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Global Formulations of Lagrangian and Hamiltonian Mechanics
on Two-Spheres

Taeyoung Leg Melvin Leok!, and N. Harris McClamroch

Abstract— This paper provides global formulations of La- coordinate charts, which becomes problematic when trying

grangian and Hamiltonian variational dynamics evolving on  to track motions with large angular deviations.
the product of an arbitrary number of two-spheres. Four types

of Euler-Lagrange equations and Hamilton’s equations are Th di is that th fi f i f
developed in a coordinate-free fashion on two-spheres, vibut € second issue Is tha € equauons or moton o

relying on local parameterizations that may lead to singulaities dynamical systems on the two—sphere become Qxceedingly
and cumbersome equations of motion. The proposed intrinsic complicated when expressed using local coordinates and

formulations of Lagrangian and Hamiltonian dynamics are necessarily involve complicated trigonometric expressio

novel in that they incorporate the geometry of two-Spheres, pqr example, the dynamics of a multiple spherical pendulum,
resulting in equations of motion that are expressed compaly, itten in t f | . t | licated
and they are useful in analysis and computation of the global written In terms or angles, 1S extremely complicated.

dynamics.
This paper aims to provide global formulations of dynam-

ics evolving on the product of an arbitrary number of two-
The two-sphere is the two-dimensional manifold that iSpheres. In particular, we study dynamical systems that can
composed of unit-vectors iR3. There are a wide variety of be viewed as Lagrangian systems or as Hamiltonian systems
dynamical systems that evolve on multiple copies of twothat encompass a large class of mechanical systems that
spheres. In robotics, the configuration of articulated tiebo appear in robotics, structural dynamics, quantum meckanic
arms interconnected by spherical joints is represented loy meteorology. Most importantly, the unit-vectors on the
two-spheres [1]. Since the surface of the Earth is approxwo-sphere are regarded as elements of a manifold, and
imately a sphere, spherical dynamics arise readily in earttynamics are formulated directly on two-spheres in a global
science and meteorology [2]. In quantum mechanics, the pu@shion via variational principles.
state space of a two-level quantum mechanical system is a
two-sphere, referred to as the Bloch sphere [3]. This geometric formulation is said to ®ordinate-free
In most of the existing literature on dynamical systemsas it does not require the use of local charts, coordinates or
evolving on two-spheres, the unit-sphere is parametebiged parameters that may lead to singularities or ambiguities in
two angles. For example, a point on the two-sphere is oftahe representation. As such, it can be applied to arbiyraril
described by its longitude and latitude. Parametrizing thiarge angle rotational maneuvers on the two-spheres djobal
two-sphere by two angles is straightforward, and the anglésurthermore, this provides an efficient and elegant way to
are typically viewed as being in an open subseRéf formulate, analyze, and compute the dynamics and their
However, such parameterizations of the two-sphere suffegmporal evolutions. The corresponding mathematical tode
from the following two main issues. First, parameterizasio developed on two-spheres is nicely structured and elegant.
represent the two-sphere only locally. This can be easilyhis representational efficiency has a substantial pralciit-
observed from the fact that the longitude is not well definedantage compared with local coordinates for many complex
at the north pole and the south pole. This causes a singulardtynamical systems; this fact has not been appreciated by the
in representing the kinematics on the two-sphere, especiabpplied scientific and engineering communities.
when converting the velocity of a curve on the two-sphere
into the time-derivatives of the longitude and the latitude In short, the main contribution of this paper is provid-
This yields numerical ill-conditioning in the vicinity ohbse ing geometric formulations of the equations of motion for
singularities, which cannot be avoided unless one switchéagrangian and Hamiltonian systems that evolve on two-
_ . spheres using variational methods. The proposed global
inthﬁﬁySlrJ]Rger;ﬁ;'vh\;lae;r?iﬁgltg?ml Sgdzﬁgggzze@;?3'_”:;3”9’ Geaigsh- formulatior_ls, that dq not requ_ire local charts, h.ave not
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[l. THE TWO-SPHERE Let g; : [to,ts] — S? be a differentiable curve foi €

The two-sphere is the two-dimensional manifold of unitdls - -+, n}. The variation is a parameterized curve defined as
vectors inR?, i.e. g5+ (—c,c) x [to, t5] — S? for ¢ > 0, such thagy (t) = q;(t)
) . for anyt € [to,ty] andg;s(to) = qi(to), q5(ty) = q(ty) for
S"={qeR’[lql =1} (1) anyee (—¢c).

It is composed of the set of points that have the unit distant%re]z;/tvr?x f)l(n oeri(:r:teiZfr;ge \g:%tﬂgcvg the cumyeusing the
from the origin inR3. The tangent space of the two-sphere P P '
at ¢ € S2 corresponds to the two-dimensional plane that is g (1) = eSO g, (), (6)

tangent to the sphere at the pointand it is given by
for differentiable curvesy;, : [to,tf] — R3 satisfying

T,S°={¢€R’|q-£=0}. (2)  ~i(to) = vi(ty) = 0. Since the exponentS(y;) is skew-
Throughout this paper, the standard dot product between pygmmetric, the exponential 3r2§mXT'S in the special orthog-
vectors is denoted by -y = 27y for any z,y € R™. onal group,SO(3) = {R e RVCIR .R.: I.’ det[R] = 1}, .
Therefore, for any curve(f) : R — S2 on the two- thereby glgja.ranteeelng that the variation is a paramete_rlzed
sphere parameterized by timgits time derivative satisfies curve O.n.S 18, [lgf(¢)]] = 1. There is no loss of genergllty
q(t) - ¢(t) = 0. From now on, we do not explicitly denote in requiring thaty;(t) - ¢i(t) = 0 for all £y Sty that is,
dependence on time for brevity, unless needed. This implie$ andg; are orthogonal. In short, the variation of the curve

S o . :
that there exists an angular velocity: R — R? such that ¢ in S* is expressed in terms of a curve ¥ via (@).

The corresponding infinitesimal variations are given by
i =wxq=5wa, 3 J

where the hat mag(-) : R* — R3*3 is defined such that 00i(t) = de
S(z)y = = x y and ST (z) = —S(x) for any z,y € R3.
More explicitly,

q“(t) = S(vi(t))ai(t), (7)

e=0

and satisfydg; (to) = d¢;(t5) = 0. Since the variation and the
differentiation commute, the expression for the infinitesi

0 —w3 wo variations of the time derivatives are given by
S(w) = w3 0 —Ww1 . (4) d
—w2 w0 0Gi(t) = - 4°(t) = S(1:()ai(t) + S(i(?))ds (2)- (8)
e=0

Without loss of generality, the angular velocity is conisteal ) ] o o
to be orthogonal tay, i.e.,w - ¢ = 0. Therefore, the three These expressions define the infinitesimal variations for a

i — . 2
vectorsq, ¢, andw are mutually orthogonal, and the angulaVector functiong = (q1,...,¢n) : [to,t;] — (S%)". The
velocity can be written as infinitesimal variations are important ingredients to deri

the Euler-Lagrange equations ¢8%)". We subsequently
w = 5(q)g. (5) suppress the time argument, thereby simplifying the nanati

The action integral is the integral of the Lagrangian

It follows thatw = S(¢)¢ andw is perpendicular ta as function along a motion of the system over a fixed time

well. period, i.e.,® = f:of L(q, ¢) dt. The infinitesimal variation
I1l. L AGRANGIAN MECHANICS ONTWO-SPHERES of the action integral is given by
We consider dynamical systems evolving on the product of d ty o
n copies of two-spheres, name{$?)". The corresponding 06 = de O/t L(q,¢°)dt = 0.
€= 0

Euler-Lagrange equations are first obtained in terms of a ) ]

Lagrangian expressed in terms of the configurations arid!iS can be rewritten in terms of;; as

the time derivatives of the configurations, namély ¢). t (. . n .

A second form of Euler—Lagrange equations is obtained ind¢ = M -0q; + M -0q; ¢ dt.
o, 1 a1

terms of a modified Lagrangian expressed in terms of the to i=1 di i=1 i

configurations and the angular velocitig, w). In each 9)

case, these Euler—Lagrange equations are simplified for tDSt f, € R3 be the generalized force acting an. The

|mpo_rtant case t_hat the _k|n(_et|c energy func_t|on is a quadratcorresponding virtual work is given by

function of the time derivatives of the configurations.

A. Euler-Lagrange equations in terms (@f ¢) oW = Z fi-0q;. (20)
Suppose that a Lagrangiah(q,q) : T(S*)" — R! i=1

is given on the tangent bundle ¢6%)", where(¢,4) = According to the Lagrange—d’Alembert principle, we have

((q1y---5qn), (41, ,dn)) € T(S?)". For example,itcanbe & = —§W for any variations. We now substitute the

defined as the difference between a kinetic energy and a pexpressions for the infinitesimal variations of the moti@h (
tential energy. We derive the corresponding Euler—Laggan@nd [8) into this, and we simplify the result to obtain the
equations according to Hamilton’s variational principle.  Euler-Lagrange equations expressed in termg;of).



Proposition 1: Consider a Lagrangian L(q, q) . where the kinematics equations are given[@y (3). We use the

T(S*)" — R for a mechanical system evolving onnotationw = (wy,...,w,) € R*", and we view the modified
the product of two-spheres, with the generalized fofgce LagrangianL(q,w) as being defined on the tangent bundle
The Euler-Lagrange equations are given by T(S?)". ) o
. . Let the modified action integral b& = [’ Ldt. Its
(Is — qiq]) 4 aL((,]’ )\ _9Le.q) fis =0, infinitesimal variation can be written as ’
dt 8qi 8qi ‘ ~ ~
- F L L
W e= [Ty {73 G9) gy, PHOD) 5t
fori € {1,...,n}. Here, the3 x 3 identity matrix is denoted foi=1 i ¢
by Is € R3x%3, (15)
Proof: See AppendixB. | Next, we derive expressions for the infinitesimal variation

This describes the evolution of the dynamical flggv¢) €  of the angular velocity vectors. Fror (5),
T(S?)™ on the tangent bundle of the configuration man- . .
ifold (S*)". In the above equatior(l1), the expression dw; = 5(04:)¢i + 5(4i)dds,
in the braces corresponds to the Euler-Lagrange equatigiipstituting [[¥) and{8) and rearranging,
for dynamical systems evolving dR”. It is interesting to
note that the Euler—Lagrange equations $¥ncorresponds dwi = (S(Vi)ai) x 4 + 5(¢:)(S(Vi)ai + S(7i)di)-
to its orthogonal projection onto the plane normal ¢t@ Expanding each term and using the fact thatg; = 1 and
represented by the matri — ¢;q; . G -4 = q; - i = 0, this reduces to
Next, we consider the important case that the kinetic

energy is a quadratic function @f and the potential energy dwi = (qi - vi)qi + Vi — (qi - Vi) G-
U _is given as a function of, i.e., the Lagrangian can be Substitute[[B) to obtain
written as
1 & Swi = (vi - (S(wi)@))as + (Is — qiai )i
L(g,q) = ) Z ¢; mjx(a)dx — Ulq), (12) = qiq] (S(vi)w:) + (Is — qiq] ).
j,k=1

o ) ) . The matrix ¢;¢] corresponds to the orthogonal projection
where the scalar inertial termﬁjk : (S )n — R Satley a|ong . But, as both Of,% and w; are Orthogona| tay;,

the symmetry conditiom;x(q) = my;(q) and the quadratic §(~,)w, is already parallel ta;. Therefore,
form in the time derivatives of the configuration is positive

definite on(S?)™. dw; = =S(wi)vi + (Is — qiaf )¥i- (16)

Corollary 1: The Euler-Lagrange equations for the La-hg infinitesimal variation ofu; is composed of two parts:
grangian given by[{12) with the generalized foreare the first term—S(w;)y; = 7 x w; is parallel tog;, and it

represents the variations due to the change;othe second

mii(q)ii; + (Is — qiql) Z mi; (q)di; + mii(q) HquQ ¢ term corresponds to the orthogopa! projection'ypbnto the
= orthogonal complement tg;, and it is due to the time rate
JFi change of the variation af;.
. 9U(g) We now substitutd {7) anf{lL6) into{15), and simplify the
I — qiq]) { Fi(q, —fig=0, (13 : " :
+ (I — aia; ){ (a,4) + 0q; / (13) result to obtain the Euler—Lagrange equations expressed in

terms of(q,w).

. i . 3 -
fori e {1,...,n}, whereFi(q,¢) € R is Proposition 2: The Euler-Lagrange equations ¢82)"

n 10 & ., for the Lagrangian given by (14) with the generalized force
Fi(q.q) =Y _1iij(q)d; — 300 > mn(@)dx f; are
j=1 " k=1
Proof: See AppendiXB. [ d (0L(g,w) OL(q,w)
Note that the third term of (13) represents the centripetal (I - qiq]) i\ ow )~ 25(%)87%
acceleration to ensure that the unit-length consttgairjt = 1 B
is always satisfied. If the inertia terms,; are independent _ S(g:) 0L(q,w) vl =0 i=1....n @7

of the configuratiory, then F;(q, ¢) = 0. g

Proof: See AppendiX .

This form of the Euler-Lagrange equations ¢%°)",

An alternate expression for the Euler-Lagrange equatioespressed in terms of angular velocities, can be obtained
is now obtained in terms of the angular velocities introdlicedirectly from the Euler-Lagrange equations given[inl (11) by
in (). We express the action integral in terms of the modifiediewing the kinematicd{3) as defining a change of variables
Lagrangian function from ¢ to w. This establishes the equivalence of the Euler—

- Lagrange equations in terms ¢f,w) (@) and the Euler—
L(g,w) = L(g, S(w)q), (14) Lagrange equations in terms ¢f, ¢) (11).

B. Euler-Lagrange equations in terms (@f w)



Next, we consider the important case that the kinetig; € S?, the corresponding conjugate momentumlies in
energy is a quadratic form as ifi_{12). Substitutiig (3jhe dual spacé';isz. We identify the tangent spacg,, S*

into (I2), and using the fact that/ S(¢;)" S(¢i)w: = and its dual spac@&; S? by using the usual dot product in
wl' (I5 — ¢iq] ) wi = wl'w;, the modified Lagrangian can be R®. More explicitly, the Legendre transformation is given by
expressed as dL(q, q)
N L : Mi - qi = EY i,
Lg,w) = 2 ;wi mii(q)i for any¢; € R? orthogonal tog;. Since the component ¢f;
I . parallel tog; has no effect on the inner product above, the
+ = wi S(qi) ' mi;(q)S(q;)w; — U(q). (18) vector representing; is selected to be orthogonal ig; that
2 ;; (a0 050) - (9 is 41; is equal to the projection of% onto the tangent
i spaceT,,52. Thus '
Substituting this into[(17) yields the corresponding Euler .
Lagrange equations as follows L= —a.qF 0L(g.4)
- pi = (Is = qiq; )—~— (20)
Corollary 2: The Euler-Lagrange equations for the mod- 94
ified Lagrangian given by (18) with the generalized fofge =~ We assume that the Lagrangian function has the property
are that the Legendre transformation is invertible in the sense
" that the above: algebraic equations, viewed as a mapping
i (q)o; + Z S(qi)Tmi; (9)S(q;); from T,(S*)" to T;(S%)", is invertible. Since these tangent
= and cotangent spaces are embedded®ih, we can view
J# the Legendre transformation as being the restriction of a
—mij(9)S(q:) |w;ill® ¢ mapping fromR3” to R3" that is invertible.
aU (q) The Hamiltonian function : T*(S?)" — R! is given by
+ S(ai) {Fi(%w) + I fi} =0, (19) .
fori=1,...,n, whereF;(q,w) € R? is Hig.n) = ;Hz G~ L@ 9). (21)
- where the right hand side is expressed in termgqf:
Fi(gw) = Zmij(Q)S(w-j)% using the Legendre transformatidn}20). k)
'7:11 n n Ome(a) The Legendre transformation can be viewed as defining
i T NT mjk\q a transformation(q,q) — (g, ), which implies that the
2 ;;(% S(w3)” Sleon)ar) dqi Euler-Lagrange equations can be written in terms of the
Proof: See Appendix . m transformed variables; this is effectively Hamilton’s equ

Similar to Corollary 1, if the inertial terms are indepentientions. However, Hamilton’s equations can also be obtained
of the configuration, ther;(¢,w) = 0. This version of the using Hamilton’s phase space variational principle, arsl th
Euler—Lagrange differential equations describe the dyeam approach is now introduced.

flow (¢,w) € T(S?)" on the tangent bundle ¢f2)". Consider the action integral in the form,

IV. HAMILTONIAN MECHANICS ONTWO-SPHERES

ty n
. . . 6= i G — H(g, dt.
We will now introduce the Legendre transformation and /to {;M 1 (4 M)}

then we derive Hamilton's equations for dynamics that

evolve on(S?)". The derivation is based on the phase Spaclgte_grating by parts and_ ”_Sif‘g Fhe fact .th‘f’lt the variaﬁ(?n
variational principle, a natural modification of Hamiltsn’ vanishes at, andt, the infinitesimal variation of the action

principle for Lagrangian dynamics. Two forms of Hamilton’sintegral is given by

equations are obtained. One form is expressed in terms of n_ oty OH (q, 1)
momentum vectorgyiy, . .., u,) € T;(S?)" that are con- 06 = Z/ (_Ni - 7) - 0q;
i=1"7to

jugate to the velocitie$qi, ..., ¢,) € T,(S?)", whereq € 94

(S?)™. The other form of Hamilton’s equations are expressed . OH(u,p)

in terms of momentum vectorsry, ..., m,) € R3" that are + <Qi - Tﬂz) $Opi pdt = 0. (22)
conjugate to the angular velocitiés;, ..., w,) € R3".

. ] ) Next, we derive the expression for the variations Qf

A. Hamilton's equations in terms @, .) According to the definition of the conjugate momenta

As in the prior section, we begin with a Lagrangiangiven by [20), we havey; - u; = 0, which implies that
function L : T(S?)" — R!, which is a real-valued function déq; - u; + ¢; - du; = 0. To impose this constraint on the

defined on the tangent bundle of the configuration manifoldariations explicitly, we decomposé&u; into the sum of

(S?)™. The Legendre transformation of the Lagrangian funcwo orthogonal components: one component paralle;fo
tion L(q,q) leads to the Hamiltonian form of the equationsnamelysu$ = g;q! 6p:, and the other component orthogonal

of motion in terms of a conjugate momentum vector. Foto ¢;, namely uM = (I3x3 — qiql)du;. Satisfaction of



n n
the constraint implies thag! 6, = ¢fou; = —pldq;, I 10 T
. . . — (I3 —qiq; )5 LM
so thatéuM = (I3 — giql )dp. is otherwise unconstrained. (s = aia; )2 dq; ZZ% O

L . . . . J=1k=1
Substituting this and[{7) into(22), we obtain Hamilton's 90 (q)
equations in terms ofq, ;1) as follows. — (I3 — qi¢}) 3 ? — fi> . (27)
Proposition 3: Hamilton’s equations on(S?)" for the Proof: See Appendi .qz -

Hamiltonian given by[(21) with the generalized forgeare Hamilton’s equations[{25) and{27) describe the Hamil-

. OH (q, tonian flow in terms of(¢, x) € T*(S%)" on the cotangent
Gi = (Isxs — qz'q;f)%a (23)  pundle of(52)".
i
) o (OH(q, ) B. Hamilton’s equations in terms @f, )
fi=—Usxs —qiq; ) | —5—— — [i : I
9q; We now present an alternate version of Hamilton’s equa-
n 0H (q, 1) « (s X 1) (24) tions using the Legendre transformation of the modified La-
O Hi X i) grangian functior.(¢, w) to define the conjugate momentum
. vector. The Legendre transformati@n, ..., w,) € R3" —
fori=1,...,n. (m1,...,m) € R3" is defined by
Proof: See AppendiXD. [ T ~
Thus, equationd (23) and (24) describe the Hamiltonian flow mi=(Is— g _T)aL(q,w) 28)
in terms of (¢, ) € T*(S?)™ on the cotangent bundle of ! 3~ Gk Ow;
(%)™ o ___ Herem € R?®is viewed as conjugate t@;, € R3, i =
When f; = 0, any time-independent Hamiltonian IS1,...,n. We use the notatiomr = (m1,...,7m,) € R3".
preserved along the solution of Hamilton's equations, &sinC\ye assume that the modified Lagrangian function has the
dH  0H - oH O property that the Legendre transformation is invertible in
vy + Z 0 Gi + e [bi the sense that the above algebraic equations, viewed as a
t b= 9% Hi mapping fromR3" to R3", is invertible.
OH I~0H (O0H OH The modified Hamiltonian function is given by
:E—an-'{a-x(uixqi)}:@_' n
=1 IHi Hi t ] T
H(gm) = m; wj— Lig,w), (29)
Next, we consider the case where the kinetic energy is a j=1

quadratiC function of the time derivatives of the Conﬁgmt where the r|ght hand side is expressed in termi@ﬁ-)

so that the Lagrangian is given b/ {12). The conjugatgsing the Legendre transformatidni28).
momentum vector is defined by the Legendre transformation Consider the modified action integral of the form,

n B tf n ~
pi = mii(Q)di + (Is — qiq)) Zmij(Q)(i,j- 6 = { ZWJ‘ Wy~ H(Qaw)} dt.
i=1 o Li=1
JFi

. . . Take the infinitesimal variation of and integrate by parts
We assume that these algebraic equations, viewed as A ptain

linear mapping from(qi,...,d,) € T,(S*)" C R to 0o .

(s pn) € Ti(S%)" € R, can be inverted and 6®:Z/f i 0H (g, ) .
expressed in the form =i om;

0H (g, )

s T I - - .
¢ = (Is — qiq; );mzj(q)ugx (25) + <—m + S(w)m — S(a:) 4

) *Yi dt, (30)

B U .
where min . (S?)" — R3*3, There is no loss of gen- where we use the fact tha.13_xl3 — qiq} )™ = m; sincem; is
corthogonal tog; by the definition [(2B).

erality in including the indicated projection in the abov . . T
.The orthogonality conditionr; - ¢; = 0 also implies that

expression since the inverse necessarily guaranteesfthat i . ! . .
(1 Un) € THS?H™ C R3™ then (¢ n) € q; - ™ + q; - 0m; = 0. To impose this constraint on the vari-
b b n q b UM

ations explicitly, we decomposér; into a component that

T,(S?)" ¢ R3™. The Hamiltonian can be expressed as )
o(5%) P is parallel tog;, namelydr¢ = ¢;q! 67;, and a component

1 & that is orthogonal tay;, namelydm™ = (I3x5 — qiql )om;.
H(q, 1) = B Z iy m (@) + Ulq)- (26)  From the above constraint, we hayéém; = —nldq =
I k=1 —7l'S(vi)gi = 71 S(qi)vi. Thereforeén = qiqf om; =
Corollary 3: Hamilton's equations for the Hamiltonian QiWiTS(‘Ji)_”Y_i- ) ) N
given by [26) with the generalized forge are [25) and Proposition 4: Hamilton’s equations for the modified
Hamiltonian given by[{29) with the generalized forgeare
'i = I i) X i X {; . 81:{ q,T
H ; (ng (q)UJ) (1 ) G = —S(Qi)%7 (31)



OH (g, ) i OH (g, ) x i+ S(a) fi, (32) that is supported by a fixed base. A constant gravitational

i = —S(a:) _ _ : . ) .
9qi om; acceleration acts on each link of the chain pendulum. This
fori=1,...,n. may represent a spherical pendulum= 1), or a double
Proof: See AppendiXE. m spherical pendulumn(= 2) as special cases.

Thus equationd(31) anf{32) describe the Hamiltonian flow We demonstrate that globally valid Euler-Lagrange equa-
in terms of (¢,7) € T*(S)" on the cotangent bundle of tions can be developed for the chain pendulum, and they
(S2)™. can be expressed in a compact form. The results provide an
Whenf; = 0, any time-independent modified Hamiltonianintrinsic and unified framework to study the dynamics of a
is preserved along the solution of Hamilton’s equatiomsesi  chain pendulum system, that is applicable for an arbitrary
number of links, and globally valid for any configuration of

dH _ 0H ZB_H.QH_a_H.m the links.
dt ot = 0 o The mass of the-th link is denoted bym; and the link
off  ~oi (of o length is denote_d byZ For simplicity, we assume that the
= ¥ —i—ZT- I X Ty = e mass of each link is concentrated at the outboard end of
= 9T i the link. An inertial frame is chosen such that the first two

We now consider the important case where the kineti@xes are horizontal and the third axis is vertical. The Origi
energy is a quadratic function of the angular velocities i9f the inertial frame is located at the fixed spherical joint.
the form that arises from the Lagrangian given byl (14). ThEach of the chain links has a body-fixed frame with the

conjugate momentum is defined by the Legendre transfdRird axis of the body-fixed frame aligned with the axial
mation direction of the link. The vector; € S? represents the

n direction from the fixed base to the mass element of the
i =mai(q)w; +ZS((]i)Tmij(q)S(Qj)Wj- (33) first link, and the vector; € S? represents the direction

=1 from the (i — 1)-th spherical joint to the concentrated mass

el element of the-th link. Thus, the configuration of the chain

We assume these algebraic equations, viewed as a ling@ndulum is the ordered-tuple of configurations of each
mapping from(wy,...,w,) € R3 to (my,...,m,) € R* link ¢ = (q1,...,¢,) € (S*)", so that the configuration
can be inverted and expressed in the form manifold is (5%)". The chain pendulum ha&: degrees of

n freedom.
w; = Zm{j(q)wj, (34) Let ; € R? be the position of the outboard end of
j=1 the 4-th link in the inertial frame; it can be written as

where m! : (S2)» — R3*3. The modified Hamiltonian i = 21 1j9;- The total k|net|f: energy is composed of
o the kinetic energy of each mass:
function can be expressed as

_ 1 N . e
H(q,7) = 5 E E ﬂ'z-Tmfj (¢)m; +U(q). (35) T(q,4) 5 ;_1 ml| 7§—1 Lidjl™
i=1 j=1 - T

Corollary 4: Hamilton’s equations for the modified This can be rewritten as

Hamiltonian given by[(35) are 1 &
9 YI) T(q,w) = 3 Z Mijliljw] S(q:)" Mijlil;S(qj)wj, (38)

n i,j=1
L ) I )
gi = —5(a:) {Zmij(q)m} ) (36) where the real inertia constantg;; are given by
Jj=1

: 10 <« U (q) Mo — 3 i

= —S(q; z T, 1 oY 49 ij mg |, ) e, N

s (gi) { 394, j;l T My (@) + 94, s

" The potential energy consists of the gravitational po&nti
+ mej (Q)m; p % 7 + S(@:) fi, (37) energy of all mass elements. The potential energy can be
= written as

fori:l,...,n. U _ - ms eT(E': S nm-l-eT y 39

Proof: See AppendiXE. n @) ; 96 ; ; sglies i (39)

V. DYNAMICS ON CHAIN PENDULUM The modified Lagrangian functioh : T(S2)" — R! of the

A chain pendulum is a connection ofrigid links, that are chain pendulum is given b¥(q,w) = T(¢,w) — U(q) from
serially connected by two degree-of-freedom sphericatgoi (38) and [(3D).
We assume that each link of the chain pendulum is a rigid rod Also, suppose that there exist a control torques R?
with mass concentrated at the outboard end of the link. Oraeting on the spherical joint connecting the fixed base and
end of the chain pendulum is connected to a spherical joitte first link, and a disturbance foreec R? acting on the



tip of the last link. The corresponding virtual work is givenB. Proof of Proposition 1

by Substituting[(¥) and{8) int¢9), and rearranging withl (46)
oW =1 - T—i—ZlS’% qi-d=n1- T—l—Z% iS(qi)d. 56_/tfi 5 S(q_)aL(q,q')
i=1 i=1 to i—1 ’ ’ a(h
Therefore, the generalized forces are given ly= 7 + OL(0. ¢ OL(a. ¢
115(q1)d, and f; = 1;S(q;)d for j > 2. + i+ | S(d) (qu) + S(%)M di.
a4 0q

Substituting this into[{119), the Euler-Lagrange equations ! !

for a chain pendulum are given by Integrating the first term on the right by parts, and using the

n fact that the variation vanishes &t andty, it reduces to
Miilia; + Z Mijlil;S™(4:) S (g5);

= ‘ N d OL(¢,4) OL(q,q)
.7. 1 — . . - q,9 _ q,q
i=1 0
- ZMWZ L lwil|* S(ai)a ijgl S(es)ai = S(@)fi- The virtual work is written as
Jj=1 Jj=1
J#i n
(40) oW = Zfl . 'Yl q; = Z'Yz z

Similarly, the Legendre transformation is given hyl1(33),

and from [36), [[37), Hamilton’s equations can be written éccordmg to Lagrange-d’Alembert principlé® = —dWV
for all continuous variations; : [to,¢;] — R3, that satisfy

n (vi - ¢;) = 0. The fundamental lemma of the calculus of
Z (41) variations implies that the expressu#m— — gTL — fiis
parallel tog;, or equivalently, [(11).

as a quadratic form ag{12). Substitutifg](12) irfal (11),

N)I»—l

= — { ZTFTM mg—l—Zm gljes
_],k 1

Next, consider the case where the kinetic energy is given
7j=1

S oM mi; ( + 7 (
+ {Zlea(q)7T7} x 7 + S(qi) fi- (42) I — qiaf {Z i(D)d; Z j
=1

1 oU (q)
These are remarkably compact considering the complexity 20 Z_: Z_:qj (@) + 0qi fz} =0 (49)
of the dynamics, and they are well structured compared with a
the equations of motion expressed in terms of angles.  Sinceq! ¢; = 0, it follows that < (¢ ¢;) = (¢7 @) +[|d:]|* =
This mathematical model may be applied to a wide class 6f thus we obtain
other dynamical systems, such as articulated roboticisyste o T 9
As they are developed for an arbitrary number of links, (Is = 4ig; )i = i — (@iai )G = G + [l @ill” gi-
they are readily extended to finite-element approx'mat'o@ubsututmg this into[49) yield§T13).
of cables or slender rods after augmenting the potentid wit
an elastic potential term. The proposed global formulationC. Proof of Proposition 2

avoid singularities associated with local coordinates. Substituting[[¥) and{16) int6{15) and using the integratio

APPENDIX by parts,
A. Hat ma L= [ d OL(q,w
P _ _ 56:2/ v == | (= aq)) (q_)
Several properties of the hat map are summarized as iz1 Jto dt Owi
follows. = =
+ 5(qn) 2He @) | g,y 2E@) gy
Sxly=zxy=-yxx=-5yu, (43) 9q; Ow;
2 /.T T -
5(z) i (@ x)TI3X3 T, (44) According to Lagrange—d’Alembert principlé® = —5W
S(z)” = —(a" 2)S(x), (45)  for all differentiable functionsy, : [to, ;] — R? that satisfy
x-Sy)z=y-S(z)x==z S()y, (46) (v - ¢;) = 0 and vanish at(, andt;. This implies that the
S@)S(y)z = (z- 2)y — (x-y)z = (yaT — aTylsx3)z, expression in the braces of the equation below is parallel to

(47) i Or equivalently

S(x x y) = S(x)S(y) - S(y)S(a) = ya” —ay”, (48) o e
S(ql)Q{i (SQ( _)aL(Qa )) +S(wi)aL(Qa )

for any z,y, z € R3. Owi



! 0q¢; thatd® = —§)W for all possible functions; : [to,ts] — R?
_ satisfying~; - ¢; = 0 and 6 : [to,tf] — R? that are
where we used-S(q;)* = I3x3 — qiq] obtained by[(#4).  aways orthogonal ta; for i = 1,...,n. According to the
To further simplify these expressions, we derive a fewyndamental lemma of the calculus of variations,
identities. From[(4]7) ana; - ¢; = 0,

. OH(q,p) OH (g, 1)
S(:)S(w)S(qi) = S(a){~wTals + qwl'} = 0. 5(a) (m- o e g, ) =0
From this, [), and[(48), it follows that We multiply this byS(q;) and use a matrix identity to obtain

S(Qi)S(Qi) = S(Qi){s(wi)s(%’) - S(Qi)s(wi)}
_ —S(qi)QS(wi), (13><3 — QiqiT) (,Uz + %{i’m — Miqz%‘g;’u) — fz) =0.

and similarly, S(¢;)S(¢:)) = S(w:)S(g:)?. Consequently,
these results can be used to obtain

oL . . , L L
+ S(q:) ( (q,w) " fi) } —0, (50) We now invoke Hamilton’s phase space variational principle

Since both terms multiplyingz in the above variational
expression are necessarily orthogonakioit yields (23).
S(q:)*{S(d:)S(q:) + S(q:)S(d:)} = —S(g:)*S(wi). We now determine an expression fgr;,. The above
_ . ) equation only determines the componenfipthat is normal
Substituting these intd_(50) and usirigl(44) ahd (45) repegj; ¢;. The other component of;; that is parallel tog; is

edly yield [IT). derived by taking the time derivative ¢f - u; = 0 to obtain
Next, the Euler-Lagrange equations for the case that the . y g of -t

7 (L, = —q; - l4;. Thus, 1; is obtained by the sum of two
kinetic energy is given as a quadratic form, namEgly (19) ¢ mﬂponen'?s ag a y
be obtained by either substitutifig {18) infa](17), or reiwgt
(I3) in terms of the angular velocity as a change of variables . T oH T T.
Here, we follow the latter approach as the corresponding ** ~ (Isxs — aiq;) g THbiG ) T (13 4i)i,
. . qi Hi
proof is more concise.

From the kinematics equatiofil (3) aid)(47), we have ~ Which is reduced to[(24) vid {23) and {47). _
} Next, (27) can be derived by substitutig(26) infal(24)

G = @i X qi + wi X (wi X @) = =S(qi)@i — [|lwil*q directly and rearrange it.

Suk;sﬂtutmg th;s into[(113), and rearranging it wifh, s — E. Proof of Proposition 4
aq; = —5(q)",
Usingdm; = dn& +6nM, 67 = qiql 67 = qiml S(qi)vi,

—S(Qi){mii(q)wi + S(q:) Zmi‘j(qx_s(%’)w]’ — |jwj]?¢;) @nd qlw; = 0, the variation of the action integral given at

= (320) can be rewritten as
i N
U (q) 5E =S /tf . 9 (g,m)
NG AR & = — 7+ S(wi)mi — S(g) —2— (51
+8(a)(Flaw) + 5 2~ )} =0 D e (e Tl
In the above equation, the left hand side becomes zero when +OH(q, )
the expressions in the braces are either zero or parallel to +8(a)mig; o, } i
q;- However, the second case is not possible as they are 0 (g, 7)
perpendicular tay; by the definition. This yieldd(19). + {wi — (I3x3 — qiq?)%} onM dt. (52)
T

D. Proof of Proposition 3 _ _ o o

Substitutingsy; = 6uC + 5uM and into and According to Hamilton’s phase space variational principle

rearranging i?WliLtth(;MHZ :+_5%5q_ M () d& = —0W, the expression at the first pair of braces of the
v v above equation, added wit$(¢;) f;, should be parallel tg;,

o zn:/tf { (_ﬂ_ B 8H(q,u)) b4, or equivalently,
i=1to 9q; Uses — 4 T){_ 4 S — S .)aﬁ(q,w)
—+ (qzq;r (qZ — W)) . 6:”‘10 3x3 qi4; Uy i) qi aqz
i OH(q,m
OH +S(qi)ﬂiqz£ + S(ql)fz} =0. (53)
+ ((I3><3 - qiq) (li - M)) oMy dt om;
Opi Also, the expression at the second pair of brace$ df (52) is

n
i=1

wi = (Isxs — qiql)

ty . 0H (g, OH (g, already parallel tay; to yield
/ {S(qﬁ (_m_#+ .rﬂ).% ~
to

. M’qu . ~
qi aﬂz 8H(q,7r) :_S(q.)2aH(q’7T)
oH s 8771' ! 37@-
+ (qz — (I3x3 — Qiq;f)#) '5MZM} dt.

Substituting the second equation infd (3) yields] (31).



Using the facts thatlsxs — ¢iqf )S(qi) = —S(¢:)* =
S(qi) and(13><3_QiqiT)S(wi)7Ti = —S(gi){gix (wixm;)} =
—S(qi){(qi - mi)wi — (g - wi)m; } = 0, (BI) reduces to

OH

. oH
—(Isxs — qiqi )i — S(a) (% - fi) + S(gi)miql

=0.
aﬂ'i

However, this is incomplete since it only determines the
component oft; that is perpendicular tg;. The component
of 7; that is parallel tog; is determined by taking the time
derivative ofg; -m; = 0 to obtaing; - 7; = —¢; - m;. Therefore,
qiq! 7i = —g;wF'¢;. By combining these,

OH
87‘(1‘

. OH oH

~ -5(a) (Z—f - ﬁ-) + 28 (Stam) x a)

—S(qi) <Z_Z - fi) + of x (=5 (qi)*ms).

87‘(1‘

But, —S(q;)?m; = m; sincem; is normal tog;. This yields
(32).

Next, (38) is obtained by substituting the angular velocity
(34) into the kinematics equatiohl (3), andl(37) is derived by
substituting the Hamiltoniad (85) inté_(32).
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