} is decomposed as S−1 = {−1} and S1 = {1}, the real moment polytope is

MR(Z6, {−1, 1}) = conv{(cos( 2πk
6 ), sin( 2πk

6 )) : k ∈ Z6},

the regular hexagon in the plane.
We have a description of M(G,S), and hence of MR(G,S) in terms of Hermitian positive semidefinite

matrices. Using this it is straightforward to give a description in terms of real symmetric positive semidefi-
nite matrices of twice the size (via (31) in Appendix A.2). Our aim is to describe the real moment polytope
MR(G,S) in terms of real symmetric positive semidefinite matrices without increasing the size of the de-
scription. It turns out that we can do this whenever T has a property that is related to, but less restrictive
than, being symmetric.

Definition 6. A subset T ⊆ Ĝ has an equalizing involution if there is an involution σ : T → T such that
σ(χ)χ = σ(χ′)χ′ for all χ, χ′ ∈ Ĝ.

Observe that if T is symmetric, then the map that sends every element of T to its inverse satisfies
χ−1χ = (χ′)−1χ′ = 1Ĝ for all χ, χ′ ∈ T . Hence any symmetric subset of Ĝ has an equalizing involution. An

example of a set that has an equalizing involution but is not symmetric is T = {0, 1, 2, 3} ⊆ Ẑ5. Then T
is not symmetric and, furthermore, there is no k ∈ Ẑ5 such that k + T is symmetric. Nevertheless, T does
have an equalizing involution given by σ(0) = 3, σ(3) = 0, σ(1) = 2 and σ(2) = 1 since σ(k) + k = 3 for all
k ∈ T .

Our main result in this section is the following.

Theorem 8. Let S ⊆ Ĝ be symmetric and let T ⊆ Ĝ have an equalizing involution σ. If Cay(Ĝ,S) has a
chordal cover with Fourier support T then

MR(G,S) = { RS(`) ∈ R|S| :∃y ∈ CT
−1T s.t. yχ = yχ for all χ ∈ T −1T ,

yχ = `χ for all χ ∈ S, y1Ĝ = 1, and [ Re[yχχ′ ]− Im[yσ(χ)χ′ ] ]χ,χ′∈T � 0
}
.

Note that the main change between Theorem 8 and Theorem 1D is that we have replaced the condition
that the (Hermitian) truncated moment matrix MT (y) be positive semidefinite with the condition that a
real symmetric matrix indexed by T be positive semidefinite. We also explicitly add the conjugate symmetry
constraint that yχ = yχ, which was implied by MT (y) being Hermitian in Theorem 1D.

Example 6. Before giving a proof, we apply Theorem 8 to the case ofMR(Z6, {−1, 1}), the regular hexagon in
the plane. Recall that in this case we can take T = {0, 1, 3, 5} which is symmetric. Hence T has σ(χ) = χ−1

as an equalizing involution. Decomposing Ĝ as Ĝ0 = {0, 3} and, for instance Ĝ1 = {1, 2} and Ĝ−1 = {4, 5}
we have that S0 = {0} and S1 = {1}. Note also that T −1T = Ĝ in this case, giving (T −1T )i = Ĝi for
i = −1, 0, 1. Ordering the elements of T as (0, 1, 3, 5) and writing uj = Re[`j ], vj = Im[`j ], wj = Re[yj ] and
xj = Im[yj ]. we see that

[Re[yχχ′ ]− Im[yσ(χ)χ′ ]]χ,χ′∈T = [wχχ′ − xχχ′ ]χ,χ′∈T =




w0 − x0 w1 − x1 w3 − x3 w5 − x5
w5 − x1 w0 − x2 w2 − x4 w4 − x0
w3 − x3 w4 − x4 w0 − x0 w2 − x2
w1 − x5 w2 − x0 w4 − x2 w0 − x4


 .

The conjugate symmetry constraint on y implies that x0 = x3 = 0, w1 = w5, x1 = −x5, w2 = w4, and
x2 = −x4. Applying these and the constraints that u1 = w1, v1 = x1 and w0 = 1, we obtain a description
of the regular hexagon in the plane as

MR(Z6, {−1, 1}) =





(u1, v1) : ∃w2, w3, x2 ∈ R s.t.




1 u1 − v1 w3 u1 + v1
u1 − v1 1− x2 w2 + x2 w2

w3 w2 + x2 1 w2 − x2
u1 + v1 w2 w2 − x2 1 + x2


 � 0




.

♦
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Proof of Theorem 8. We use a novel result that allows us to write certain complex Hermitian linear matrix
inequalities as real symmetric linear matrix inequalities of the same size. The key requirement is that
restricted to the subspace of Hermitian matrices of interest, entry-wise complex conjugation can be expressed
as congruence by an orthogonal symmetric matrix.

Lemma 1. Let L be a subspace (over the reals) of Hd. Suppose there is some orthogonal J ∈ O(d) such
that J2 = I and

JLJT = L for all L ∈ L,

i.e. congruence by J restricted to L is entry-wise complex conjugation. Then

{L ∈ L : L ∈ Hd
+} = {L ∈ L : Re[L]− J Im[L] ∈ Sd+}.

Proof. See Appendix A.2.

Let L be the subspace (over the reals) of HT given by

L = {M(y) : y ∈ CT
−1T , yχ = yχ, for all χ ∈ T −1T }.

Let J be the |T | × |T | permutation matrix representing the equalizing involution σ : T → T . Since σ is an
involution, J satisfies J2 = I. The definition of equalizing involution comes from our desire that σ satisfy
the relation σ(χ)σ(χ′) = χχ′, equivalent to the defining relation in Definition 6, for all χ, χ′ ∈ T . Then for
any conjugate symmetric y,

JM(y)J = [yχχ′ ]σ(χ),σ(χ′)∈T = [y
σ(χ)σ(χ′)

]χ,χ′∈T

= [y
σ(χ)σ(χ′)

]χ,χ′∈T by conjugate symmetry of y

= [yχχ′ ]χ,χ′∈T since σ is an equalizing involution.

Hence congruence by J corresponds to entry-wise complex conjugation restricted to L. Applying Lemma 1
we can conclude that for all y ∈ CT −1T ,

M(y) � 0 ⇐⇒ yχ = yχ ∀χ ∈ T −1T and [Re[yχχ′ ]− Im[yσ(χ)χ′ ]]χ,χ′∈T � 0.

This completes the proof of Theorem 8.

4 Application 1: The case G = Zn2 and binary quadratic optimiza-
tion

In this section we apply the results of Section 3.1 to the case of nonnegative quadratic forms on the vertices
of the hypercube in n dimensions. Dually, the moment polytope of interest in this section is the nth cut
polytope CUTn. Our main aim is to establish Laurent’s conjecture [Lau03, Conjecture 4] that any nonnegative
quadratic form on the vertices of the hypercube in n dimension is a sum of squares of polynomials of degree
at most dn/2e.

4.1 Quadratic forms on {−1, 1}n and the cut polytope

Let G = {−1, 1}n be the vertices of the hypercube in dimension n. View G as a group (isomorphic to Zn2 )
under componentwise multiplication. Recall that the characters of G are indexed by subsets S ∈ 2[n] and
are the square-free monomials

χS(x) =
∏

i∈S
xi for all x ∈ G.

We focus on characterizing nonnegative quadratic funcions on G. These are of particular interest because
the problem of maximizing a quadratic form over G i.e.

max
x∈G

∑

1≤i<j≤n
Aijxixj (23)
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Figure 3. The Cayley graph Cay(Ĝ,S) for G = {−1, 1}4 and S = {S : |S| = 0 or |S| =
2}. The two connected components are Teven (left) and Todd (right). The vertices of
Todd are arranged to correspond to their images in Teven under the graph automorphism
φ(S) = {1}4S. We can obtain a chordal cover of Cay(Ĝ,S) by forming maximal cliques
on the vertices of Teven marked with filled circles, the vertices of Teven marked with open
circles, and the images in Todd of these two cliques under the map φ.

includes, for example, the max-cut problem, which arises when the symmetric matrix Aij is the Laplacian
of a (weighted) graph on n vertices. We can solve (23) by finding the smallest upper bound on the objective:

min
γ
γ s.t. γ −

∑

1≤i<j≤n
Aijxixj ≥ 0 for all x ∈ G. (24)

If we have a characerization of nonnegative functions onG with Fourier support S = {S ∈ 2[n] : |S| = 0 of |S| = 2}
as sums of squares of functions supported on T ⊆ Ĝ then we can solve (24) by solving a semidefinite opti-
mization problem of size |T |.

The dual picture to (24) is to consider optimization over the moment polytope M({−1, 1}n,S \ {∅}),
known as the cut polytope

CUTn :=M({−1, 1}n,S \ {∅}) = conv {(xixj)1≤i<j≤n : (x1, x2, . . . , xn) ∈ {−1, 1}n}.

We can solve the binary quadratic optimization problem (23) by optimizing the linear function defined by
A over CUTn, i.e. by solving the linear program

max
(`ij)1≤i<j≤n

∑

i<j

`ijAij s.t. (`ij)1≤i<j≤n ∈ CUTn.

If we have a PSD lift of the cut polytope CUTn of size |T | then we can solve this optimization problem by
solving a semidefinite optimization problem of size |T |.

4.2 The associated Cayley graph

To apply the results of Section 3.1 we need to understand the graph Cay(Ĝ,S). In the case n = 4 this graph

is shown in Figure 3. Throughout this section we identify the character χS ∈ Ĝ with the subset S ⊆ [n] that

indexes it and work exclusively in the language of subsets. As such, the vertex set of Cay(Ĝ,S) is 2[n], the
collection of all subsets S ⊆ [n]. There is an edge between two subsets S, T if and only if |S4T | = 2. This
graph is often called the half-cube graph.

The group operation on characters is multiplication of functions, which corresponds to taking the sym-
metric difference of the subsets that index the characters. In other words, if S, T ⊆ [n] then

χS(x)χT (x) = χS4T (x)
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where S4T = (S \T )∪(T \S). As such, there is an action of Ĝ on the vertices of Cay(Ĝ,S) by S ·T = S4T .

Furthermore if T ⊆ 2[n] is a subset of the vertices of Cay(Ĝ,S) we write S4T := {S4T : T ∈ T }.
We now record some simple observations that follow directly from the adjacency relation in Cay(Ĝ,S).

For convenience of notation, for k = 0, 1, . . . , n let

Tk = {S ⊆ [n] : |S| = k}.

Any edge of Cay(Ĝ,S) either has both endpoints in Tk for some k or one endpoint in Tk and the other in

Tk+2 for some k. Consequently, Cay(Ĝ,S) has two connected components

Teven = T0 ∪ T2 ∪ · · · ∪ T2bn/2c and Todd = T1 ∪ T3 ∪ · · · ∪ T2dn/2e−1.

Define a map φ : 2[n] → 2[n] by φ(S) = {1}4S. Since |φ(S)4φ(T )| = |S4T | for all S, T ∈ 2[n] it follows

that φ extends to an automorphism of Cay(Ĝ,S) that exchanges Teven and Todd.

4.3 Applying Theorem 1

To apply Theorem 1 from Section 3.1 we need to find a subset T ⊆ 2[n] of vertices such that Cay(Ĝ,S) has a
chordal cover with Fourier support T . The following result explicitly describes such a collection of vertices.

Proposition 6. The graph Cay(Ĝ,S) has a chordal cover with Fourier support

T =

{
T0 ∪ T2 ∪ · · · ∪ Tdn/2e if dn/2e even

T1 ∪ T3 ∪ · · · ∪ Tdn/2e if dn/2e odd.
(25)

Proof. We give a detailed proof in Appendix A.3.

Example 7. To give the flavor of the proof, we discuss the case n = 4. In this case Cay(Ĝ,S) is shown in
Figure 3. Define Γ to be the graph with vertex set 2[4] and with edges between S, T ∈ Teven if and only if
||S| − |T || ≤ 2, and edges between S, T ∈ Todd if and only if ||φ(S)| − |φ(T )|| ≤ 2. The graph Γ is chordal,
with maximal cliques given by C0 = T0∪T2, C2 = T2∪T4, φ(C0), and φ(C2). The vertices in cliques C0 and C2
are indicated by open and filled circles respectively in Figure 3. (The vertices in cliques φ(C0) and φ(C2) are

similarly marked.) If T = T0∪T2 then we can see that Γ is a chordal cover of Cay(Ĝ,S) with Fourier support
T by observing that ∅4C0 ⊆ T , {1, 2, 3, 4}4C2 ⊆ T , φ(∅)4φ(C0) ⊆ T and φ({1, 2, 3, 4})4φ(C2) ⊆ T . ♦

Laurent’s conjecture follows directly from Proposition 6 and Theorem 1.

Theorem 2. Suppose f(x) = A∅ +
∑

1≤i<j≤nAijxixj is nonnegative on G. Then there is a collection

(hk)
|T |
k=1 of functions hk : G→ R each supported on T (defined in (25)) such that

f(x) =

|T |∑

k=1

hk(x)2.

Consequently, any nonnegative quadratic form on G is a sum of squares of functions of degree at most dn/2e.
Proof. The first assertion follows directly from Proposition 6 and Theorem 1. The second assertion holds
simply because every function supported on T has degree at most dn/2e.

The dual version of this result gives a PSD lift of the cut polytope of size |T |. It follows directly from
Proposition 6 and Theorem 1D, and the observation that in this case all the characters are real-valued.

Corollary 3. The cut polytope CUTn has a real PSD lift of size |T | given by

CUTn =
{
` ∈ RS\∅ : ∃y ∈ RT 4T s.t. y∅ = 1, y{i,j} = `{i,j} for 1 ≤ i < j ≤ n, and [yS4T ]S,T∈T � 0

}

where T is defined in (25).

In the language used, for example, in [Lau03] when discussing the Lasserre hierarchy for binary quadratic
optimization, Corollary 3 could be expressed simply as Qdn/2e = CUTn for all n.
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5 Application 2: The case G = ZN and cyclic polytopes

In this section we apply the results of Section 3 to the case where G = ZN is the (additive) group of integers
modulo N . As we will see, this will allow us to obtain a positive semidefinite lift of size O(d log(N/d)) for
the regular trigonometric cyclic polytope with N vertices of degree d, when d divides N .

Recall from Section 2, that the characters of ZN are indexed by k ∈ ZN and are given by:

χk(x) = e2iπkx/N ∀x ∈ ZN .

Thus the Fourier decomposition of a function f : ZN → C is given by:

f(x) =
∑

k∈ZN
f̂(k)e2iπkx.

Furthermore, we say that a function f has degree d if it is supported on {−d,−(d− 1), . . . , d− 1, d}.

5.1 The case S = {−1, 0, 1}: the cycle graph

In this section we are interested in obtaining sparse sum-of-squares certificates for functions of degree 1 on
ZN , i.e., functions supported on S = {−1, 0, 1}. Note that the real moment polytope MR(ZN , {−1, 1}) in
this case is just the regular N -gon in the plane:

MR(ZN , {−1, 1}) = conv
{

(cos(2πx/N), sin(2πx/N)) : x ∈ ZN
}
.

To obtain sparse sum-of-squares for nonnegative functions of degree 1 we are going to study the Cayley

graph Cay(ẐN , {−1, 0, 1}). Note that this is simply the cycle graph on N vertices, which we will denote by
CN for simplicity. The object of this section is to show that this graph admits a chordal cover with a small
number of frequencies. We show:

Theorem 9. Let N be a positive integer greater than 2. Then CN has a chordal cover with frequencies

T ⊆ ẐN where |T | ≤ 3 log2N . More precisely the set T can be described explicitly as follows: Let k1 < k2 <

· · · < kl be the positions of the nonzero digits in the binary expansion of N so that N =
∑l
j=1 2kj . Let k be

the largest integer such that 2k < N (i.e., k = k1 − 1 if N is a power of two and k = kl otherwise). Then
the set T is given by

T = {0} ∪ {−2i, 2i, i = 0, . . . , k − 1} ∪





i∑

j=1

2kj , i = 1, . . . , l − 2



 . (26)

Proof. The chordal cover is constructed by induction on N , see Appendix A.4 for the details. Figure 4 shows
the chordal cover for N = 8 and N = 16.

If we combine the previous theorem with Theorem 1, we get that any nonnegative degree-1 function on
ZN has a sum-of-squares certificate supported on T where |T | ≤ 3 logN . Note that this corresponds to
Theorem 3 from the introduction for the case d = 1. Dually, this allows us to obtain a Hermitian positive
semidefinite lift of the regular N -gon of size |T | ≤ 3 logN .

In a previous paper [FSP14] we showed that the N = 2n-gon admits a positive semidefinite lift of size
2n − 1. In fact we showed that any linear function on ZN that is nonnegative can be written as a sum-of-
squares of functions supported on {0} ∪ {±2i, i = 0, . . . , n− 2}. Note that this is the same set of frequencies
that we get if we plug N = 2n in (26). Thus Theorem 9 generalizes the result of [FSP14] for arbitrary N .

5.2 Degree d functions: powers of cycle graph

In this section we are interested in functions of degree d on ZN where d divides N . We show how to

construct a chordal cover of the associated Cayley graph Cay(ẐN ,S) using the chordal cover of the cycle
graph constructed in the previous section. This allows us to show that any nonnegative function on ZN of
degree d has a sum-of-squares certificate supported on at most 3d log(N/d) frequencies.
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Figure 4. Triangulation of the 8-cycle with frequencies T = {−2,−1, 0, 1, 2} and of the
16-cycle with frequencies T = {−4,−2,−1, 0, 1, 2, 4}.

5.2.1 Triangulating the Cayley graph

Observe that the Cayley graph Cay(ẐN ,S) when S = {−d, . . . , d} is the d’th power of the cycle graph CN .
Recall the definition of power of a graph:

Definition 7. Let G = (V,E) be a graph. Given d ∈ N, the d’th power of G is the graph Gd = (V,Ed) where
two vertices u, v ∈ V are connected if there is a path of length ≤ d connecting u and v in G.

Following this observation, we will use the symbol CdN to denote the Cayley graph Cay(ẐN , {−d, . . . , d}).
Figure 5(left) shows the graph CdN for N = 8 and d = 2.

C2
8 C4 �K2

0
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2

3

4

5
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4
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7

Figure 5. Left: The second power of the cycle graph on 8 nodes: two nodes are connected
by an edge if their distance in the cycle graph is at most 2. Right: The graph C4 �K2.
Note that C2

8 ⊂ C4 �K2. The edges in C4 �K2 that are not in C2
8 are indicated with a

heavier line.

To construct a triangulation of CdN we will actually use the triangulation of the cycle graph CN constructed
in the previous section. For this, we need the following definition of strong product of graphs:

Definition 8. Given graphs G = (V,E) and G′ = (V ′, E′) define the strong product of G and G′, denoted
G � G′ to be the graph with vertex set V × V ′ and where two vertices (u, u′) ∈ V × V ′ and (v, v′) ∈ V × V ′
are connected if:

(u = v and {u′, v′} ∈ E′) or ({u, v} ∈ E and u′ = v′) or ({u, v} ∈ E and {u′, v′} ∈ E′).

Remark. An important special case is when one of the graphs, say G′, is a complete graph G′ = Km. In this
case two distinct vertices (u, u′) and (v, v′) in G �Km are connected if either u = v or {u, v} ∈ E(G).

Given two graphs G = (V,E) and G′ = (V,E′) with the same vertex set V we say that G′ covers G and
we write G ⊆ G′ if E ⊆ E′. Our main observation to construct a chordal cover of CdN is the following:
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Proposition 7. Let N and d be two integers and assume that d divides N . Let CdN be the d’th power of the
cycle graph CN and let CN/d be the cycle graph on N/d nodes. Then

CdN ⊆ CN/d �Kd. (27)

Proof. To show the inclusion (27) we first need to identify the vertices of CdN with those of CN/d�Kd. Note

that the vertex set of CdN can be identified with ZN and the vertex set of CN/d can be identified with ZN/d.
We also identify the vertices of Kd with {0, . . . , d − 1}. By definition of �, the vertices of CN/d �Kd are
ZN/d × {0, . . . , d− 1}. Consider the map:

φ : ZN/d × {0, . . . , d− 1} → ZN , φ(q, r) = qd+ r. (28)

This map is well-defined and gives a bijection between ZN/d × {0, . . . , d − 1} and ZN . The map φ thus

identifies vertices of CdN with those of CN/d �Kd.
We now show that, with this identification, inclusion (27) holds. We need to show that if i, i′ ∈ ZN are

connected in CdN (i.e., i − i′ ∈ {−d, . . . , d}) then necessarily (q, r) and (q′, r′) are connected in CN/d �Kd

(i.e., q − q′ ∈ {−1, 0, 1}), where (q, r) and (q′, r′) are such that i = φ(q, r) and i′ = φ(q′, r′). Consider for
q ∈ ZN/d the set of vertices of CdN given by Vq = {φ(q, r) : r = 0, . . . , d − 1} ⊂ ZN . Note that (Vq)q∈ZN/d
forms a partition of the vertex set of CdN and that |Vq| = d for all q (for example if N = 8 and d = 2 (Figure
5) V0 = {0, 1}, V1 = {2, 3}, V2 = {4, 5}, V4 = {6, 7}). It is easy to see that if i and i′ are two adjacent vertices
of CdN , then i and i′ must be in the same group (i.e., i, i′ ∈ Vq) or in adjacent group (i.e., i ∈ Vq and i′ ∈ Vq+1

or vice-versa). In other words this means that q − q′ ∈ {−1, 0, 1} which means that (q, r) and (q′, r′) are
connected in CN/d �Kd.

The previous proposition gives a natural way to construct a chordal cover of CdN from that of CN/d.

Indeed if Γ is a chordal cover of CN/d then one can show that Γ � Kd is a chordal cover of CdN and one
can also characterize the maximal cliques of Γ �Kd in terms of those of Γ. This is the object of the next
proposition.

Proposition 8. Let G = (V,E) be a graph and d be any integer.

1. If G′ is such that G ⊆ G′ then G �Kd ⊆ G′ �Kd.

2. If G is chordal then G �Kd is chordal.

3. All the maximal cliques of G �Kd have the form C ×Kd where C is a maximal clique of G.

Proof. 1. The first point is clear from the definition of �.

2. Let (u1, v1) . . . (ul, vl) be a cycle in G � Kd of length l ≥ 4 where (ul, vl) = (u1, v1). If there exists
i ∈ {1, . . . , l − 1} such that ui = ui+1 then the edge {(ui, vi), (ui+2, vi+2)} is a chord of the cycle.
Otherwise note that u1 . . . ul is a cycle in G of length ≥ 4. Since G is chordal there is 1 ≤ i, j ≤ l − 1
with j − i ≥ 2 such that {ui, uj} ∈ E. In this case the edge {(ui, vi), (uj , vj)} is a chord of the cycle.

3. The third property easily follows from the fact that if C = {(ui, vi), i = 1, . . . , k} is a clique in G �Kd

then {ui, i = 1, . . . , k} ⊆ V is a clique in G.

We can now use the triangulation of the cycle graph constructed in the previous section to obtain a
triangulation of CdN .

Proposition 9. Let N and d be two integers and assume that d divides N . If CN/d has a triangulation with

frequencies T ⊆ ZN/d, then CdN has a triangulation with frequencies

T ′ = {dk + r : k ∈ T , r ∈ {0, . . . , d− 1}}. (29)

Note that |T ′| ≤ d · |T |.
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Proof. Let Γ be a triangulation CN/d with frequencies T . By definition, this means that for any maximal
clique C of CN/d, there is kC ∈ ZN/d such that kC + C ⊆ T .

By Proposition 8, we know that Γ �Kd is a chordal cover of CdN . Let C′ be a maximal clique of Γ �Kd.
By Proposition 8, we know that there exists C maximal clique of Γ such that C′ = C ×Kd = {dq + r : q ∈
C, r ∈ {0, . . . , d− 1}}. Define kC′ = dkC ∈ ZN and note that:

kC′ + C′ = {dkC + dq + r : q ∈ C, r ∈ {0, . . . , d− 1}}
= {(kC + q)d+ r : q ∈ C, r ∈ {0, . . . , d− 1}} ⊆ T ′,

where the last inclusion follows from the fact that kC + q ∈ T whenever q ∈ C. We have thus shown that for
any maximal clique C′ of Γ�Kd, there is kC′ ∈ ZN such that kC′ + C′ ⊆ T ′. Thus this shows that Γ�Kd is
a chordal cover of CdN with frequencies T ′.

Combining Proposition 9 and the triangulation of the cycle graph from Theorem 9 we get the following
corollary:

Corollary 4. Let N and d be two integers and assume that d divides N . Then the graph CdN has a

triangulation with frequencies T ⊂ ẐN where |T | ≤ 3d log(N/d).

Using Theorem 1, this proves Theorem 3 from the introduction concerning nonnegative functions on ZN
of degree d.

Theorem 3. Let N and d be two integers and assume that d divides N . Then there exists T ⊆ ZN with
|T | ≤ 3d log(N/d) such that any nonnegative function on ZN of degree at most d has a sum-of-squares
certificate supported on T .

Figure 6 shows the triangulation of C2
16 obtained by triangulating C8 using Theorem 9 and applying the

strong graph product with K2.
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Figure 6. Triangulation of the graph C2
16 obtained as the strong graph product of Γ and

K2, where Γ is the triangulation of C8 obtained from Theorem 9 and illustrated in Figure
4(left).

5.2.2 Cyclic polytopes

Observe that the real moment polytope for G = ZN and S = {−d, . . . , d} is given by:

MR(ZN , {−d, . . . , d}) = conv
{

(cos(2πx/N), sin(2πx/N), . . . , cos(2πdx/N), sin(2πdx/N)), x ∈ ZN
}
⊂ R2d.

This is just the regular trigonometric cyclic polytope which we abbreviate by TC(N, 2d):

TC(N, 2d) = conv
{
M(2πx/N) : x = 0, 1, . . . , N − 1

}
⊂ R2d, (30)
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where M(θ) is the degree d trigonometric moment curve:

M(θ) =
(

cos(θ), sin(θ), cos(2θ), sin(2θ), . . . , cos(dθ), sin(dθ)
)
.

Cyclic polytopes play an important role in polyhedral combinatorics [Zie95] and satisfy many interesting
properties. For example the celebrated Upper Bound Theorem, states that for any 2d dimensional polytope
P with N vertices, fi(P ) ≤ fi(TC(N, 2d)) for any i = 0, . . . , 2d, where fi(P ) is the number of i-dimensional
faces of a polytope P [Zie95]. Another important property of cyclic polytopes is that they are neighborly
[Gal63] (recall that a 2d-dimensional polytope P is called neighborly if any collection of d vertices of P span
a face of P ).

The results from this section allow us to obtain a positive semidefinite lift of TC(N, 2d) of sizeO(d log(N/d))
when d divides N . More precisely, if we combine Corollary 4 and Theorem 1D we get that TC(N, 2d) has a
Hermitian positive semidefinite lift of size at most 3d log(N/d), proving Theorem 3D from the introduction:

Theorem 3D. Let N and d be two integers and assume that d divides N . Then the trigonometric cyclic
polytope TC(N, 2d) has a Hermitian positive semidefinite lift of size at most 3d log(N/d).

Real positive semidefinite lifts Using the results of Section 3.3 one can convert the Hermitian positive
semidefinite lift of TC(N, 2d) into a real positive semidefinite lift of size at most 4d log(N/d). Indeed, first
note that in the case d = 1, if T is the set of frequencies (26) for the cycle graph CN then T ∪ (−T ) has
cardinality at most 4 log(N) and the set T ∪ (−T ) clearly has an equalizing involution since it is symmetric.
Thus this shows that in the case d = 1, the moment polytopeMR(ZN , {−1, 1}) has a real positive semidefinite
lift of size at most 4 log(N). For the case where d > 1 and d divides N it is not difficult to show that if T
has an equalizing involution σ then T ′ defined in (29) also has an equalizing involution. Indeed given k ∈ T
and r ∈ {0, . . . , d− 1}, define σ′ : T ′ → T ′ by σ′(dk + r) = dσ(k) + d− r − 1 (such a map is well-defined).
Then σ′(dk + r) + dk + r = d(σ(k) + k) + d which is a constant independent of k and r, and thus σ′ is an
equalizing involution for T ′. Thus using the symmetric set of frequencies for the cycle graph CN/d (of size
4 log(N/d)) we get that T ′ has size at most 4d log(N/d) and has an equalizing involution. Thus this shows
that MR(ZN , {−d, . . . , d}) has a real positive semidefinite lift of size at most 4d log(N/d).

Comparison with LP lifts One can show that in the regime N = Θ(d2) our positive semidefinite lift for
TC(N, 2d) is provably smaller than any linear programming lift of TC(N, 2d). Indeed, the following lower
bound on the LP extension complexity of k-neighborly polytopes was proved in [FKPT13]:

Proposition 10. ([FKPT13, Proposition 5.16]) If P be a k-neighborly polytope with N vertices then
xcLP(P ) ≥ min(N, (k + 1)(k + 2)/2).

Since TC(N, 2d) is d-neighborly, if we choose for example N = d2 then the previous proposition asserts
that xcLP(TC(d2, 2d)) ≥ Ω(d2) whereas in this case our positive semidefinite has size O(d log d). This allows
us to prove the following result giving a gap between SDP extension complexity and LP extension complexity.

Corollary 1. There exists a family (Pd)d∈N of polytopes where Pd ⊂ R2d such that

xcPSD(Pd)

xcLP(Pd)
= O

(
log d

d

)
.

The only nontrivial LP lift for cyclic polytopes that we are aware of is a recent construction by Bogomolov
et al. [BFMP14] for the cylic polytope

C(N, d) = conv
{

(i, i2, . . . , id) : i = 1, . . . , N
}

of size (logN)bd/2c. Note that this lift has smaller size than the “trivial” vertex lift of C(N, d) only when
d < O((logN)/(log logN)). Their construction for d = 2 is based on the reflection relations framework of
Kaibel and Pashkovich [KP11] and the case of general d is then obtained via tensor products.
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6 Conclusion

In this paper we studied nonnegative functions f defined on a finite abelian group G. We looked at functions
f that have a sparse Fourier support S and we identified a certain combinatorial condition involving chordal
covers of the Cayley graph Cay(Ĝ,S), that guarantees the existence of a sparse sum-of-squares certificate for
any nonnegative function supported on S. We applied our general framework to two special cases. First we
looked at quadratic functions defined on the hypercube G = {−1, 1}n and we showed that any nonnegative
quadratic function on G has a sum-of-squares certificate of degree at most dn/2e. This proves a conjecture
by Laurent from 2003 [Lau03] and shows that the Lasserre hierarchy for the cut polytope converges after
dn/2e steps. Second, we looked at nonnegative functions defined on G = ZN , the group of integers modulo
N . We showed that when d divides N , any degree d nonnegative function on ZN has a sum-of-squares
certificate with functions supported on some T where |T | ≤ O(d log(N/d)). From the geometric point of
view, this establishes that the regular trigonometric cyclic polytope of degree d in N vertices has a positive
semidefinite lift of size O(d log(N/d)). For the regime N = Θ(d2) this gives us a family of polytopes in
increasing dimensions, where the ratio of the PSD extension complexity to the LP extension complexity is
O((log d)/d).

Equivariance of lifts Observe that the moment polytopes M(G,S) ⊂ CS considered in this paper are
invariant under the natural action of G on CS given by ρ(x) = diag([χ(x)]χ∈S). One can show that the
Hermitian PSD lifts for M(G,S) considered in this paper respect this symmetry of M(G,S), in a certain
formal sense known as equivariant lifts defined in [FSP13].

Open problems We conclude by briefly discussing two concrete problems about regular trigonometric
cyclic polytopes arising from this work. In previous work we showed that any ZN -equivariant PSD lift of the
regular N -gon must have size at least ln(N/2) [FSP14, Theorem 9]. Since all the Hermitian PSD lifts in this
paper are equivariant, this shows that it is not possible to construct substantially better equivariant PSD
lifts of the regular N -gons than the construction given in Theorem 3D with d = 1. It would be interesting
to establish corresponding lower bounds for general d.

Problem 1. Find lower bounds on the size of (ZN -equivariant) PSD lifts of the regular trigonometric cyclic
polytope of degree d in N vertices.

Problem 9.9 of [FGP+14] asks for a “family of polytopes that exhibits a large (e.g. exponential) gap
between its nonnegative and psd ranks”. We have found that the regular trigonometric cyclic polytope of
degree d in N = d2 vertices gives an explicit family of polytopes for which we can prove a significant (but
far from exponential) gap between PSD and LP extension complexity. It may be possible to prove a better
lower bound (parameterized by N and d) on the LP extension complexity for this family of polytopes since
the bound we use only uses the fact that the polytope is neighborly. Such a lower bound may allow us to
establish a larger gap between the LP and PSD extension complexity of these polytopes.

Problem 2. Find N(d) to make the gap between the LP and PSD extension complexity of regular trigono-
metric cyclic polytopes of degree d in N(d) vertices as large as possible.

A Additional proofs

A.1 Proofs from Section 3.2

In this section we provide detailed proofs of the main results in Section 3.2.

Proof of Lemma 4. Suppose µ is a probability measure supported on G. Then because µ is a probability
measure, (Eµ[χ])χ∈S certainly satisfies Eµ[1Ĝ] = 1 and Eµ[|f |2] ≥ 0 whenever f ∈ F(G,C). Conversely,
suppose ` is a linear functional on F(G,C) such that `(1Ĝ) = 1 and `(|f |2) ≥ 0 for all f ∈ F(G,C). We
show that `(·) coincides with Eµ[·] for some probability measure µ supported on G. For any x ∈ G define
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µ({x}) = `(δx). Since δx = |δx|2 we have that µ({x}) = `(|δx|2) ≥ 0 for all x ∈ G. Since ` is linear

∑

x∈G
µ({x}) = `

(∑

x∈G
δx

)
= `(1Ĝ) = 1.

Hence µ defines a probability measure supported on G and `(·) is exactly the corresponding expectation

Eµ[·]. The second description of M(G, Ĝ) in the lemma follows by rewriting the condition `(|f |2) for all
f ∈ F(G,C) in coordinates with respect to the character basis as

`(
∣∣ ∑

χ∈Ĝ

f̂(χ)χ
∣∣2) =

∑

χ,χ′∈Ĝ

`(χχ′)f̂(χ)f̂(χ′) for all (f̂(χ))χ∈Ĝ ∈ CĜ.

This is exactly the definition of the matrix M(`) = [`χχ′ ]χ,χ′∈Ĝ being Hermitian positive semidefinite.

Proof of Proposition 5. If (`χ)χ∈S ∈ M(G,S) then from Corollary 2 there is (yχ)χ∈Ĝ such that yχ = `χ for

all χ ∈ S, y1Ĝ = 1, and M(y) � 0. Hence we can take Yχ,χ′ = yχχ′ to show that (`χ)χ∈S is an element of
the right hand side of (21).

Conversely, suppose there exists Y ∈ HĜ
+ with Yχ,χ′ = `χχ′ whenever χχ′ ∈ S and Yχ,χ = 1 for all χ ∈ Ĝ.

Our task is to construct, from Y some (yχ)χ∈Ĝ such that yχ = `χ for all χ ∈ S, y1Ĝ = 1, and M(y) � 0.

Observe that Ĝ acts on Hermitian matrices HĜ indexed by elements of Ĝ by simultaneously permuting the
rows and columns, i.e. by [λ ·Y ]χ,χ′ = Yλχ,λχ′ . We construct a new matrix Z by averaging Y over this group
action:

Zχ,χ′ :=
1

|Ĝ|
∑

λ∈Ĝ

[λ · Y ]χ,χ′ =
1

|Ĝ|
∑

λ∈Ĝ

Yλχ,λχ′ .

Since the action of λ is by simultaneously permuting rows and columns each λ·Y , and hence Z itself, is positive
semidefinite with ones on the diagonal. Since we have constructed Z by averaging over a group action, Z is
fixed by the action and so satisfies Zλχ,λχ′ = Zχ,χ′ for all χ, χ′ ∈ Ĝ. Consequently there is some (yχ)χ∈Ĝ such

that Zχ,χ′ = yχχ′ for all χ, χ′ ∈ Ĝ. It remains to show that if χχ′ ∈ S then yχχ′ := Zχ,χ′ = Yχ,χ′ := `χχ′ .
This holds because if χχ′ ∈ S then

Zχ,χ′ =
1

|Ĝ|
∑

λ∈Ĝ

Yλχ,λχ′ =
1

|Ĝ|
∑

λ∈Ĝ

`χχ′ = `χχ′ .

Hence y has all the desired properties, completing the proof.

Proof of Theorem 1D. First we show that M(G,S) is a subset of the right-hand-side of (22). To see this
observe that the right-hand-side of (21) is certainly contained in the right-hand-size of (22).

We now establish the reverse inclusion. Suppose (`χ)χ∈S is such that there exists (yχ)χ∈T −1T with

yχ = `χ for all χ ∈ S, y1Ĝ = 1 and MT (y) � 0. Let Γ be a chordal cover of Cay(Ĝ,S) with Fourier support

T . Specifically Γ has the property that for every maximal clique C of Γ there is χC ∈ Ĝ such that χCC ⊆ T .
Define the Γ-partial matrix Yη,η′ = yηη′ whenever (η, η′) form an edge of Γ and Yχ,χ = 1 for all χ ∈ Ĝ.

This is well defined because if (η, η′) is an edge of Γ, then ηη′ ∈ T −1T . To see this observe that any edge

of Γ is contained in a maximal clique C, and so there is some χC ∈ Ĝ such that χCη ∈ T and χCη′ ∈ T .
Consequently ηη′ = χCηχCη′ ∈ T −1T .

We show that Y [C, C] � 0 for all maximal cliques C of the chordal graph Γ. This holds because

Y [C, C] = [yηη′ ]η,η′∈C = [yχCηχCη′ ]η,η′∈C = [yχχ′ ]χ,χ′∈χCC

which, since χCC ⊆ T , is a principal submatrix of the positive semidefinite (by assumption) matrix MT (y) =
[yχχ′ ]χ,χ′∈T . By the chordal completion theorem (Theorem 6) we can complete Y to a positive semidefinite

matrix Y ∈ SĜ+. The completed matrix has unit diagonal and, whenever χχ′ ∈ S,

Yχ,χ′ = yχχ′ = `χχ′

where the first equality is because the edge set of Γ contains the edge set of Cay(Ĝ,S) and the second is
from the definition of y. Hence, by Proposition 5, (`χ)χ∈S ∈M(G,S), as we require.
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A.2 Proof of Lemma 1

Proof of Lemma 1. First note that L ∈ Hd
+ if and only if L ∈ Hd

+ which holds if and only if the block

diagonal matrix
[
L 0
0 L

]
∈ H2d

+ . Conjugating by a unitary matrix we obtain

[
1√
2
I 1√

2
I

i√
2
I − i√

2
I

] [
L 0
0 L

] [ 1√
2
I 1√

2
I

i√
2
I − i√

2
I

]∗
=

[
Re[L] Im[L]
− Im[L] Re[L]

]
. (31)

We have simply recovered the familiar realization of Hd
+ as a section of S2d

+ , and have not yet used any
special properties of L. To complete the proof it remains to carefully choose a 2d× 2d orthogonal matrix Q
(depending on J) such that

Q

[
Re[L] Im[L]
− Im[L] Re[L]

]
QT =

[
Re[L]− J Im[L] 0

0 Re[L]− J Im[L]

]
for all L ∈ L.

Observe that J2 = I and JTJ = I imply that J = JT . Since JLJT = L we have that for all L ∈ L,

Re[L] =
L+ JLJ

2
and Im[L] =

L− JLJ
2i

. (32)

It follows that for all L ∈ L, Re[L] and Im[L] commute and anti-commute respectively with J , i.e.,

J Re[L] = Re[L]J and J Im[L] = − Im[L]J. (33)

Choosing Q to be the orthogonal matrix Q = 1√
2

[
I J
−J I

]
we obtain

[
1√
2
I 1√

2
J

− 1√
2
J 1√

2
I

] [
Re[L] Im[L]
− Im[L] Re[L]

][ 1√
2
I 1√

2
J

− 1√
2
J 1√

2
I

]T
=

[
Re[L]− J Im[L] 0

0 Re[L]− J Im[L]

]
.

Clearly this last matrix is positive semidefinite if and only if the real symmetric matrix Re[L] − J Im[L] is
positive semidefinite, completing the proof.

A.3 Proof of Proposition 6

Proof of Proposition 6. The proof proceeds as follows. First we define a graph Γ and prove that it is a
chordal cover of Cay(Ĝ,S). We then characterize the maximal cliques of Γ. Finally we show that for any
maximal clique C of Γ there is some S ∈ 2[n] such that S4C ⊆ T , establishing the stated result. We consider
the two cases dn/2e even and dn/2e odd separately. We describe the argument in detail in the case where
dn/2e is even, and just sketch the required modifications in the case where dn/2e is odd.

Assume that dn/2e is even. Let Γ be the graph with vertex set 2[n] such that two vertices S, T are
adjacent in Γ if and only if either

• |S| and |T | are both even and ||S| − |T || ≤ 2 or

• |S| and |T | are both odd and ||φ(S)| − |φ(T )|| ≤ 2.

Note that just like Cay(Ĝ,S), the graph Γ also has two connected components with vertex sets Teven and Todd.
Furthermore, φ (defined in Section 4.2) is also an automorphism of Γ that exchanges these two connected

components. Observe that if |S4T | = 2 (i.e. S and T are adjacent in Cay(Ĝ,S)) then both ||S| − |T || ≤ 2

and ||φ(S)| − |φ(T )|| ≤ 2 hold. Hence if S and T are adjacent in Cay(Ĝ,S) they are also adjacent in Γ.
We now show that Γ is a chordal graph. Let the vertices S1, S2, S3, . . . , Sk form a k-cycle (with k ≥ 4)

in Γ such that each of the Si ∈ Teven. Without loss of generality assume that |S1| ≤ |Si| for 1 ≤ i ≤ k. We
show that the cycle S1, S2, S3, . . . , Sk has a chord. If |S2| = |S1| then ||S1|− |S3|| = ||S2|− |S3|| ≤ 2 (since S2

and S3 are adjacent) and so there is a chord between S1 and S3. Otherwise suppose |S2| = |S1|+ 2. Because
S1 and Sk are adjacent we see that either |Sk| = |S1| = |S2| − 2 or |Sk| = |S1| + 2 = |S2| and so there is a
chord between S2 and Sk. Now suppose S1, S2, S3, . . . , Sk form a k-cycle (with k ≥ 4) in Γ such that each
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of the Si ∈ Todd. Then the image of the cycle under φ is a k-cycle in Γ with vertices in Teven and so it has a
chord. Since φ is an automorphism of Γ it follows that S1, S2, S3, . . . , Sk also has a chord. So Γ is a chordal
cover of Cay(Ĝ,S).

The subgraphs of Γ induced by the vertex sets Ck := Tk ∪ Tk+2 (for k = 0, 2, . . . , 2bn/2c − 2) and the
vertex sets φ(Ck) (for k = 0, 2, . . . , 2bn/2c − 2) are cliques in Γ. In fact, these are maximal cliques in Γ. To
show that each Ck is a maximal clique, suppose S is a vertex that is not in Ck. Then either |S| is odd (in
which case S is not adjacent to any element of Ck) or |S| ≤ k − 2 (in which case S is not adjacent to any
T ∈ Tk+2) or |S| ≥ k + 4 (in which case S is not adjacent to any T ∈ Tk). Hence there is no inclusion-wise
larger clique of Γ containing Ck. Since φ is an automorphism of Γ it follows that the φ(Ck) are also maximal
cliques of Γ. Finally, there are no other maximal cliques in Γ because every edge of Γ is contained either in
Ck or φ(Ck) for some k = 0, 2, . . . , 2bn/2c − 2.

It remains to show that for any maximal clique Ck (for k = 0, 2, . . . , 2bn/2c − 2) of Γ there is Sk ∈ 2[n]

such that Sk4Ck ⊆ T . This is sufficient to establish that Cay(Ĝ,S) has a chordal cover with Fourier support
T because for the cliques φ(Ck) we have that φ(Sk)4φ(Ck) = Sk4Ck ⊆ T . The following gives valid choices
of Sk (for k = 0, 2, . . . , 2bn/2c − 2).

• If k ≤ dn/2e − 2 then Ck ⊆ T so we can take Sk = ∅.

• If k ≥ dn/2e and n is even then n = 2dn/2e and so n−k−2 ≤ dn/2e−2. Hence [n]4Ck = Cn−k−2 ⊆ T
so we can take Sk = [n].

• If k ≥ dn/2e and n is odd then n = 2dn/2e − 1 and so n− k + 1 ≤ dn/2e. Hence

φ([n])4Ck = [n]4φ(Ck) ⊆ [n]4(Tk−1 ∪ Tk+1 ∪ Tk+3) ⊆ Tn−k−3 ∪ Tn−k−1 ∪ Tn−k+1 ⊆ T

so we can take Sk = φ([n]).

This completes the argument in the case where dn/2e is even.
In the case where dn/2e is odd we exchange the roles of the odd and even components in the definition

of Γ and throughout the argument. More precisely, two vertices S, T are adjacent in Γ if and only if either

• |S| and |T | are both odd and ||S| − |T || ≤ 2 or

• |S| and |T | are both even and ||φ(S)| − |φ(T )|| ≤ 2.

It is still the case that Γ is a chordal cover of Cay(Ĝ,S). Its maximal cliques are now Ck := Tk ∪ Tk+2 for
k = 1, 3, . . . , 2dn/2e − 3 together with the φ(Ck). Note that the cliques are now indexed by odd integers.
As before, we can choose the Sk (for k = 1, 3, . . . , 2dn/2e − 3) to be Sk = ∅ if k ≤ dn/2e − 2, Sk = [n] if
k ≥ dn/2e and n is even, and Sk = φ([n]) if k ≥ dn/2e and n is odd.

This completes the argument in the case where dn/2e is odd.

A.4 Proof of Theorem 9: triangulation of the cycle graph

In this appendix we prove Theorem 9 concerning the triangulation of the cycle graph CN . Theorem 10
below shows how to construct a triangulation of the cycle graph CN+1 on N + 1 nodes, by induction.
The triangulation of CN used to obtain Theorem 9 will then be obtained simply by contracting a certain
edge of the triangulation of CN+1 (more details below). We thus start by describing a triangulation of the
N + 1-cycle.

Theorem 10 (Triangulation of the cycle graph on N+1 vertices). Let N be an integer greater than or equal

2. Let k1 < · · · < kl be the position of the nonzero digits in the binary expansion of N , i.e., N =
∑l
i=1 2ki .

Let k be the largest integer such that 2k < N (i.e., k = k1 − 1 if N is a power of two and k = kl otherwise).
Then there exists a triangulation of the cycle graph on N + 1 nodes CN+1 with frequencies:

T = {0} ∪ {±2i, i = 0, . . . , k} ∪





i∑

j=1

2kj , i = 1, . . . , l − 1



 . (34)
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Proof. The proof of the theorem is by induction on N . Consider the cycle graph on N+1 nodes where nodes
are labeled 0, 1, . . . , N . To triangulate the graph, we first put an edge between nodes 0 and 2k and another
edge between nodes 2k and N , where 2k is the largest power of two that is strictly smaller than N . This is
depicted in Figure 7.

0 N

2k

(a) (b)

{−2k, 0, N − 2k}

Figure 7. Recursive triangulation of the cycle 0 . . . N on N + 1 vertices

Note that the frequencies used by the triangle {0, 2k, N} are equivalent, by translation, to {−2k, 0, N−2k}.
We now use induction to triangulate the two remaining parts of the cycle (denoted (a) and (b) in Figure 7):
• For part (a), which is a cycle graph labeled 0 . . . N ′ with N ′ = 2k, the induction hypothesis gives us a

triangulation with frequencies
Ta = {0} ∪ {±2i, i = 0, . . . , k − 1}. (35)

• For part (b) of the graph, we use induction on the cycle 2k . . . N which is, by translation, equivalent to
the cycle with labels 0 . . . N ′′ where N ′′ = N − 2k. We distinguish two cases:

– If N = 2k+1, then we have N ′′ = 2k and induction gives a triangulation of (b) with the same frequencies
as for part (a). Thus in this case we get a triangulation of the full (N + 1)-cycle with frequencies:

Ta ∪ {−2k, 0, 2k} = {0} ∪ {±2i, i = 0, . . . , k}

which is what we want.

– Now assume that N < 2k+1, which means that the most significant bit of N is at position k = kl.
Thus the binary expansion of N ′′ = N − 2k is the same as that of N except that the bit at position
k = kl is replaced with a 0. Let k′′ be the largest integer such that 2k

′′
< N ′′. Using induction we get

a triangulation of the cycle 0 . . . N ′′ using frequencies where

Tb = {0} ∪ {±2i, i = 0, . . . , k′′} ∪





i∑

j=1

2kj , j = 1, . . . , l − 2



 . (36)

Combining the triangulation of parts (a) and part (b) we get a triangulation of the (N + 1)-cycle with
frequencies

{−2k, 0, N − 2k}︸ ︷︷ ︸
triangle {0, 2k, N}

∪Ta ∪ Tb.

Given the expressions (35) and (36) for Ka and Kb, and noting that k′′ ≤ k − 1 and that N − 2k =∑l−1
j=1 2kj , one can check that the triangulation has frequencies in

T = {0} ∪ {±2i, i = 0, . . . , k} ∪





i∑

j=1

2kj , i = 1, . . . , l − 1



 .

which is exactly what we want.

To complete the proof, it remains to show the base case of the induction. We will show the base cases
N = 2 and N = 3. For N = 2, note that the (N + 1)-cycle is simply a triangle which is already triangulated
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and the frequencies are simply {−1, 0, 1}. If we evaluate expression (34) for N = 2 (note that here k = 0)
we get T = {−1, 0, 1}, as needed.

For N = 3 (the 4-cycle), we have k = 1 and l = 2 with k1 = 0 and k2 = 1. Thus expression (34) evaluates
to T = {0} ∪ {±1,±2} ∪ {1} = {−2,−1, 0, 1, 2}. It is easy to construct a triangulation of the 4-cycle with
such frequencies (one can even construct one where T = K ∪ (−K) = {−1, 0, 1}).

Example 8. Figure 8 shows the recursive construction for the case N = 8. We have indicated in each triangle
(3-clique) the associated set of frequencies. ♦

0

1

2
3

4

5

6
7

8

−4, 0, 4

−2, 0, 2

−1,
0, 1

−1, 0, 1

−
1, 0, 1

−2, 0, 2

−
1, 0, 1

Figure 8. Illustration of the recursive triangulation of the (N + 1)-cycle for N = 8.

Proof of Theorem 9. To prove Theorem 9 for the N -cycle, we use the triangulation of the (N + 1)-cycle of
Theorem 10 except that we regard nodes 0 and N as the same nodes (they collapse into a single one). Thus
this means that the triangle in Figure 7 with frequencies {−2k, 0, N − 2k} also collapses and we only have to
look at the frequencies for parts (a) and (b). It is not hard to show that the frequencies we get are the same
as those given in Equation (34) except that in the middle term the iterate i goes from 0 to k− 1 (instead of
from 0 to k), and in the last term the iterate i goes from 1 to l − 2 (instead of from 1 to l − 1) which gives
exactly the set of frequencies of Equation (26).

Note that there are actually many different ways of constructing triangulations for the cycle graph, and
different constructions will lead to a different set of “frequencies”. We can mention that for the cycle graph
CN one can actually construct a triangulation where the number of frequencies is related to the logarithm
of N base 3. When N is a power of three the frequencies are precisely the powers of 3 that are smaller than
N . We omit the precise description of this construction, but Figure 9 shows the triangulation for the 9-cycle
and 27-cycle.
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Figure 9. Triangulation of the 9-cycle with frequencies T = {0,±1,±3} and of the
27-cycle with frequencies T = {0,±1,±3,±9}.
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