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Abstract— In this paper, we consider the problem of syn-
thesizing correct-by-construction controllers for discrete-time
dynamical systems. A commonly adopted approach in the
literature is to abstract the dynamical system into a Finite
Transition System (FTS) and thus convert the problem into a
two player game between the environment and the system on
the FTS. The controller design problem can then be solved using
synthesis tools for general linear temporal logic or generalized
reactivity(1) specifications. In this article, we propose a new
abstraction algorithm. Instead of generating a single FTS to
represent the system, we generate two FTSs, which are under-
and over-approximations of the original dynamical system. We
further develop an iterative abstraction scheme by exploiting
the concept of winning sets, i.e., the sets of states for which there
exists a winning strategy for the system. Finally, the efficiency
of the new abstraction algorithm is illustrated by numerical
examples.

I. INTRODUCTION

The systems that are considered for control purposes have
changed fundamentally over the last few decades. Driven by
the advancements in computation and communication tech-
nologies, the systems of today are highly complicated with
large amounts of components and interactions, which poses
great challenges to controller design. This is exemplified in
[19] where the controller for an autonomous vehicle became
so unwieldy that it was impossible to foresee the failure of
it, resulting in a crash.

In order to tame the complexity of modern control sys-
tems, synthesis of correct-by-construction control logic based
on temporal logic specifications has gained considerable
attention in the past few years. A commonly adopted ap-
proach is to construct a Finite Transition System (FTS) which
serves as a symbolic model of the original control system,
which typically has infinitely many states. The controller,
which is represented by a finite state machine, can then
be synthesized to guarantee certain specifications on the
system by leveraging formal synthesis tools [10]. Such a
design procedure has been applied to various fields including
robotics (e.g. [5], [6], [2], [7], [4]), autonomous vehicle
control [18], smart-buildings [13] and aircraft power system
design [9].

One of the main challenges of this approach is in the
abstraction of the control system, whose state space is con-
tinuous and potentially high dimensional, into a finite state
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model. Zamani et al. [21] propose an abstraction algorithm
based on approximate simulation relations and alternating
approximate simulation relations. They prove that if certain
continuity assumptions on the system trajectory hold, then
an FTS can be generated by partitioning the state space into
small hypercubes. Similar ideas are also presented in [14]
and [15].

A different, iterative, approach has been proposed that first
generates a coarse model of the original system and then
refines the model based on reachability computations [18],
[17]. This algorithm has been implemented in a software
package, namely TuLiP [20], and will be compared to the
method proposed in this paper.

Most of the algorithms available in the literature gen-
erate the finite state model independently of the system
specifications. As such, the abstracted model can be used
for any possible specification. However, this typically leads
to a partition of the state space into equally fine regions
everywhere. As a consequence, the time complexity of such
general abstraction procedures is quite high and it increases
with the dimension of the system.

In this article, in hope to reduce the computational com-
plexity of the abstraction algorithm, we create the finite
state models of the system by exploiting the structure of the
specifications. To be specific, we create two FTS models for
the control system, where one is an over-approximation of
the control system and the other is an under-approximation.
By solving the synthesis problem on both FTSs, we can cat-
egorize the points in the state space into, what we refer to as,
winning, losing and maybe sets. Conceptually, the winning
set contains those points for which a correct controller is
known, i.e., roughly, a controller that can fulfill the given
specifications. On the other hand, the losing set contains
those points for which we know that no correct controller
exists. Lastly, the maybe set represents the points for which
the existence of a correct controller is not yet known since
the current model is not fine enough to represent the original
system. One can view the winning and losing sets as the
“solved” regions and the maybe set as the “unsolved” region.
We can thus focus our computational power on refining the
abstraction of the regions of the state space that lie in the
maybe set, while leaving the current winning and losing sets
intact.

The merits of our proposed algorithm are twofold:
1) Instead of partitioning the state space into equally fine

regions, we can concentrate the computational power
on the regions for which the existence of a correct
controller is not yet known.
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2) Compared to the abstract algorithm proposed in [18],
[17], [20], for the case that the specifications are
unrealizable (for the original continuous control sys-
tem), our algorithm can provide proof that no correct
controller exists.

Ideas similar to our proposed method have been presented
in [3] and [8]. Our algorithm does however allow us to
skip some reachability calculations when performing the
refinement, and can as such be seen as an extension.

The rest of the paper is organized as follows: In Section II,
we provide an introduction to transition systems and linear
temporal logic. The problem of abstracting a discrete-time
control system into FTSs is proposed in Section III. The
abstraction algorithm is then discussed in Section IV. Two
numerical examples are provided in Section V to illustrate
the effectiveness of the proposed algorithm. Finally, Sec-
tion VI concludes the paper.

II. PRELIMINARIES

Most of the definitions in this section can be found in [18],
but are included in this section for the sake of completeness.
For a more thorough presentation, see e.g. [1].

A. Transition Systems and Linear Temporal Logic

Definition 1. A system consists of a set V of variables. The
domain of V , denoted by dom(V ), is the set of valuations
of V . A state of the system is an element v ∈ dom(V ).

In this paper, we consider a system with a set V = S ∪
E of variables. The domain of V is given by dom(V ) =
dom(S)× dom(E), where a state ς ∈ dom(S) is called the
controlled state and a state e ∈ dom(E) the uncontrolled
environmental state. As a result, the state v can be written
as (ς, e). We further assume that the set dom(E) is finite.

Definition 2. A transition system (TS) is a tuple T :=
(V,Vinit,→) where V ⊆ dom(V ) is a set of states, Vinit ⊆
V is a set of initial states and →⊆ V × V is a transition
relation. Given states νi, νj ∈ V , we write νi → νj if there
is a transition from νi to νj in T. We say that T is a finite
transition system (FTS) if V is finite.

Definition 3. An atomic proposition is a statement on system
variables ν that has a unique truth value for a given value
of ν. Letting ν ∈ dom(V ) and p be an atomic proposition,
we write ν |= p if p is true at the state ν.

We will use Linear Temporal Logic (LTL), which is
an extension of regular propositional logic that introduces
additional temporal operators, to formulate specifications
on a system. In particular, apart from the standard logical
operators negation (¬), disjunction (∨), conjunction (∧) and
implication (⇒), it includes the temporal operators next (©),
always (�), eventually (♦) and until (U). LTL formulas are
defined inductively as

1) Any atomic proposition p is an LTL formula.
2) Given the LTL formulas ϕ and ψ; ¬ϕ, ϕ∨ψ,©ϕ and

ϕ U ψ are LTL formulas as well.

Definition 4. The satisfaction relation |= between an exe-
cution (infinite sequence of system states) σ = ν0ν1 . . . and
an LTL formula is defined inductively as
• σ |= p if ν0 |= p.
• σ |= ¬ϕ if σ does not satisfy ϕ.
• σ |= ϕ ∨ ψ if σ |= ϕ or σ |= ψ.
• σ |=©ϕ if ν1ν2 . . . |= ϕ.
• σ |= ϕ U ψ if there exists an i ≥ 0, such that
νiνi+1 . . . |= ψ and for any 0 ≤ k < i, νkνk+1 . . . |= ϕ.

For a more in-depth explanation of LTL, see [1].
It is well known that the complexity of synthesizing a

controller for a general LTL formula is double exponential
in the length of the given specification [11]. However, for
a specific class of LTL formulas, namely those known
as Generalized Reactivity(1) (GR1) formulas, an efficient
polynomial time algorithm [10] exists. As a result, in this
article, we will restrict the specification ϕ to be a GR1
formula, which takes the following form:

ϕ =

M∧
i=1

�♦pi =⇒
N∧
j=1

�♦qj , (1)

where each pi, qj is a Boolean combination of atomic propo-
sitions.

B. Winning Controllers and Winning Sets

Definition 5. A controller for a transition system (V,Vinit,
→) and environment E is an ordered set of mappings γt :
S × Et → S, i.e., γ , (γ1, γ2, . . . , γt, . . . ), each taking the
initial controlled state ς[0] and all the environmental actions
up to time t − 1, e[0] . . . e[t − 1], giving another state in S
as output. Furthermore, a controller γ is called consistent if
for all t and ς[0], e[0], . . . , e[t + 1], the following transi-
tion relation is satisfied: (γt(ς[0], e[0], . . . , e[t− 1]), e[t])→
(γt+1(ς[0], e[0], . . . , e[t]), e[t+ 1]).

Definition 6. Given an infinite sequence of environmental
states e[0]e[1] . . . , a controlled execution σ using the con-
troller γ and starting at ς[0] is an infinite sequence σ =
ν0ν1 · · · = (ς[0], e[0])(ς[1], e[1]) . . . , such that ς[t + 1] =
γt(ς[0], e[0], . . . , e[t+ 1]).

Definition 7. A set of controlled states W is winning if
there exists a consistent controller γ, such that for any infinite
sequence of e[0]e[1] . . . and any initial controlled state ς[0] ∈
W , the controlled execution σ using controller γ starting
at ς[0] satisfies the GR1-specification ϕ. The corresponding
controller γ is called a winning controller for W .

The following observations are important for the rest of
the paper:

Proposition 1. Let {Wi}i∈I be a collection of winning sets,
then the set

⋃
i∈IWi is also winning.

As a result, there exists a largest winning set, which leads
to the following definition:

Definition 8. The largest winning set, W , of a transition
system T, for the specification ϕ, is defined as the union of



all winning sets, i.e.,

W (T, ϕ) =
⋃

W is winning

W. (2)

The losing set, L, is defined as

L(T, ϕ) = dom(S) \W (T, ϕ). (3)

A state ς is called a losing state if ς ∈ L(T, ϕ).

Remark 1. Notice that the controllers defined in Definition 5
have infinite memory (since they require all environmental
actions e[0]e[1] . . . ). However, from [10], we know that for
a finite transition system, if a winning controller exists, there
will also exist a winning controller with finite memory.

III. PROBLEM FORMULATION

We consider the following discrete-time control system:

s[t+ 1] = f(s[t], u[t]),

u[t] ∈ U, s[t] ∈ dom(S),

s[0] ∈ Sinit,

(4)

where dom(S) ⊆ Rn, Sinit ⊆ dom(S) is the set of possible
initial states, U ⊆ Rm is the admissible control set and f the
system dynamics (possibly non-linear). It is evident that the
discrete-time control system is completely characterized by
f, U, dom(S) and Sinit, which leads to the following formal
definition:

Definition 9. A discrete-time control system Σ is a quadruple
Σ , (f, U, dom(S), Sinit).

A discrete-time control system Σ can be converted into a
transition system in the following manner:

Definition 10. Let Σ , (f, U, dom(S), Sinit) be a discrete-
time control system. The transition system TS(Σ) =
(V,Vinit, →) associated with Σ is defined as:
• V = dom(S)× dom(E).
• Vinit = Sinit × dom(E).
• For any (s1, e1), (s2, e2) ∈ V , (s1, e1)→ (s2, e2) if and

only if there exists u ∈ U , such that s2 = f(s1, u).

The problem of controller synthesis for the discrete-time
control system Σ can be written as a controller synthesis
problem for TS(Σ) as follows:

Problem 1. Realizability: Given TS(Σ) and a specification
ϕ, decide whether Sinit is a winning set.

Problem 2. Synthesis: Given TS(Σ) and a specification ϕ,
if Sinit is winning, construct the winning controller γ.

In general, Problem 1 and 2 are very challenging, even for
a very simple formula ϕ [16], [12]. As a result, we will attack
this problem by leveraging the tools developed for controller
synthesis for FTSs. The main difficulty in directly applying
these techniques is that TS(Σ) has infinitely (uncountably)
many states. In the next section, we develop abstraction
techniques to convert TS(Σ) into FTSs.

IV. ABSTRACTION ALGORITHM

In this section, we abstract TS(Σ) into two FTSs with
the same set of states by partitioning the state space into
equivalence classes. We will refer to s ∈ dom(S) as a
continuous state for TS(Σ) and any state ς of the FTSs
as a discrete state.

A. Constructing the Initial Transition Systems

Our proposed method builds upon the idea of creating
an over-approximation and an under-approximation of the
reachability relations of the system. To this end, we (itera-
tively) construct two FTSs. One that we will refer to as the
pessimistic FTS and one that we will refer to as the optimistic
FTS. We introduce the notation D(i)

o = (V(i),V(i)
init ,→

(i)
o ) and

D(i)
p = (V(i),V(i)

init ,→
(i)
p ), respectively, for the ith iteration of

these FTSs (i.e. those constructed in the ith iteration of the
algorithm).

To simplify the notation, we define two reachability rela-
tions as:

Definition 11. The relationRp : 2dom(S)×2dom(S) → {0, 1}
is defined such that Rp(X,Y ) = 1 if and only if for all x ∈
X , there exists an y ∈ Y and u ∈ U , such that f(x, u) = y.

Definition 12. The relationRo : 2dom(S)×2dom(S) → {0, 1}
is defined such that Ro(X,Y ) = 1 if and only if there exist
x ∈ X , y ∈ Y and u ∈ U , such that f(x, u) = y.

Remark 2. Informally, Rp indicates whether there is some
control action for every continuous state in a region X that
takes that state to some state in the region Y in one time
step. Ro indicates whether there is some point in X that
can be controlled to Y in one time step. The results can be
generalized to longer horizon lengths, but for simplicity we
only consider reachability in one time step.

We further define a partition function of the continuous
state space dom(S):

Definition 13. A partition function of dom(S) is a mapping
TS : dom(S) → S . The inverse of TS is defined as T−1S :
S → 2dom(S), such that

T−1S (ς) = {s ∈ dom(S) : TS(s) = ς}.

Definition 14. The partition function TS on dom(S) is called
proposition preserving if for any atomic proposition p and
any pair of continuous states sa, sb ∈ dom(S), which satisfy
TS(sa) = TS(sb), we have that sa |= p implies that sb |= p.

If TS is proposition preserving, then we can label the
discrete states with atomic propositions. To be specific, we
say ς |= p if and only if for every s ∈ T−1S (ς), we have that
s |= p.

To initialize the abstraction algorithm, we assume that
we are given the atomic propositions on the continuous
state space dom(S). We can then create a proposition
preserving partition function TS(0) , a set of discrete states
S(0) = {ς0, ς1, . . . , ςn}, and a set of initial discrete states
S(0)init ⊆ S(0). The state space V(0) and the initial state



V(0)
init are defined as V(0) = S(0) × dom(E) and V(0)

init =

S(0)init × dom(E).
Next, we perform a reachability analysis to establish the

transition relations in D(0)
o and D(0)

p . For every pair of states,
νa = (ςa, ea), νb = (ςb, ea), we add a transition in D(0)

p from
νa to νb if and only if Rp(T−1S(0)(ςa), T−1S(0)(ςb)) = 1 and a
transition in D(0)

o if and only if Ro(T−1S(0)(ςa), T−1S(0)(ςb)) = 1.

Remark 3. D(0)
o is optimistic in the sense that even if only

some part of a region corresponding to a discrete state can
reach another, we consider there to be a transition between
these two discrete states. In D(0)

p we require every point in a
region corresponding to a discrete state to be able to reach
to some point in the other for there to be a transition.

The idea is illustrated in Figure 1. Given an initial propo-
sition preserving partition of the continuous state space (the
colored quardrants), the two FTSs can be constructed using
a reachability analysis. An arrow from a region separated by
a solid or dashed line to another region means that there is
some control action taking the system from the first region
to the other. For simplicity, we assume that the environment
does not have any variables.

ς2

ς4ς3

ς1

D(0)
p

and

ς2

ς4ς3

ς1

D(0)
o

=⇒

Fig. 1. Construction of D(0)
p and D(0)

o given an initial proposition
preserving partition of the state space (the four colored quadrants) and a
reachability analysis (illustrated by the lines and arrows in the state space).
For simplicity, the environment is assumed to have no variables.

We now provide two theorems regarding the (largest)
winning sets of D(0)

p , D(0)
o and TS(Σ), the proofs of which

are reported after the statements of the theorems for the sake
of legibility.

Theorem 1. For any discrete state ς[0] ∈ W (D(0)
p , ϕ) that

is winning for the pessimistic FTS D(0)
p , the corresponding

continuous state is also winning in TS(Σ), i.e., T−1S(0)(ς[0])
⊆W (TS(Σ), ϕ).

Theorem 2. For any continuous state s[0] ∈W (TS(Σ), ϕ)
that is winning for TS(Σ), the corresponding discrete state
is also winning in D(0)

o , i.e., TS(0)(s[0]) ∈W (D(0)
o , ϕ).

Proof of Theorem 1. Suppose the winning controller for
W (D(0)

p , ϕ) is γp = (γp,1, γp,2, . . . , γp,t, . . . ). Consider a
discrete state ς[0] = TS(0)(s[0]) ∈ W (D(0)

p , ϕ). For all
possible environmental actions e[0]e[1] . . . , we can create the
controlled execution using γp. This gives a sequence of states
(ς[0], e[0])(ς[1], e[1]) . . . , which satisfies the specification ϕ.

Consider now a continuous state s[0] ∈ T−1S(0)(ς[0]). From
the construction of D(0)

p , we know that

Rp(T−1S(0)(ς[t]), T
−1
S(0)(ς[t+ 1])) = 1.

Thus, we can recursively define the consistent continuous
controller γ = (γ1, γ2, . . . ) to be

1) γ1(s[0], e[0]) returns an s[1] ∈ T−1S(0)(ς[1]) such that
there exists an u[0] ∈ U and f(s[0], u[0]) = s[1].

2) γt+1(s[0], e[0], . . . , e[t]) returns an s[t + 1] ∈
T−1S(0)(ς[t+ 1]) such that there exists an u[t] ∈ U and

f(γt(s[0], e[0], . . ., e[t− 1]), u[t])

= γt+1(s[0], e[0], . . . , e[t]).

As a result, we have a sequence (s[0], e[0])(s[1], e[1]) . . . ,
where TS(0)(s[t]) = ς[t]. Hence, the controller γ is also
winning at s[0], which completes the proof.

Proof of Theorem 2. Suppose γ = (γ1, γ2, . . . ) is winning
for W (TS(Σ), ϕ) and s[0] ∈W (TS(Σ), ϕ). For all possible
environmental actions e[0]e[1] . . . , we create a controlled ex-
ecution using γ: (s[0], e[0])(s[1], e[1]) . . . , which is winning.

Now consider the discrete state ς[t] = TS(0)(s[t]). By the
definition of Ro, we know that

(ς[t], e[t])→(0)
o (ς[t+ 1], e[t+ 1]).

As a result, we can construct a consistent controller γo =
(γo,1, . . . ) for ς[0] = TS(0)(s[0]) as γo,t(ς[0], e[0], . . . , e[t−
1]) = TS(0) (γt(s[0], e[0], . . . , e[t− 1]). Thus, we get a
sequence (ς[0], e[0])(ς[1], e[1]) . . . , where ς[t] = TS(0)(s[t]).
Hence, the controller γo is winning at ς[0], which completes
the proof.

We now define the following three sets:

W(i) = W (D(i)
p , ϕ), (5)

referred to as the winning set;

L(i) = L(D(i)
o , ϕ) (6)

as the losing set; and

M(i) = S(i)\
(
W(i) ∪ L(i)

)
, (7)

as the the maybe set. We can further define the inverse image
of these sets on dom(S) as W(i)

c = T−1S(i)(W(i)), L(i)
c =

T−1S(i)(L(i)) and M(i)
c = T−1S(i)(M(i)).

By Theorem 1 and 2, it is clear that

1) If Sinit ⊆ W(0)
c , then Sinit is a winning set for

TS(Σ). Furthermore, the winning controller can
be constructed in a similar fashion as is discussed
in the proof of Theorem 1.

2) If Sinit
⋂
L(0)
c 6= ∅, then Sinit is not a winning

set for TS(Σ).
3) If neither 1) nor 2) is true, then a finer partition is

needed to answer the Realizability Problem.

For case 3), one may naively create a finer partition
function and the corresponding pessimistic and optimistic
FTSs. In the next subsection, we show how to iteratively
do this in order to reduce the computational complexity of
the abstraction algorithm by exploiting the properties of the
winning set.



B. Refinement Procedure

We define a refinement operation as

splitm : 2dom(S) × {1, . . . ,m} → 2dom(S) (8)

such that for all X ⊆ dom(S) and i, j ∈ {1, . . . ,m}, i 6=
j, it has the following properties: splitm(X, i) ⊂ X ,

splitm(X, i) ∩ splitm(X, j) = ∅ and
m⋃
k=1

splitm(X, k) =

X .

Remark 4. The index m on splitm is the number of
children that a region should be split into upon refinement.
We leave it unspecified how to choose m and the exact shape
of the regions generated by splitm, since the exact details
are not relevant for the algorithm. In the implementation in
Section V, a split of X ⊂ Rn into 2n equally sized hy-
perrectangles was used (assuming that the initial proposition
preserving partition consisted only of hyperrectangles).

We will focus our computational resources (i.e. perform
a further refinement) on the states in the maybe set M(i).
Intuitively, these states have the potential to become winning
when we create finer partitions. With S(i) and TS(i) as the
set of discrete states and the partition function of the ith
iteration, respectively, we define S(i+1) and TS(i+1) in the
following way:

1) If ς ∈ W(i) ∪ L(i), then (ς, 1) ∈ S(i+1) and

T−1S(i+1)((ς, 1)) = T−1S(i)(ς).

2) If ς ∈M(i), then (ς, j) ∈ S(i+1) for all j = 1, . . . ,m
and

T−1S(i+1)((ς, j)) = splitm(T−1S(i)(ς), j).

Given the discrete states, the state space V(i+1) can be
defined as V(i+1) = S(i+1) × dom(E), and the initial states
V(i+1)
init can be defined in a similar fashion.

Remark 5. One can consider the discrete state spaces S(0),
S(1), . . . to form a forest (a disjoint union of trees), where
the states in S(0) are the roots and (ς, j) ∈ S(i+1) is the jth
child of ς ∈ S(i).

A simple example of the refinement procedure is provided
in Figure 2. An initial preposition preserving partition is
constructed from the continuous state space dom(S), which
in this case, results in three discrete states (and corresponding
regions in the continuous state space). The discrete states are
marked as to belonging to either the winning (crosshatched
green), maybe (solid yellow) or losing (dotted red) set. To
refine the partition, the split3-operator (using equally sized
rectangles as partitions) is applied to the state in the maybe
set, namely ς2. The refined partition can be seen in the
rightmost figure, where a new reachability analysis has been
performed. The next step of the procedure would further
refine the new maybe set, (ς2, 3).

We now define the transition relations of the two FTSs.
We begin with the relations in the pessimistic FTS. For any
two states (ςa, j), (ςb, k) ∈ S(i+1) and environmental states

(ς2, 1) (ς2, 2) (ς2, 3)

(ς3, 1)

(ς1, 1)

ς3

ς2

ς1

dom(S) =⇒=⇒

Fig. 2. An example of the proposed refinement procedure. An initial
preposition preserving partition is constructed in the first step. The regions
are labeled with their corresponding discrete state. The states are colored
differently depending on if they belong to the winning (crosshatched green),
maybe (solid yellow) or losing (dotted red) set. The split3-operator is used
to further refine the states in the maybe set (only one iteration is illustrated).

ea, eb, we have that ((ςa, j), ea) →(i+1)
p ((ςb, k), eb) if and

only if one of the following statements holds:
1) WW-transition: ςa, ςb ∈ W(i), j = k = 1 and

(ςa, ea)→(i)
p (ςb, eb).

2) MW-transition: ςa ∈M(i), ςb ∈ W(i), k = 1 and

Rp(T−1S(i+1)( (ςa, j) ), T−1S(i+1)( (ςb, 1) ) ) = 1.

3) MM-transition: ςa, ςb ∈M(i) and

Rp(T−1S(i+1)( (ςa, j) ), T−1S(i+1)( (ςb, k) ) ) = 1.

Remark 6. WW stands for a transition between two winning
states, and analogously for MW and MM. Notice that we
omit many possible transitions. This allows us to focus on
the critical transitions that affects the computation of the
winning set. The rationale for this is that it is waste to check
if, for example, a winning state can reach a maybe state,
since we already know that there is a winning controller in
the winning state.

The update rule for the optimistic FTS is similar. We have
that ((ςa, j), ea)→(i+1)

o ((ςb, k), eb) if and only if one of the
following three statements holds:

1) WW-transition: ςa, ςb ∈ W(i), j = k = 1 and

(ςa, ea)→(i)
p (ςb, eb).

Notice that we are using the transition relation →(i)
p

instead of →(i)
o for this case.

2) MW-transition: ςa ∈M(i), ςb ∈ W(i), k = 1 and

Ro(T−1S(i+1)( (ςa, j) ), T−1S(i+1)( (ςb, 1) ) ) = 1.

3) MM-transition: ςa, ςb ∈M(i) and

Ro(T−1S(i+1)( (ςa, j) ), T−1S(i+1)( (ςb, k) ) ) = 1.

We will now expand upon Theorem 1 and 2 to pro-
vide a characterization of the winning sets W (D(i)

p , ϕ) and
W (D(i)

o , ϕ). The proofs of the following theorems are de-
ferred to the appendix for the sake of legibility.

Theorem 3. For any discrete state ς[0] ∈ W (D(i)
p , ϕ) that

is winning for the pessimistic FTS D(i)
p , the corresponding

continuous state is also winning in TS(Σ), i.e.,

T−1S(i)(ς[0]) ⊆W (TS(Σ), ϕ). (9)



Furthermore, its child (ς[0], 1) is also winning for D(i+1)
p ,

i.e.,
(ς[0], 1) ∈W (D(i+1)

p , ϕ). (10)

Theorem 4. For any continuous state s[0] ∈W (TS(Σ), ϕ)
that is winning for TS(Σ), the corresponding discrete state
is also winning in D(i)

o , i.e.,

TS(i)(s[0]) ∈W (D(i)
o , ϕ). (11)

Furthermore, if the discrete state ς[0] ∈ L(D(i)
o , ϕ) is losing

for D(i)
o , then its child is also losing in D(i+1)

o , i.e.,

(ς[0], 1) ∈ L(D(i+1)
o , ϕ). (12)

Combining Theorem 3 and 4, we have the following
corollary:

Corollary 1. W(0)
c ⊆ W(1)

c ⊆ · · · ⊆W (TS(Σ), ϕ) ⊆ · · · ⊆
dom(S) \ L(1)

c ⊆ dom(S) \ L(0)
c .

The box outlining the algorithm for the first iteration can
be straight-forwardly adjusted with Theorem 3 and 4 to
outline the full algorithm.

1) If Sinit ⊆ W(i)
c , then Sinit is a winning set for

TS(Σ). A winning controller can be constructed
in a similar fashion as is discussed in the proof of
Theorem 1.

2) If Sinit
⋂
L(i)
c 6= ∅, then Sinit is not a winning

set for TS(Σ). Thus, we can stop the refinement
procedure because there is no winning controller.

3) If neither of the above statements is fulfilled, then
we cannot give a definitive answer on whether
Sinit is winning or not at the ith iteration. As a
result, we create the FTSs D(i+1)

p and D(i+1)
o and

try to solve the winning sets for them.

Remark 7. It is worth noticing that we do not use any special
properties of the f function or the sets U, dom(S) and Sinit,
except for the reachability relations that they induce. As a
result, the algorithm presented in this article can be used to
handle any transition system.

V. NUMERICAL RESULTS

In this section, we perform a comparison between the
algorithm in TuLiP [20] and our proposed algorithm on two
systems in R2 (for simplicity and illustratory purposes, the
algorithm is valid for higher-dimensional systems as well).
All the simulations were performed on a MacBook Air (1.3
GHz, 4 GB RAM).

Consider the system

s[t+ 1] = I2s[t] + I2u[t],

u[t] ∈ U = {v ∈ R2 : |v|∞ ≤ 1},
s[t] ∈ dom(S) = [0, 3]× [0, 2],

s[0] ∈ Sinit = [0, 3]× [0, 2],

(13)

where I2 is the identity matrix with two columns, with the
following propositional markings in the state space: [0, 1]×
[0, 1] as home and [2, 3]× [1, 2] as lot. Let the environment
be equipped with a Boolean variable, park, and let the
specification of system be the following: ϕ = �♦home ∧
�(park → ♦lot), which can be converted into GR1-form.
Roughly speaking the specification implies that the system
should visit the parking lot whenever the environment sets
park true, and always returns back home.

The algorithm employed by TuLiP [18] partitions the
whole state space according to a reachability analysis until no
region corresponding to a discrete state can be refined further
without going below a pre-specified threshold volume. This
leads to problems when the threshold volume is set too high,
since not enough transitions can be established in the finite
state model. As illustrated by the red crosses in Figure 3,
TuLiP failed to find a controller realizing the specification
when the threshold volume was taken larger than 0.2. When
the threshold was chosen below this value, it succeeded in
finding a controller and announced that the specifications
were realizable (green dots).

Our implementation iteratively refines the partition of
the state space until a controller can be synthesized (or,
in the case that the specifications are unrealizable, until it
can guarantee that none can be found). Furthermore, our
algorithm only refines the “interesting” areas of the state
space, which results in less computational time – indicated
by the dashed blue line. Note that the time it took to “guess”
the right threshold value for TuLiP is large.

The next example shows the actual partition that results
from the two methods. Consider the system

s[t+ 1] = I2s[t] + I2u[t],

u[t] ∈ U = {v ∈ R2 : |v|∞ ≤ 1},
s[t] ∈ dom(S) = [0, 4]× [0, 4],

s[0] ∈ Sinit = [3, 3.5]× [3, 3.5],

(14)

with the set of propositions: [0, 0.5] × [0, 0.5] as goal and
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Fig. 3. Timing data for the current algorithm in TuLiP and our proposed
algorithm. The specifications that we are considering for the continuous
system are realizable, but TuLiP cannot synthesize a controller until the
threshold volume is below 0.2. The dots and crosses indicate the time for
TuLiP to partition the state space and then try to synthesize a controller,
giving a positive or a negative answer, respectively, on whether the speci-
fications are realizable. Our algorithm concludes that the specifications are
realizable without taking any threshold volume as input, illustrated by the
dashed blue line.



(a) (b)

Fig. 4. (a) shows the partition by TuLiP of the system (14) when the
threshold volume was chosen to be 1.0. Regions of the same color are
considered as one discrete state. (b) shows the partition resulting from our
algorithm, with the winning (green), maybe (yellow) and losing (red) sets
marked. Here, every region is its own discrete state.

[3, 3.5] × [3, 3.5] as start. For simplicity, assume that the
environment has no variables. The initial assumption on the
system is start and the progress specification of the system
is �♦goal. This means that the systems starts in start and
should always eventually reach goal.

A set Ω is invariant if s(t0) ∈ Ω ⇒ s(t) ∈ Ω, ∀t ≥ t0
and for all possible controls u(t). It is simple to show that
the region R2 \ [0, 2]2 is invariant for (14). Since start lies
in an invariant region, that does not contain goal, we know
a priori that there does not exist a winning controller.

Figure 4a) shows the partition that TuLiP provided when
the threshold volume was set to 1.0. Note that the invariant
region is finely partitioned. The runtime of the algorithm
was 620 s. No controller that fulfills the specifications could
be synthesized using this abstraction. Note that from the
output of TuLiP, it is not possible to say whether no
winning controller exists, or if a winning controller of the
original system exists but TuLiP cannot find it because of
the partition being too coarse.

The output of our algorithm can be seen in Figure 4b). The
coloring illustrates the winning (green), maybe (yellow) and
losing (red) states. The states in the maybe set are marked as
such since some of the continuous states in them lie within
the invariant region, and some lie within the region that can
reach goal. Since start lies in the losing set, the algorithm
terminates and concludes with a definitive answer that there
exists no winning controller (neither for the abstraction nor
the original system). This took 25 s.

VI. CONCLUSION

In this paper we have presented an iterative method for
abstracting a discrete-time control system into two FTSs,
representing an under- and over-approximation of the reach-
ability properties of the original dynamical system. We have
provided theorems regarding the existence of controllers ful-
filling GR1-specifications for the continuous system, based
on the existence of such controllers for the two FTSs.
Our proposed algorithm provides a way of focusing the
computational resources on refining only certain areas of the
state space, leading to a decrease in the time complexity of

the abstraction procedure compared to previous methods. We
have made a comparison between the proposed algorithm
and the one currently used in the TuLiP-framework on
numerical examples with promising results.
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APPENDIX

Proof of Proposition 1. Let us define an index function h :⋃
i∈IWi → I, such that for any ς ∈

⋃
i∈IWi, the following



set inclusion holds:
ς ∈ Wh(ς).

Now assume that the winning controller for the set Wi

is γ(i) = (γ
(i)
1 , γ

(i)
2 , . . . , γ

(i)
t , . . . ). We can define the new

controller γ = (γ1, γ2, . . . ) as

γt(ς[0], e[0], . . . , e[t−1]) = γ
(h(ς[0]))
t (ς[0], e[0], . . . , e[t−1]).

It is easily verified that γ is a winning controller for⋃
i∈IWi.

Lemma 1. For any two sequences σ = ν0ν1 . . . , σ′ =
ν′0ν
′
1 . . . , such that σ |= ϕ and σ′ |= ϕ, where ϕ is a GR1

formula defined in (1), the following properties hold:
1) Define a time-shifted sequence σt = νtνt+1 . . . , then

σt |= ϕ.
2) Suppose that there exists τ ≥ 0, such that ντ = ν′0,

then the following sequence ν0 . . . ντν′1ν
′
2 . . . |= ϕ.

Proof. By definition, σ |= ϕ if and only if

σ |=

(
¬

M∧
i=1

�♦pi

)∨ N∧
j=1

�♦qj

 . (15)

The lemma follows directly from the fact that the right hand
side of (15) is a liveness formula.

Lemma 2. Consider an FTS T and a GR1 formula ϕ.
If the controller γ is winning for some non-empty set
W , then for any initial condition ς[0] ∈ W and en-
vironmental actions e[0]e[1] . . . , the controlled execution
(ς[0], e[0])(ς[1], e[1]) . . . satisfies

ς[t] ∈W (T, ϕ), ∀t = 0, 1, . . . .

Proof. This result follows directly from Lemma 1.

Proof of Theorem 3. By the recursive definition of D(i)
p and

D(i)
o , we know that for any ςa, ςb ∈ S(i),

(ςa, ea)→(i)
p (ςb, eb)

implies that
Rp(T−1S(i)(ςa)), T−1S(i)(ςb))) = 1.

Hence, (9) can be proved in a similar way as Theorem 1.
We now prove (10). For the FTS D(i)

p , suppose the winning
controller for W(i) = W (D(i)

p , ϕ) is γ(i)p = (γ
(i)
p,1, γ

(i)
p,2, . . . ).

We can define the controller γ(i+1)
p = (γ

(i+1)
p,1 , γ

(i+1)
p,2 , . . . )

for the FTS D(i+1)
p as

γ
(i+1)
p,t ((ς[0], 1),e[0], . . . , e[t− 1])

= (γ
(i)
p,t(ς[0], e[0], . . . , e[t− 1]), 1).

Thus, the controlled execution of the FTS D(i+1)
p is given by

((ς[0], 1), e[0])((ς[1], 1), e[1])((ς[2], 1), e[2]) . . . ,

which satisfies the specification ϕ. Therefore, we only need
to prove that the controller γ(i+1)

p is consistent.
By Lemma 2, we know that for any ς[0] ∈ W(i), the

controlled execution (ς[0], e[0]) . . . satisfies
ς[t] ∈ W(i),

which implies that the transition from ((ς[t], 1), e[t]) to
((ς[t + 1], 1), e[t + 1]) in D(i+1)

p is a WW-transition and
hence exists. Hence, γ(i+1)

p is consistent, which completes
the proof.

Proof of Theorem 4. We first prove (12). Notice that by
the construction of D(i+1)

o , if ς[0] ∈ L(i) = L(D(i)
o , ϕ),

then ((ς[0], 1), e[0]) has no successors in D(i+1)
o . Thus,

(ς[0], 1) ∈ L(D(i+1)
o , ϕ) since no consistent controller exists

for (ς[0], 1).
We now prove (11) by induction. Notice that we cannot

use the same argument as Theorem 2 since sa → sb does
not necessarily imply TS(i+1)(sa)→(i+1)

o TS(i+1)(sb).
By Theorem 2, we know that (11) holds when i = 1.

For the transition system TS(Σ), suppose that the con-
troller γ = (γ1, γ2, . . . ) is winning for W (TS(Σ), ϕ).
For any s[0] ∈ W (TS(Σ), ϕ) and environmental actions
e[0]e[1] . . . , we create a controlled execution using γ: σ =
(s[0], e[0])(s[1], e[1]) . . . , which is winning.

Let us define a hitting time τ as
τ = inf{t ∈ N0 : TS(i−1)(s[t]) ∈ W(i−1)}.

In other words, τ is the first time that TS(i−1)(s[t]) enters
the winning setW(i−1). We further assume that the infimum
over an empty set is ∞.

For the FTS D(i−1)
p , suppose that the controller γp =

(γp,1, . . . ) is winning for W (D(i−1)
p , ϕ) = W(i−1). If τ <

∞, we define ςp[0] = TS(i−1)(s[τ ]) and ep[t] = e[t+τ ]. Now
we create a controlled execution using γp with environmental
actions ep[0]ep[+1] . . . : σp = (ςp[0], ep[0])(ςp[1], ep[1]) . . . ,
which is also winning.

We now construct a controller γo = (γo,1, . . . ) of the
FTS D(i)

o , such that it is winning at ς[0] = TS(i)(s[0]). The
construction can by divided into two steps:

1) If t ≤ τ , then γo follows the winning controller γ of
the FTS TS(Σ), i.e.,

γo,t(ς[0],e[0], . . . , e[t− 1])

= TS(i)(γt(s[0], e[0], . . . , e[t− 1])).

2) If t > τ , we switch to the winning controller γp of the
FTS D(i−1)

p , i.e.,
γo,t(ς[0], e[0], . . . , e[t− 1])

= (γp,t−τ (ςp[0], ep[0], . . . , ep[t− τ − 1]), 1).

Now we prove that γo is winning at ς[0]. Define the
controlled execution using γo on the FTS D(i)

o to be
σo = (ςo[0], e[0])(ςo[1], e[1]) . . . .

We need to prove that σo satisfies the specification and γo
is consistent. The proof is divided into two cases depending
on whether τ =∞ or τ <∞.

Case 1: τ =∞
By the definition of γo, we know that

ςo[t] = TS(i)(s[t]).

Since σ is winning, we only need to check the consistency
of γo, i.e., whether the transition from (ςo[t], e[t]) to (ςo[t+



1], e[t+ 1]) exists in D(i)
o . By Lemma 2, we know that

s[t] ∈W (TS(Σ), ϕ).

And hence, by the induction assumption,

TS(i−1)(s[t]) ∈M(i−1)
⋃
W(i−1).

By the fact that τ =∞,
TS(i−1)(s[t]) ∈M(i−1).

As a result, there exists an jt ∈ {1, . . . ,m}, such that ςo[t]
is the jtth child of TS(i−1)(s[t]), i.e.,

ςo[t] = (TS(i−1)(s[t]), jt).

Furthermore, since there exists an u[t], such that
f(s[t], u[t]) = s[t+ 1], we know that

Ro(T−1S(i)(ςo[t]), T
−1
S(i)(ςo[t+ 1])) = 1,

Hence, the transition from (ςo[t], e[t]) to (ςo[t+ 1], e[t+ 1])

is an MM-transition and it exists in D(i)
o . And thus, γo is

consistent.
Case 2: τ <∞

By the construction of γo, σo satisfies

ςo[t] =

{
TS(i)(s[t]) if t ≤ τ,
(ςp[t− τ ], 1) if t > τ.

By Lemma 1 and the fact that both σ and σp satisfy ϕ, we
only need to check the consistency of γo, i.e., whether the
transition from (ςo[t], e[t]) to (ςo[t + 1], e[t + 1]) exists in
D(i)
o . This can be done in three steps:
1) t < τ − 1:

By the same argument as for the case where τ = ∞,
we know that the transition from (ςo[t], e[t]) to (ςo[t+

1], e[t+ 1]) is an MM-transition and it exists in D(i)
o .

2) t = τ − 1:
By the definition of τ , we know that
TS(i−1)(s[τ − 1]) ∈M(i−1), TS(i−1)(s[τ ]) ∈ W(i−1).

Hence, the transition from (ςo[τ − 1], e[τ − 1]) to
(ςo[τ ], e[τ ]) is an MW-transition and it exists in D(i)

o .
3) t > τ − 1:

By Lemma 2, we know that
ςp[t] ∈W (D(i−1)

p , ϕ) =W(i−1).

Hence, the transition from (ςo[t], e[t]) to (ςo[t+1], e[t+

1]) is a WW-transition and it exists in D(i)
o .

Therefore, γo is consistent and we can conclude the proof.
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