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Global Formulations of Lagrangian and Hamiltonian Mechanics
on Two-Spheres

Taeyoung Lee∗, Melvin Leok†, and N. Harris McClamroch

Abstract— This paper provides global formulations of La-
grangian and Hamiltonian variational dynamics evolving on
the product of an arbitrary number of two-spheres. Four types
of Euler-Lagrange equations and Hamilton’s equations are
developed in a coordinate-free fashion on two-spheres, without
relying on local parameterizations that may lead to singularities
and cumbersome equations of motion. The proposed intrinsic
formulations of Lagrangian and Hamiltonian dynamics are
novel in that they incorporate the geometry of two-spheres,
resulting in equations of motion that are expressed compactly,
and they are useful in analysis and computation of the global
dynamics.

I. I NTRODUCTION

The two-sphere is the two-dimensional manifold that is
composed of unit-vectors inR3. There are a wide variety of
dynamical systems that evolve on multiple copies of two-
spheres. In robotics, the configuration of articulated robotic
arms interconnected by spherical joints is represented by
two-spheres [1]. Since the surface of the Earth is approx-
imately a sphere, spherical dynamics arise readily in earth
science and meteorology [2]. In quantum mechanics, the pure
state space of a two-level quantum mechanical system is a
two-sphere, referred to as the Bloch sphere [3].

In most of the existing literature on dynamical systems
evolving on two-spheres, the unit-sphere is parameterizedby
two angles. For example, a point on the two-sphere is often
described by its longitude and latitude. Parametrizing the
two-sphere by two angles is straightforward, and the angles
are typically viewed as being in an open subset ofR

2.
However, such parameterizations of the two-sphere suffer

from the following two main issues. First, parameterizations
represent the two-sphere only locally. This can be easily
observed from the fact that the longitude is not well defined
at the north pole and the south pole. This causes a singularity
in representing the kinematics on the two-sphere, especially
when converting the velocity of a curve on the two-sphere
into the time-derivatives of the longitude and the latitude.
This yields numerical ill-conditioning in the vicinity of those
singularities, which cannot be avoided unless one switches
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coordinate charts, which becomes problematic when trying
to track motions with large angular deviations.

The second issue is that the equations of motion of
dynamical systems on the two-sphere become exceedingly
complicated when expressed using local coordinates and
necessarily involve complicated trigonometric expressions.
For example, the dynamics of a multiple spherical pendulum,
written in terms of angles, is extremely complicated.

This paper aims to provide global formulations of dynam-
ics evolving on the product of an arbitrary number of two-
spheres. In particular, we study dynamical systems that can
be viewed as Lagrangian systems or as Hamiltonian systems
that encompass a large class of mechanical systems that
appear in robotics, structural dynamics, quantum mechanics
or meteorology. Most importantly, the unit-vectors on the
two-sphere are regarded as elements of a manifold, and
dynamics are formulated directly on two-spheres in a global
fashion via variational principles.

This geometric formulation is said to becoordinate-free,
as it does not require the use of local charts, coordinates or
parameters that may lead to singularities or ambiguities in
the representation. As such, it can be applied to arbitrarily
large angle rotational maneuvers on the two-spheres globally.
Furthermore, this provides an efficient and elegant way to
formulate, analyze, and compute the dynamics and their
temporal evolutions. The corresponding mathematical model
developed on two-spheres is nicely structured and elegant.
This representational efficiency has a substantial practical ad-
vantage compared with local coordinates for many complex
dynamical systems; this fact has not been appreciated by the
applied scientific and engineering communities.

In short, the main contribution of this paper is provid-
ing geometric formulations of the equations of motion for
Lagrangian and Hamiltonian systems that evolve on two-
spheres using variational methods. The proposed global
formulations, that do not require local charts, have not
been previously studied, even in the well-known literature
on geometric mechanics, such as [4], [5], [6]. Preliminary
results have been given in [7], [8], where Euler-Lagrange
equations are developed for a certain class of mechanical sys-
tems whose kinetic energy is repressed as a quadratic form
with fixed inertia elements. This paper provides both Euler-
Lagrange equations and Hamilton’s equations for arbitrary
mechanical systems without such restrictions.
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II. T HE TWO-SPHERE

The two-sphere is the two-dimensional manifold of unit-
vectors inR3, i.e.,

S
2 = {q ∈ R

3 | ‖q‖ = 1}. (1)

It is composed of the set of points that have the unit distance
from the origin inR3. The tangent space of the two-sphere
at q ∈ S2 corresponds to the two-dimensional plane that is
tangent to the sphere at the pointq, and it is given by

TqS
2 = {ξ ∈ R

3 | q · ξ = 0}. (2)

Throughout this paper, the standard dot product between two
vectors is denoted byx · y = xT y for any x, y ∈ R

n.
Therefore, for any curveq(t) : R → S2 on the two-

sphere parameterized by timet, its time derivative satisfies
q(t) · q̇(t) = 0. From now on, we do not explicitly denote
dependence on time for brevity, unless needed. This implies
that there exists an angular velocityω : R → R

3 such that

q̇ = ω × q = S(ω)q, (3)

where the hat mapS(·) : R3 → R
3×3 is defined such that

S(x)y = x × y and ST (x) = −S(x) for any x, y ∈ R
3.

More explicitly,

S(ω) =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 . (4)

Without loss of generality, the angular velocity is constrained
to be orthogonal toq, i.e., ω · q = 0. Therefore, the three
vectorsq, q̇, andω are mutually orthogonal, and the angular
velocity can be written as

ω = S(q)q̇. (5)

It follows that ω̇ = S(q)q̈ and ω̇ is perpendicular toq as
well.

III. L AGRANGIAN MECHANICS ONTWO-SPHERES

We consider dynamical systems evolving on the product of
n copies of two-spheres, namely(S2)n. The corresponding
Euler–Lagrange equations are first obtained in terms of a
Lagrangian expressed in terms of the configurations and
the time derivatives of the configurations, namely(q, q̇).
A second form of Euler–Lagrange equations is obtained in
terms of a modified Lagrangian expressed in terms of the
configurations and the angular velocities,(q, ω). In each
case, these Euler–Lagrange equations are simplified for the
important case that the kinetic energy function is a quadratic
function of the time derivatives of the configurations.

A. Euler–Lagrange equations in terms of(q, q̇)

Suppose that a LagrangianL(q, q̇) : T(S2)n → R
1

is given on the tangent bundle of(S2)n, where (q, q̇) =
((q1, . . . , qn), (q̇1, . . . , q̇n)) ∈ T(S2)n. For example, it can be
defined as the difference between a kinetic energy and a po-
tential energy. We derive the corresponding Euler–Lagrange
equations according to Hamilton’s variational principle.

Let qi : [t0, tf ] → S
2 be a differentiable curve fori ∈

{1, . . . , n}. The variation is a parameterized curve defined as
qǫi : (−c, c)× [t0, tf ] → S2 for c > 0, such thatq0i (t) = qi(t)
for any t ∈ [t0, tf ] and qǫi (t0) = qi(t0), qǫi (tf ) = q(tf ) for
any ǫ ∈ (−c, c).

We can express the variation of the curveqi using the
matrix exponential map as follows:

qǫi (t) = eǫS(γi(t)) qi(t), (6)

for differentiable curvesγi : [t0, tf ] → R
3 satisfying

γi(t0) = γi(tf ) = 0. Since the exponentǫS(γi) is skew-
symmetric, the exponential matrix is in the special orthog-
onal group,SO(3) = {R ∈ R

3×3 |RTR = I, det[R] = 1},
thereby guaranteeing that the variation is a parameterized
curve onS2, i.e.,‖qǫi (t)‖ = 1. There is no loss of generality
in requiring thatγi(t) · qi(t) = 0 for all t0 ≤ t ≤ tf ; that is,
γi andqi are orthogonal. In short, the variation of the curve
qi in S2 is expressed in terms of a curve inR3 via (6).

The corresponding infinitesimal variations are given by

δqi(t) =
d

dǫ

∣

∣

∣

∣

ǫ=0

qǫ(t) = S(γi(t))qi(t), (7)

and satisfyδqi(t0) = δqi(tf ) = 0. Since the variation and the
differentiation commute, the expression for the infinitesimal
variations of the time derivatives are given by

δq̇i(t) =
d

dǫ

∣

∣

∣

∣

ǫ=0

q̇ǫ(t) = S(γ̇i(t))qi(t) + S(γi(t))q̇i(t). (8)

These expressions define the infinitesimal variations for a
vector functionq = (q1, . . . , qn) : [t0, tf ] → (S2)n. The
infinitesimal variations are important ingredients to derive
the Euler–Lagrange equations on(S2)n. We subsequently
suppress the time argument, thereby simplifying the notation.

The action integral is the integral of the Lagrangian
function along a motion of the system over a fixed time
period, i.e.,G =

∫ tf
t0

L(q, q̇) dt. The infinitesimal variation
of the action integral is given by

δG =
d

dǫ

∣

∣

∣

∣

ǫ=0

∫ tf

t0

L(qǫ, q̇ǫ) dt = 0.

This can be rewritten in terms ofδqi as

δG =

∫ tf

t0

{

n
∑

i=1

∂L(q, q̇)

∂q̇i
· δq̇i +

n
∑

i=1

∂L(q, q̇)

∂qi
· δqi

}

dt.

(9)

Let fi ∈ R
3 be the generalized force acting onqi. The

corresponding virtual work is given by

δW =

n
∑

i=1

fi · δqi. (10)

According to the Lagrange–d’Alembert principle, we have
δG = −δW for any variations. We now substitute the
expressions for the infinitesimal variations of the motion (7)
and (8) into this, and we simplify the result to obtain the
Euler–Lagrange equations expressed in terms of(q, q̇).



Proposition 1: Consider a Lagrangian L(q, q̇) :
T(S2)n → R for a mechanical system evolving on
the product of two-spheres, with the generalized forcefi.
The Euler-Lagrange equations are given by

(

I3 − qiq
T
i

)

{

d

dt

(

∂L(q, q̇)

∂q̇i

)

−
∂L(q, q̇)

∂qi
− fi

}

= 0,

(11)

for i ∈ {1, . . . , n}. Here, the3×3 identity matrix is denoted
by I3 ∈ R

3×3.
Proof: See Appendix B.

This describes the evolution of the dynamical flow(q, q̇) ∈
T(S2)n on the tangent bundle of the configuration man-
ifold (S2)n. In the above equation (11), the expression
in the braces corresponds to the Euler–Lagrange equation
for dynamical systems evolving onRn. It is interesting to
note that the Euler–Lagrange equations onS2 corresponds
to its orthogonal projection onto the plane normal toqi,
represented by the matrixI3 − qiq

T
i .

Next, we consider the important case that the kinetic
energy is a quadratic function ofq̇, and the potential energy
U is given as a function ofq, i.e., the Lagrangian can be
written as

L(q, q̇) =
1

2

n
∑

j,k=1

q̇Tj mjk(q)q̇k − U(q), (12)

where the scalar inertial termsmjk : (S2)n → R
1 satisfy

the symmetry conditionmjk(q) = mkj(q) and the quadratic
form in the time derivatives of the configuration is positive-
definite on(S2)n.

Corollary 1: The Euler–Lagrange equations for the La-
grangian given by (12) with the generalized forcefi are

mii(q)q̈i + (I3 − qiq
T
i )

n
∑

j=1
j 6=i

mij(q)q̈j +mii(q) ‖q̇i‖
2
qi

+ (I3 − qiq
T
i )

{

Fi(q, q̇) +
∂U(q)

∂qi
− fi

}

= 0, (13)

for i ∈ {1, . . . , n}, whereFi(q, q̇) ∈ R
3 is

Fi(q, q̇) =

n
∑

j=1

ṁij(q)q̇j −
1

2

∂

∂qi

n
∑

j,k=1

q̇Tj mjk(q)q̇k.

Proof: See Appendix B.
Note that the third term of (13) represents the centripetal
acceleration to ensure that the unit-length constraint‖qi‖ = 1
is always satisfied. If the inertia termsmij are independent
of the configurationq, thenFi(q, q̇) = 0.

B. Euler–Lagrange equations in terms of(q, ω)

An alternate expression for the Euler–Lagrange equations
is now obtained in terms of the angular velocities introduced
in (5). We express the action integral in terms of the modified
Lagrangian function

L̃(q, ω) = L(q, S(ω)q), (14)

where the kinematics equations are given by (3). We use the
notationω = (ω1, . . . , ωn) ∈ R

3n, and we view the modified
LagrangianL̃(q, ω) as being defined on the tangent bundle
T(S2)n.

Let the modified action integral bẽG =
∫ tf
t0

L̃ dt. Its
infinitesimal variation can be written as

δG̃ =

∫ tf

t0

n
∑

i=1

{

∂L̃(q, ω)

∂ωi

· δωi +
∂L̃(q, ω)

∂qi
· δqi

}

dt.

(15)

Next, we derive expressions for the infinitesimal variation
of the angular velocity vectors. From (5),

δωi = S(δqi)q̇i + S(qi)δq̇i,

Substituting (7) and (8) and rearranging,

δωi = (S(γi)qi)× q̇i + S(qi)(S(γ̇i)qi + S(γi)q̇i).

Expanding each term and using the fact thatqi · qi = 1 and
qi · q̇i = qi · γi = 0, this reduces to

δωi = (q̇i · γi)qi + γ̇i − (qi · γ̇i)qi.

Substitute (3) to obtain

δωi = (γi · (S(ωi)qi))qi + (I3 − qiq
T
i )γ̇i,

= qiq
T
i (S(γi)ωi) + (I3 − qiq

T
i )γ̇i.

The matrix qiqTi corresponds to the orthogonal projection
along qi. But, as both ofγi and ωi are orthogonal toqi,
S(γi)ωi is already parallel toqi. Therefore,

δωi = −S(ωi)γi + (I3 − qiq
T
i )γ̇i. (16)

The infinitesimal variation ofωi is composed of two parts:
the first term−S(ωi)γi = γi × ωi is parallel toqi, and it
represents the variations due to the change ofqi; the second
term corresponds to the orthogonal projection ofγ̇i onto the
orthogonal complement toqi, and it is due to the time rate
change of the variation ofqi.

We now substitute (7) and (16) into (15), and simplify the
result to obtain the Euler–Lagrange equations expressed in
terms of(q, ω).

Proposition 2: The Euler–Lagrange equations on(S2)n

for the Lagrangian given by (14) with the generalized force
fi are

(I − qiq
T
i )

{

d

dt

(

∂L̃(q, ω)

∂ωi

)

− 2S(ωi)
∂L̃(q, ω)

∂ωi

}

− S(qi)

(

∂L̃(q, ω)

∂qi
+ fi

)

= 0, i = 1, . . . , n. (17)

Proof: See Appendix C.
This form of the Euler–Lagrange equations on(S2)n,

expressed in terms of angular velocities, can be obtained
directly from the Euler–Lagrange equations given in (11) by
viewing the kinematics (3) as defining a change of variables
from q̇ to ω. This establishes the equivalence of the Euler–
Lagrange equations in terms of(q, ω) (17) and the Euler–
Lagrange equations in terms of(q, q̇) (11).



Next, we consider the important case that the kinetic
energy is a quadratic form as in (12). Substituting (3)
into (12), and using the fact thatωT

i S(qi)
TS(qi)ωi =

ωT
i

(

I3 − qiq
T
i

)

ωi = ωT
i ωi, the modified Lagrangian can be

expressed as

L̃(q, ω) =
1

2

n
∑

i=1

ωT
i mii(q)ωi

+
1

2

n
∑

i=1

n
∑

j=1
j 6=i

ωT
i S(qi)

Tmij(q)S(qj)ωj − U(q). (18)

Substituting this into (17) yields the corresponding Euler–
Lagrange equations as follows.

Corollary 2: The Euler–Lagrange equations for the mod-
ified Lagrangian given by (18) with the generalized forcefi
are

mii(q)ω̇i +

n
∑

j=1
j 6=i

S(qi)
Tmij(q)S(qj)ω̇j

−mij(q)S(qi) ‖ωj‖
2
qj

+ S(qi)

{

Fi(q, ω) +
∂U(q)

∂qi
− fi

}

= 0, (19)

for i = 1, . . . , n, whereFi(q, ω) ∈ R
3 is

Fi(q, ω) =

n
∑

j=1

ṁij(q)S(ωj)qj

−
1

2

n
∑

j=1

n
∑

k=1

(qTj S(ωj)
TS(ωk)qk)

∂mjk(q)

∂qi
.

Proof: See Appendix C.
Similar to Corollary 1, if the inertial terms are independent
of the configuration, thenFi(q, ω) = 0. This version of the
Euler–Lagrange differential equations describe the dynamical
flow (q, ω) ∈ T(S2)n on the tangent bundle of(S2)n.

IV. H AMILTONIAN MECHANICS ONTWO-SPHERES

We will now introduce the Legendre transformation and
then we derive Hamilton’s equations for dynamics that
evolve on(S2)n. The derivation is based on the phase space
variational principle, a natural modification of Hamilton’s
principle for Lagrangian dynamics. Two forms of Hamilton’s
equations are obtained. One form is expressed in terms of
momentum vectors(µ1, . . . , µn) ∈ T∗

q(S
2)n that are con-

jugate to the velocities(q̇1, . . . , q̇n) ∈ Tq(S
2)n, whereq ∈

(S2)n. The other form of Hamilton’s equations are expressed
in terms of momentum vectors(π1, . . . , πn) ∈ R

3n that are
conjugate to the angular velocities(ω1, . . . , ωn) ∈ R

3n.

A. Hamilton’s equations in terms of(q, µ)

As in the prior section, we begin with a Lagrangian
functionL : T(S2)n → R

1, which is a real-valued function
defined on the tangent bundle of the configuration manifold
(S2)n. The Legendre transformation of the Lagrangian func-
tion L(q, q̇) leads to the Hamiltonian form of the equations
of motion in terms of a conjugate momentum vector. For

qi ∈ S
2, the corresponding conjugate momentumµi lies in

the dual spaceT∗
qi
S2. We identify the tangent spaceTqiS

2

and its dual spaceT∗
qi
S2 by using the usual dot product in

R
3. More explicitly, the Legendre transformation is given by

µi · q̇i =
∂L(q, q̇)

∂q̇i
· q̇i,

for any q̇i ∈ R
3 orthogonal toqi. Since the component ofµi

parallel toqi has no effect on the inner product above, the
vector representingµi is selected to be orthogonal toqi; that
is µi is equal to the projection of∂L(q,q̇)

∂q̇i
onto the tangent

spaceTqiS
2. Thus

µi = (I3 − qiq
T
i )

∂L(q, q̇)

∂q̇i
. (20)

We assume that the Lagrangian function has the property
that the Legendre transformation is invertible in the sense
that the aboven algebraic equations, viewed as a mapping
from Tq(S

2)n to T∗
q(S

2)n, is invertible. Since these tangent
and cotangent spaces are embedded inR

3n, we can view
the Legendre transformation as being the restriction of a
mapping fromR

3n to R
3n that is invertible.

The Hamiltonian functionH : T∗(S2)n → R
1 is given by

H(q, µ) =
n
∑

i=1

µi · q̇i − L(q, q̇), (21)

where the right hand side is expressed in terms of(q, µ)
using the Legendre transformation (20).

The Legendre transformation can be viewed as defining
a transformation(q, q̇) 7→ (q, µ), which implies that the
Euler–Lagrange equations can be written in terms of the
transformed variables; this is effectively Hamilton’s equa-
tions. However, Hamilton’s equations can also be obtained
using Hamilton’s phase space variational principle, and this
approach is now introduced.

Consider the action integral in the form,

G =

∫ tf

t0

{

n
∑

i=1

µi · q̇i −H(q, µ)

}

dt.

Integrating by parts and using the fact that the variationδq

vanishes att0 andtf , the infinitesimal variation of the action
integral is given by

δG =
n
∑

i=1

∫ tf

t0

{

(

−µ̇i −
∂H(q, µ)

∂qi

)

· δqi

+

(

q̇i −
∂H(µ, p)

∂µi

)

· δµi

}

dt = 0. (22)

Next, we derive the expression for the variations ofµi.
According to the definition of the conjugate momentaµi

given by (20), we haveqi · µi = 0, which implies that
δqi · µi + qi · δµi = 0. To impose this constraint on the
variations explicitly, we decomposeδµi into the sum of
two orthogonal components: one component parallel toqi,
namelyδµC

i = qiq
T
i δµi, and the other component orthogonal

to qi, namely δµM
i = (I3×3 − qiq

T
i )δµi. Satisfaction of



the constraint implies thatqTi δµ
C
i = qTi δµi = −µT

i δqi,
so thatδµM

i = (I3 − qiq
T
i )δµi is otherwise unconstrained.

Substituting this and (7) into (22), we obtain Hamilton’s
equations in terms of(q, µ) as follows.

Proposition 3: Hamilton’s equations on(S2)n for the
Hamiltonian given by (21) with the generalized forcefi are

q̇i = (I3×3 − qiq
T
i )

∂H(q, µ)

∂µi

, (23)

µ̇i = −(I3×3 − qiq
T
i )

(

∂H(q, µ)

∂qi
− fi

)

+
∂H(q, µ)

∂µi

× (µi × qi) , (24)

for i = 1, . . . , n.
Proof: See Appendix D.

Thus, equations (23) and (24) describe the Hamiltonian flow
in terms of (q, µ) ∈ T∗(S2)n on the cotangent bundle of
(S2)n.

When fi = 0, any time-independent Hamiltonian is
preserved along the solution of Hamilton’s equations, since

dH

dt
=

∂H

∂t
+

n
∑

i=1

∂H

∂qi
· q̇i +

∂H

∂µi

· µ̇i

=
∂H

∂t
+

n
∑

i=1

∂H

∂µi

·

{

∂H

∂µi

× (µi × qi)

}

=
∂H

∂t
.

Next, we consider the case where the kinetic energy is a
quadratic function of the time derivatives of the configuration
so that the Lagrangian is given by (12). The conjugate
momentum vector is defined by the Legendre transformation

µi = mii(q)q̇i + (I3 − qiq
T
i )

n
∑

j=1
j 6=i

mij(q)q̇j .

We assume that these algebraic equations, viewed as a
linear mapping from(q̇1, . . . , q̇n) ∈ Tq(S

2)n ⊂ R
3n to

(µ1, . . . , µn) ∈ T∗
q(S

2)n ⊂ R
3n, can be inverted and

expressed in the form

q̇i = (I3 − qiq
T
i )

n
∑

j=1

mI
ij(q)µj , (25)

where mI
ij : (S2)n → R

3×3. There is no loss of gen-
erality in including the indicated projection in the above
expression since the inverse necessarily guarantees that if
(µ1, . . . , µn) ∈ T

∗
q(S

2)n ⊂ R
3n then (q̇1, . . . , q̇n) ∈

Tq(S
2)n ⊂ R

3n. The Hamiltonian can be expressed as

H(q, µ) =
1

2

n
∑

j,k=1

µT
j m

I
jk(q)µk + U(q). (26)

Corollary 3: Hamilton’s equations for the Hamiltonian
given by (26) with the generalized forcefi are (25) and

µ̇i =
n
∑

j=1

(

mI
ij(q)µj

)

× (µi × qi)

− (I3 − qiq
T
i )

1

2

∂

∂qi

n
∑

j=1

n
∑

k=1

µT
j m

I
jk(q)µk

− (I3 − qiq
T
i )

(

∂U(q)

∂qi
− fi

)

. (27)

Proof: See Appendix D.
Hamilton’s equations (25) and (27) describe the Hamil-

tonian flow in terms of(q, µ) ∈ T∗(S2)n on the cotangent
bundle of(S2)n.

B. Hamilton’s equations in terms of(q, π)

We now present an alternate version of Hamilton’s equa-
tions using the Legendre transformation of the modified La-
grangian functioñL(q, ω) to define the conjugate momentum
vector. The Legendre transformation(ω1, . . . , ωn) ∈ R

3n →
(π1, . . . , πn) ∈ R

3n is defined by

πi = (I3 − qiq
T
i )

∂L̃(q, ω)

∂ωi

. (28)

Here πi ∈ R
3 is viewed as conjugate toωi ∈ R

3, i =
1, . . . , n. We use the notationπ = (π1, . . . , πn) ∈ R

3n.
We assume that the modified Lagrangian function has the
property that the Legendre transformation is invertible in
the sense that the above algebraic equations, viewed as a
mapping fromR

3n to R
3n, is invertible.

The modified Hamiltonian function is given by

H̃(q, π) =

n
∑

j=1

πj · ωj − L̃(q, ω), (29)

where the right hand side is expressed in terms of(q, π)
using the Legendre transformation (28).

Consider the modified action integral of the form,

G̃ =

∫ tf

t0

{

n
∑

j=1

πj · ωj − H̃(q, ω)

}

dt.

Take the infinitesimal variation of̃G and integrate by parts
to obtain

δG̃ =

n
∑

j=1

∫ tf

t0

(

ωi −
∂H̃(q, π)

∂πi

)

· δπi

+

(

−π̇i + S(ω)πi − S(qi)
∂H̃(q, π)

∂qi

)

· γi dt, (30)

where we use the fact that(I3×3 − qiq
T
i )πi = πi sinceπi is

orthogonal toqi by the definition (28).
The orthogonality conditionπi · qi = 0 also implies that

δqi · πi + qi · δπi = 0. To impose this constraint on the vari-
ations explicitly, we decomposeδπi into a component that
is parallel toqi, namelyδπC

i = qiq
T
i δπi, and a component

that is orthogonal toqi, namelyδπM
i = (I3×3 − qiq

T
i )δπi.

From the above constraint, we haveqTi δπi = −πT
i δqi =

−πT
i S(γi)qi = πT

i S(qi)γi. ThereforeδπC
i = qiq

T
i δπi =

qiπ
T
i S(qi)γi.

Proposition 4: Hamilton’s equations for the modified
Hamiltonian given by (29) with the generalized forcefi are

q̇i = −S(qi)
∂H̃(q, π)

∂πi

, (31)



π̇i = −S(qi)
∂H̃(q, π)

∂qi
+

∂H̃(q, π)

∂πi

× πi + S(qi)fi, (32)

for i = 1, . . . , n.
Proof: See Appendix E.

Thus equations (31) and (32) describe the Hamiltonian flow
in terms of (q, π) ∈ T∗(S2)n on the cotangent bundle of
(S2)n.

Whenfi = 0, any time-independent modified Hamiltonian
is preserved along the solution of Hamilton’s equations, since

dH̃

dt
=

∂H̃

∂t
+

n
∑

i=1

∂H̃

∂qi
· q̇i +

∂H̃

∂πi

· π̇i

=
∂H̃

∂t
+

n
∑

i=1

∂H̃

∂πi

·

{

∂H̃

∂πi

× π

}

=
∂H̃

∂t
.

We now consider the important case where the kinetic
energy is a quadratic function of the angular velocities in
the form that arises from the Lagrangian given by (14). The
conjugate momentum is defined by the Legendre transfor-
mation

πi =mii(q)ωi +

n
∑

j=1
j 6=i

S(qi)
Tmij(q)S(qj)ωj. (33)

We assume these algebraic equations, viewed as a linear
mapping from(ω1, . . . , ωn) ∈ R

3n to (π1, . . . , πn) ∈ R
3n

can be inverted and expressed in the form

ωi =

n
∑

j=1

mI
ij(q)πj , (34)

where mI
ij : (S2)n → R

3×3. The modified Hamiltonian
function can be expressed as

H̃(q, π) =
1

2

n
∑

i=1

n
∑

j=1

πT
i m

I
ij(q)πj + U(q). (35)

Corollary 4: Hamilton’s equations for the modified
Hamiltonian given by (35) are

q̇i = −S(qi)







n
∑

j=1

mI
ij(q)πj







, (36)

π̇i = −S(qi)







1

2

∂

∂qi

n
∑

j,k=1

πT
j m

I
jk(q)πk +

∂U(q)

∂qi







+







n
∑

j=1

mI
ij(q)πj







× πi + S(qi)fi, (37)

for i = 1, . . . , n.
Proof: See Appendix E.

V. DYNAMICS ON CHAIN PENDULUM

A chain pendulum is a connection ofn rigid links, that are
serially connected by two degree-of-freedom spherical joints.
We assume that each link of the chain pendulum is a rigid rod
with mass concentrated at the outboard end of the link. One
end of the chain pendulum is connected to a spherical joint

that is supported by a fixed base. A constant gravitational
acceleration acts on each link of the chain pendulum. This
may represent a spherical pendulum (n = 1), or a double
spherical pendulum (n = 2) as special cases.

We demonstrate that globally valid Euler–Lagrange equa-
tions can be developed for the chain pendulum, and they
can be expressed in a compact form. The results provide an
intrinsic and unified framework to study the dynamics of a
chain pendulum system, that is applicable for an arbitrary
number of links, and globally valid for any configuration of
the links.

The mass of thei-th link is denoted bymi and the link
length is denoted byli. For simplicity, we assume that the
mass of each link is concentrated at the outboard end of
the link. An inertial frame is chosen such that the first two
axes are horizontal and the third axis is vertical. The origin
of the inertial frame is located at the fixed spherical joint.
Each of the chain links has a body-fixed frame with the
third axis of the body-fixed frame aligned with the axial
direction of the link. The vectorq1 ∈ S2 represents the
direction from the fixed base to the mass element of the
first link, and the vectorqi ∈ S2 represents the direction
from the (i − 1)-th spherical joint to the concentrated mass
element of thei-th link. Thus, the configuration of the chain
pendulum is the orderedn-tuple of configurations of each
link q = (q1, . . . , qn) ∈ (S2)n, so that the configuration
manifold is (S2)n. The chain pendulum has2n degrees of
freedom.

Let xi ∈ R
3 be the position of the outboard end of

the i-th link in the inertial frame; it can be written as
xi =

∑i
j=1 ljqj . The total kinetic energy is composed of

the kinetic energy of each mass:

T (q, q̇) =
1

2

n
∑

i=1

mi‖

i
∑

j=1

lj q̇j‖
2.

This can be rewritten as

T (q, ω) =
1

2

n
∑

i,j=1

Mij liljω
T
i S(qi)

TMij liljS(qj)ωj , (38)

where the real inertia constantsMij are given by

Mij =





n
∑

k=max{i,j}

mk



 , i, j = 1, . . . , n.

The potential energy consists of the gravitational potential
energy of all mass elements. The potential energy can be
written as

U(q) =
n
∑

i=1

mige
T
3 xi =

n
∑

i=1

n
∑

j=i

mjglie
T
3 qi. (39)

The modified Lagrangian functioñL : T(S2)n → R
1 of the

chain pendulum is given bỹL(q, ω) = T (q, ω)−U(q) from
(38) and (39).

Also, suppose that there exist a control torqueτ ∈ R
3

acting on the spherical joint connecting the fixed base and
the first link, and a disturbance forced ∈ R

3 acting on the



tip of the last link. The corresponding virtual work is given
by

δW = γ1 · τ +

n
∑

i=1

liS(γi)qi · d = γ1 · τ +

n
∑

i=1

γi · liS(qi)d.

Therefore, the generalized forces are given byf1 = τ +
l1S(q1)d, andfj = ljS(qj)d for j ≥ 2.

Substituting this into (19), the Euler–Lagrange equations
for a chain pendulum are given by

Miil
2
i ω̇i +

n
∑

j=1
j 6=i

Mij liljS
T (qi)S(qj)ω̇j

−
n
∑

j=1
j 6=i

Mij lilj ‖ωj‖
2
S(qi)qj −

n
∑

j=i

mjgliS(e3)qi = S(qi)fi.

(40)

Similarly, the Legendre transformation is given by (33),
and from (36), (37), Hamilton’s equations can be written as

q̇i = −S(qi)







n
∑

j=1

M I
ij(q)πj







, (41)

π̇i = −S(qi)







1

2

∂

∂qi

n
∑

j,k=1

πT
j M

I
jk(q)πk +

n
∑

j=1

mjglje3







+







n
∑

j=1

M I
ij(q)πj







× πi + S(qi)fi. (42)

These are remarkably compact considering the complexity
of the dynamics, and they are well structured compared with
the equations of motion expressed in terms of angles.

This mathematical model may be applied to a wide class of
other dynamical systems, such as articulated robotic systems.
As they are developed for an arbitrary number of links,
they are readily extended to finite-element approximations
of cables or slender rods after augmenting the potential with
an elastic potential term. The proposed global formulations
avoid singularities associated with local coordinates.

APPENDIX

A. Hat map

Several properties of the hat map are summarized as
follows.

S(x)y = x× y = −y × x = −S(y)x, (43)

S(x)2 = −(xTx)I3×3 + xxT , (44)

S(x)3 = −(xTx)S(x), (45)

x · S(y)z = y · S(z)x = z · S(x)y, (46)

S(x)S(y)z = (x · z)y − (x · y)z = (yxT − xT yI3×3)z,
(47)

S(x× y) = S(x)S(y)− S(y)S(x) = yxT − xyT , (48)

for any x, y, z ∈ R
3.

B. Proof of Proposition 1

Substituting (7) and (8) into (9), and rearranging with (46),

δG =

∫ tf

t0

n
∑

i=1

{

γ̇i ·

(

S(qi)
∂L(q, q̇)

∂q̇i

)

+ γi ·

(

S(q̇i)
∂L(q, q̇)

∂q̇i
+ S(qi)

∂L(q, q̇)

∂qi

)

}

dt.

Integrating the first term on the right by parts, and using the
fact that the variation vanishes att0 and tf , it reduces to

δG = −

n
∑

i=1

∫ tf

t0

γi·

(

S(qi)

{

d

dt

∂L(q, q̇)

∂q̇i
−

∂L(q, q̇)

∂qi

})

dt.

The virtual work is written as

δW =
n
∑

i=1

fi · S(γi)qi =
n
∑

i=1

γi · S(qi)fi.

According to Lagrange–d’Alembert principle,δG = −δW
for all continuous variationsγi : [t0, tf ] → R

3, that satisfy
(γi · qi) = 0. The fundamental lemma of the calculus of
variations implies that the expressiond

dt
∂L
∂q̇i

− ∂L
∂qi

− fi is
parallel toqi, or equivalently, (11).

Next, consider the case where the kinetic energy is given
as a quadratic form as (12). Substituting (12) into (11),

(I3 − qiq
T
i )

{ n
∑

j=1

mij(q)q̈j +

n
∑

j=1

ṁij(q)q̇j

−
1

2

∂

∂qi

n
∑

j=1

n
∑

k=1

q̇Tj mjk(q)q̇k +
∂U(q)

∂qi
− fi

}

= 0. (49)

SinceqTi q̇i = 0, it follows that d
dt
(qTi q̇i) = (qTi q̈i)+‖q̇i‖

2
=

0; thus we obtain

(I3 − qiq
T
i )q̈i = q̈i − (qiq

T
i )q̈i = q̈i + ‖q̇i‖

2
qi.

Substituting this into (49) yields (13).

C. Proof of Proposition 2

Substituting (7) and (16) into (15) and using the integration
by parts,

δG̃ =

n
∑

i=1

∫ tf

t0

γi ·

{

−
d

dt

(

(I − qiq
T
i )

∂L̃(q, ω)

∂ωi

)

+ S(qi)
∂L̃(q, ω)

∂qi
+ S(ωi)

∂L̃(q, ω)

∂ωi

}

dt.

According to Lagrange–d’Alembert principle,δG̃ = −δW
for all differentiable functionsγi : [t0, tf ] → R

3 that satisfy
(γi · qi) = 0 and vanish att0, and tf . This implies that the
expression in the braces of the equation below is parallel to
qi, or equivalently

S(qi)
2

{

d

dt

(

S2(qi)
∂L̃(q, ω)

∂ωi

)

+ S(ωi)
∂L̃(q, ω)

∂ωi



+ S(qi)

(

∂L̃(q, ω)

∂qi
+ fi

)}

= 0, (50)

where we used−S(qi)
2 = I3×3 − qiq

T
i obtained by (44).

To further simplify these expressions, we derive a few
identities. From (47) andwi · qi = 0,

S(qi)S(ωi)S(qi) = S(qi){−ωT
i qI3 + qiω

T
i } = 0.

From this, (3), and (48), it follows that

S(qi)S(q̇i) = S(qi){S(ωi)S(qi)− S(qi)S(ωi)}

= −S(qi)
2S(ωi),

and similarly, S(q̇i)S(qi) = S(ωi)S(qi)
2. Consequently,

these results can be used to obtain

S(qi)
2{S(q̇i)S(qi) + S(qi)S(q̇i)} = −S(qi)

4S(ωi).

Substituting these into (50) and using (44) and (45) repeat-
edly yield (17).

Next, the Euler–Lagrange equations for the case that the
kinetic energy is given as a quadratic form, namely (19) can
be obtained by either substituting (18) into (17), or rewriting
(13) in terms of the angular velocity as a change of variables.
Here, we follow the latter approach as the corresponding
proof is more concise.

From the kinematics equation (3) and (47), we have

q̈i = ω̇i × qi + ωi × (ωi × qi) = −S(qi)ω̇i − ‖ωi‖
2qi.

Substituting this into (13), and rearranging it withI3×3 −
qiq

T
i = −S(qi)

2,

−S(qi)
{

mii(q)ω̇i + S(qi)
n
∑

j=1
j 6=i

mij(q)(−S(qj)ω̇j − ‖ωj‖
2qj)

+ S(qi)
(

Fi(q, ω) +
∂U(q)

∂qi
− fi

)}

= 0.

In the above equation, the left hand side becomes zero when
the expressions in the braces are either zero or parallel to
qi. However, the second case is not possible as they are
perpendicular toqi by the definition. This yields (19).

D. Proof of Proposition 3

Substitutingδµi = δµC
i + δµM

i and (7) into (22), and
rearranging it withqTi δµ

C
i = −µT

i δqi,

δG =

n
∑

i=1

∫ tf

t0

{

(

−µ̇i −
∂H(q, µ)

∂qi

)

· δqi

+

(

qiq
T
i

(

q̇i −
∂H(q, µ)

∂µi

))

· δµC
i

+

(

(I3×3 − qiq
T
i )

(

q̇i −
∂H(q, µ)

∂µi

))

· δµM
i

}

dt,

=
n
∑

i=1

∫ tf

t0

{

S(qi)

(

−µ̇i −
∂H(q, µ)

∂qi
+ µiq

T
i

∂H(q, µ)

∂µi

)

· γi

+

(

q̇i − (I3×3 − qiq
T
i )

∂H(q, µ)

∂µi

)

· δµM
i

}

dt.

We now invoke Hamilton’s phase space variational principle
thatδG = −δW for all possible functionsγi : [t0, tf ] → R

3

satisfying γi · qi = 0 and δµM
i : [t0, tf ] → R

3 that are
always orthogonal toqi for i = 1, . . . , n. According to the
fundamental lemma of the calculus of variations,

S(qi)

(

µ̇i +
∂H(q, µ)

∂qi
− µiq

T
i

∂H(q, µ)

∂µi

− fi

)

= 0.

We multiply this byS(qi) and use a matrix identity to obtain

(I3×3 − qiq
T
i )

(

µ̇i +
∂H(q, µ)

∂qi
− µiq

T
i

∂H(q, µ)

∂µi

− fi

)

= 0.

Since both terms multiplyingδµM
i in the above variational

expression are necessarily orthogonal toqi, it yields (23).
We now determine an expression forµ̇i. The above

equation only determines the component ofµ̇i that is normal
to qi. The other component oḟµi that is parallel toqi is
derived by taking the time derivative ofqi ·µi = 0 to obtain
qi · µ̇i = −q̇i · µi. Thus, µ̇i is obtained by the sum of two
components as

µ̇i = (I3×3 − qiq
T
i )

(

−
∂H

∂qi
+ µiq

T
i

∂H

∂µi

)

− (µT
i q̇i)qi,

which is reduced to (24) via (23) and (47).
Next, (27) can be derived by substituting (26) into (24)

directly and rearrange it.

E. Proof of Proposition 4

Usingδπi = δπC
i +δπM

i , δπC
i = qiq

T
i δπi = qiπ

T
i S(qi)γi,

and qTi ωi = 0, the variation of the action integral given at
(30) can be rewritten as

δG̃ =

n
∑

i=1

∫ tf

t0

{

− π̇i + S(ωi)πi − S(qi)
∂H̃(q, π)

∂qi
(51)

+ S(qi)πiq
T
i

∂H̃(q, π)

∂πi

}

· γi

+

{

ωi − (I3×3 − qiq
T
i )

∂H̃(q, π)

∂πi

}

· δπM
i dt. (52)

According to Hamilton’s phase space variational principle,
δG = −δW , the expression at the first pair of braces of the
above equation, added withS(qi)fi, should be parallel toqi,
or equivalently,

(I3×3 − qiq
T
i )
{

− π̇i + S(ωi)πi − S(qi)
∂H̃(q, π)

∂qi

+S(qi)πiq
T
i

∂H̃(q, π)

∂πi

+ S(qi)fi

}

= 0. (53)

Also, the expression at the second pair of braces of (52) is
already parallel toqi to yield

ωi = (I3×3 − qiq
T
i )

∂H̃(q, π)

∂πi

= −S(qi)
2 ∂H̃(q, π)

∂πi

.

Substituting the second equation into (3) yields (31).



Using the facts that(I3×3 − qiq
T
i )S(qi) = −S(qi)

3 =
S(qi) and(I3×3−qiq

T
i )S(ωi)πi = −S(qi){qi×(ωi×πi)} =

−S(qi){(qi · πi)ωi − (qi · ωi)πi} = 0, (53) reduces to

−(I3×3 − qiq
T
i )π̇i − S(qi)

(

∂H̃

∂qi
− fi

)

+ S(qi)πiq
T
i

∂H̃

∂πi

= 0.

However, this is incomplete since it only determines the
component ofπ̇i that is perpendicular toqi. The component
of π̇i that is parallel toqi is determined by taking the time
derivative ofqi ·πi = 0 to obtainqi · π̇i = −q̇i ·πi. Therefore,
qiq

T
i π̇i = −qiπ

T
i q̇i. By combining these,

π̇i = −S(qi)

(

∂H̃

∂qi
− fi

)

+ S(qi)πiq
T
i

∂H̃

∂πi

+ qiπ
T
i S(qi)

∂H̃

∂πi

= −S(qi)

(

∂H̃

∂qi
− fi

)

+
∂H̃

∂πi

× ((S(qi)πi)× qi)

= −S(qi)

(

∂H̃

∂qi
− fi

)

+
∂H̃

∂πi

× (−S(qi)
2πi).

But, −S(qi)
2πi = πi sinceπi is normal toqi. This yields

(32).
Next, (36) is obtained by substituting the angular velocity

(34) into the kinematics equation (3), and (37) is derived by
substituting the Hamiltonian (35) into (32).
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