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Abstract

The Hegselmann-Krause system (HK system for short) is one of the most popular models for the
dynamics of opinion formation in multiagent systems. Agents are modeled as points in opinion space,
and at every time step, each agent moves to the mass center of all the agents within unit distance.
The rate of convergence of HK systems has been the subject of several recent works. In this work,
we investigate two natural variations of the HK system and their effect on the dynamics. In the first
variation, we only allow pairs of agents who are friends in an underlying social network to communicate
with each other. In the second variation, agents may not move exactly to the mass center but somewhere
close to it. The dynamics of both variants are qualitatively very different from that of the classical HK
system. Nevertheless, we prove that both these systems converge in polynomial number of non-trivial
steps, regardless of the social network in the first variant and noise patterns in the second variant.

1 Introduction

The dynamics of opinions in society is a very intricate and intriguing process. Especially in today’s world,
with the pervasive infiltration of social networks like Facebook and Twitter that allow quick broadcasts of
opinions, phenomena which were once wild speculations by philosophers, such as the viral spread of memes
[Daw76], are now easily observed and quantified. This acceleration of social processes is turning sociology
into a quantitative science, where concrete models for social phenomena can be proposed and rigorously
tested.

Sociologists have long identified several different processes that determine opinion dynamics, most no-
tably, normative and informational [DG55]. Normative influence refers to the influence that causes people
to conform to a group’s social norms. On the other hand, informational influence refers to the way people
acquire the opinions of others, driven by the assumption that neighbors possess information about a situa-
tion. Informational influence is especially relevant in the context of understanding how opinions change, and
it arguably is the dominant process for determining trends in, say, fashion, mobile phones and music.

In this work, we focus on quantitative models for informational influence. Such a model should specify
how an individual agent updates its opinion using information learned from its “neighbors”. By now, this
area has been heavily studied; see [Jac08] for a survey. The most basic such model is the classic DeGroot
model [DeG74, Fre56, Har59] where each agent’s opinion is a real number between 0 and 1, and at every
time step, each agent moves to some weighted average of its neighbors’ positions, where the neighbors are
determined according to an unchanging undirected graph. Such a system always reaches consensus, contrary
to the existence of polarized states in society. Another classic model is the voter model [CS73, HL75]. Here,
there is an unchanging directed graph among the agents, and at every time step, a random agent selects
a random neighbor and adopts the neighbor’s opinion as its own. Again, such a system always reaches a
consensus, and coalescing random walks [DKS91] can be used to bound the convergence time.
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(a) No freezing time

a

(b) Time to converge can be arbi-
trarily long (c) Order of agents can change

Figure 1: Properties of social HK systems

In order to explain why consensus doesn’t always arise in the real world, one can posit the presence
of stubborn agents, agents which never change their own opinions (though they may certainly influence
others). More generally, multiple studies [Asc55, DG55, LRL79] have confirmed that even when agents are
not stubborn, they usually have a conformity bias, i.e., they assign more weight to opinions that are already
close to their own. This notion gives rise to the definition of influence systems or flocking models.

The most popular such flocking model is the Hegselmann-Krause system [Kra97, HK02], and this is the
system that we focus on here. In its simplest incarnation, the system consists of n agents placed on the real
line, with the i’th agent at xt(i) at time t, and at every time step t > 0, the positions update as follows for
all i ∈ [n] synchronously:

xt+1(i) =
1

|Nt(i)|
∑

j∈Nt(i)

xt(j) (1)

where Nt(i) = {j : |xt(j)− xt(i)| 6 1}. Here, 1 is the confidence bound, as each agent only has confidence in
those agents which are within this bound.

The HK system has become quite popular as a mathematically clean and simple formalization of an
endogenous dynamical system that captures interesting qualitative properties, such as polarization and
conformity bias, found in opinion dynamics1. The expectation is that a systematic understanding of the
dynamics of the HK system can lend insight into more detailed models and, hopefully, (some aspects of)
reality. Indeed, convergence for the HK system is immediate, and the time complexity needed for the system
to freeze is known upto a linear factor in n (the best upper bound is O(n3) [BBCN13, MT13] and the best
lower bound Ω(n2) [WH14]). Note that it is not a priori clear that there exists a bound which depends only
on n and is independent of the agents’ initial positions.

But perhaps surprisingly, it has turned out that changing the model in even very simple ways leads to
problems which we cannot handle mathematically. For example, one of the most common variations is to let
the confidence bound depend on the agent [Lor10, MB12]. That is, suppose Nt(i) = {j : |xt(j)−xt(i)| 6 ri}
for some ri > 0. This is called the heterogeneous Hegselmann-Krause system. A rigorous proof of its
convergence is still missing, although convergence seems clear from simulations! This situation clarifies that
we need to develop new technical tools in order to understand the dynamics of influence systems. Indeed,
for general influence systems, Chazelle, in an impressive sequence of papers [Cha11, Cha12], developed a
new algorithmic calculus to show that general influence systems are almost surely asymptotically periodic.
However, these general results do not imply convergence for the specific case of heterogeneous HK.

1.1 Our Contributions

In this work, we rigorously study the convergence behavior of two variations of the HK model. Apart
from their intrinsic interest from a sociology perspective, their analysis seem to pose similar mathematical

1Moreover, the HK system can also model robotic rendezvous problems in plane and space [BCM09].
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difficulties as heterogeneous HK. Nevertheless, we show that for both these systems, we can develop tools to
understand their convergence behavior. Specifically, we study the following two models:

– Social Hegselmann-Krause: One criticism of the Hegselmann-Krause model is that it only considers
informational influence and ignores normative effects altogether. It ignores the fact that individuals
belong to groups, and generally, information exchange only occurs between individuals in the same
group. To model this fact, we assume that there exists an underlying social network such that two
agents can interact with each other only when there is an edge between the two in this graph.

We formally define the social Hegselmann-Krause system as follows: given an undirected graph G on
n nodes and a collection of n agents initially at positions x0(1), . . . , x0(n) ∈ R respectively, the social
HK system updates the agents’ positions synchronously for t > 1 according to Equation (1) where2

Nt(i) = {j : (i, j) ∈ E(G) and |xt(j)− xt(i)| 6 1}.
The social HK model differs in some very basic ways from the usual HK model, as shown in Figure 1.
First of all, it is no longer true that the agents freeze after some time; agents can keep moving by some
tiny amount indefinitely as the example in Figure 1a shows. We might hope though that, for every
ε > 0, after some time bound that depends on n and ε, the points stay within intervals of ε. Even this
is not true as the situation in Figure 1b of the panel shows; there, by making δ > 0 arbitrarily small,
the agent initially at 0 can take arbitrarily long to “see” the agent initially at 2− δ. Finally, unlike the
usual HK system, the agents do not preserve their order, as is clear from Figure 1c.

As far as we know, we are the first to formally study the convergence behavior of the social HK model.
Fortunato [For05] also investigated the same system but to address a very different problem: Given
a random initial configuration of agents in the interval [0, 1], what is the minimum confidence bound
that ensures that the agents come to a consensus when the dynamics is that of social HK on a random
graph of degree d? Fortunato’s empirical result3 is that this threshold is ∼ 0.2 when d = ω(1) and is
0.5 when d is constant. Perhaps in the style typical of physicists, their work focused on the equilibrium
outcome, whereas we study the transient behavior.

Given ε, let us call a step of the dynamical system ε-non-trivial if at least one pair of interacting agents
is separatated by distance at most ε.

Theorem 1.1. Given an arbitrary initial configuration of n agents evolving according to the social
HK model defined by an arbitrary graph, the number of ε-non-trivial steps in the dynamical system is
O(n5/ε2).

Chazelle’s result [Cha11] implies an nO(n) bound for this system whereas our bound is polynomial.

We also show that the same bound holds when the social network itself changes with time, provided
its evolution follows certain constraints. Informally, we require that if two agents interact at time t
and they are within each other’s confidence bound at time t+ 1, then they should keep on interacting
at time t + 1. In particular, if edges are never deleted from the social network, then only polynomial
number of non-trivial steps take place

Non-deterministic Hegselmann-Krause: A different criticism of the HK system is that it is very
rigid in that each agent must move to exactly the mass center of the agents within unit distance. In
particular, if two agents have the same set of agents within unit distance, then they move to exactly
the same opinion at the next time step (and stay together thereafter). This is clearly not very realistic,
as the effects of chance and variation are not taken into account.

To address these issues, for any fixed ε ∈ [0, 1], we formally define the ε-non-deterministic Hegselmann-
Krause system. The system again consists of n agents placed on the real line, with the i’th agent at

2E(G) denotes the edge set of G.
3A similar empirical result [For04] has been rigorously proven [LU07] for the closely related Deffuant-Weisbuch

model [WDAN02] on a social network.
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Figure 2: Order not preserved by non-deterministic dynamics

xt(i) at time t, and at every time step t > 0, the positions update for all i ∈ [n] synchronously as:

xt+1(i) = xt(i) + (1 + εi,t)
∑

j∈Nt(i)

xt(j)− xt(i)
|Nt(i)|

(2)

where εi,t ∈ [−ε, ε] for every i and t independently, and Ni(t) = {j : |xt(j) − xt(i)| 6 1}. Note that
we term the system “non-deterministic” instead of “noisy”, because the εi,t’s are not assumed to be
random. In fact, they can be entirely arbitrary values in [−ε, ε], even chosen by an adversary depending
on the current state. However, note that consensus remains a fixed point of this dynamics.

The dynamics of non-deterministic HK is quite different from that of HK. As Figure 2 shows, the order
of agents can change even when there are two agents and ε is arbitrarily small. Also, the fact that
agents do not coalesce together once they see the same set of agents complicates the system’s behavior
significantly. The work here is the first to handle such a general type of non-determinism in doing
convergence analysis. In [BBCN13], a one-sided version of noise was discussed but there, the authors
could adapt the argument to bound the convergence time of exact HK in a simple way. In contrast,
we are not able do so here. Our main result is:

Theorem 1.2. Suppose ε < 1
4n2 . Starting with an arbitrary initial arangement of n agents evolving

according to the non-deterministic HK model, the number of steps before which all the agents are
confined within intervals of length ρ thereafter is O(n4 + log(1/ρ)/ log n).

Again, in this case too, Chazelle’s general result on bidirectional influence systems [Cha11] implies an
nO(n) bound whereas we show a polynomial bound.

1.2 Our Techniques

Social HK. In [BBCN13], the classical HK system is shown to converge in O(n3) steps by simply showing
that the diameter of the system must shrink by a significant amount at each timestep, unless the leftmost
and rightmost agents have already frozen. It is not clear how to extend this proof approach to the social HK
system, because as Figure 1b shows, the leftmost agent may not be frozen but may take an arbitrary long
time before it moves by a significant amount. Therefore, we must search for some other energy function,
which is not the diameter but which is also decreasing.

In fact, such an energy function has already been introduced [RMF08]. For a given configuration x =
(x(1), . . . , x(n)), define E(x) =

∑
(i,j) min(|x(i) − x(j)|2, 1). The fact that this energy is decreasing is an

important ingredient in several previous works [BHT07, BHT09, BBCN13, EB14]. We generalize this energy
function to the social HK setting as: E(x) =

∑
i∼tj
|x(i)− x(j)|2 +

∑
i 6∼tj

1, where i ∼t j means that agents
i and j interact at time t.

To give a lower bound on the decrease of this energy function, we use an elegant approach introduced
recently by Martinsson [Mar15]. Martinsson relates the decrease to the eigenvalue gap of the communication
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graph, which is well-known to be > 1/poly(n). We show that the same approach applies to the social HK

system also. We get that the energy decrement in every ε-non-trivial step is Ω( ε2

n3 ), and as the energy of

any initial configuration lies between 0 and O(n2), this gives an upper bound of O(n5

ε2 ) on the number of
ε-non-trivial steps. This approach continues to apply even when the social network graph is changing under
some natural restrictions.

Non-deterministic HK. To analyze the non-deterministic HK system, we use a mixture of geometric
and algebraic techniques similar to the ones presented in [BBCN13]. However, the technical details are
significantly more involved. The basic approach in [BBCN13] is to look at the neighbor immediately to
the right of the leftmost agent and analyze its influence. However, in our case, we need to partition the
neighbourhood of the leftmost agent into two subsets and treat the subsets collectively. One might also
notice that proving a lower bound on the movement of the leftmost agent as in [BBCN13] is not enough,
as the order of positions is not preserved and the leftmost agent may change over time. To overcome this
difficulty, in our work we lower bound the amount by which the diameter (difference between the rightmost
and the leftmost agents, whose identities change with time) shrinks within n time steps, or else, we show
that some agents separate out leaving behind sub-systems with smaller number of agents, where they both
converge independently thereafter.

2 Social HK model

We reformulate the social HK model in the multidimensional setting. This is very natural when an opinion
consists of positions along multiple axes instead of just one.

Let xt(i) ∈ Rd (for d > 1) be the position of the ith agent at time t, and let G be a fixed undirected
graph on n nodes. The dynamics is given by the following equation:

xt+1(i) =
1

|Nt(i)|
∑

j∈Nt(i)

xt(j) (3)

where Nt(i) = {j : (i, j) ∈ E(G) and ‖xt(j)− xt(i)‖2 6 1}. We denote the new state at time t+ 1 by:

xt+1 = Ptxt (4)

where Pt is a row-stochastic matrix. As mentioned in the Introduction, our proof follows the same line as
the recent analysis by Martinsson [Mar15] but with some twists due to the presence of the social network
graph.

For any configuration x = (x(1), x(2), . . . , x(n)) of n agents, define the communication graph Cx so that
two nodes i and j are adjacent exactly when (i, j) ∈ E(G) and ‖x(i) − x(j)‖2 6 1. That is, the communi-
cation graph is now the conjunction of the social network G and the standard HK communication graph.
Also, for a configuration x of n agents, we define its energy as

E(x) =
∑

(i,j)∈E(Cx)

‖x(i)− x(j)‖22 +
∑

(i,j)/∈E(Cx)

1 (5)

Note that the energy of any configuration lies between 0 and n2. For the standard HK system, a very useful
fact is that the energy E(xt) is non-increasing in t; see Theorem 2 of [RMF08] for a proof. In fact, this fact is
the driver for the bound on the freezing time of multidimensional HK found in [BBCN13]. Our proof shows
that the same energy decreases over time for the social HK system also.

For a given state x and for any ordered pair (i, j) ∈ [n]2, we say that (i, j) is active if (i, j) ∈ E(Cx). We
consequently define the active part of the energy of x as

Eact(x) =
∑

(i,j) active

‖x(i)− x(j)‖22 =
∑

(i,j)∈E(Cx)

‖x(i)− x(j)‖22 (6)
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Now, let {xt} be a sequence of configurations evolving according to (4). For simplicity of notation, let
Et denote the edge set of the communication graph Cxt .

Lemma 2.1. ∑
(i,j)∈Et+1

‖xt+1(i)− xt+1(j)‖22 +
∑

(i,j)/∈Et+1

1

6
∑

(i,j)∈Et

‖xt+1(i)− xt+1(j)‖22 +
∑

(i,j)/∈Et

1

Proof. There are four cases to look at:

1. (i, j) ∈ Et and (i, j) ∈ Et + 1
In this case. we are adding the same term (‖xt+1(i)− xt+1(j)‖22) to both LHS and RHS.

2. (i, j) /∈ Et and (i, j) /∈ Et + 1
In this case too, we are adding the same term (1) to both LHS and RHS.

3. (i, j) ∈ Et and (i, j) /∈ Et + 1
In this case, note that ‖xt+1(i)− xt+1(j)‖22 > 1, because otherwise (i, j) /∈ E(G) which contradicts the
fact that (i, j) ∈ Et. Hence in this case, we are adding a greater term to the RHS (‖xt+1(i)−xt+1(j)‖22 >
1) than to the LHS (1).

4. (i, j) /∈ Et and (i, j) ∈ Et + 1
Since (i, j) ∈ Et+1, ‖xt+1(i)− xt+1(j)‖22 6 1. Hence in this case too we are adding a term (1) to RHS
which is at least the term (‖xt+1(i)− xt+1(j)‖22 6 1) added to the LHS.

As the inequality is true term-wise, we have LHS 6 RHS. �

Proposition 1 (Proposition 2.2 in [Mar15]). For each t > 0, let

λt = max{|λ| : λ 6= 1 is an eigenvalue of Pt}.

Then:
E(xt)− E(xt+1) > (1− λ2t )Eact(xt) (7)

Proof. We reproduce the proof from [Mar15] for completeness. Let At denote the adjacency matrix of Cxt
,

and let Dt denote its degree matrix, that is, the diagonal matrix whose (i, i)’th element is given by the degree
of i(Recall that every vertex in Cxt

has an edge to itself). Observe that Pt = D−1t At. Recall Et = E(Cxt
).

We have:

E(xt) =
∑

(i,j)∈Et

||xt(i)− xt(j)||22 +
∑

(i,j)/∈Et

1

= 2Tr(xTt (Dt −At)xt) +
∑

(i,j)/∈Et

1

where Tr(·) denotes trace. Here, we interpret xt as an n× d matrix.
Now consider:

E(xt+1) =
∑

(i,j)∈Et+1

‖xt+1(i)− xt+1(j)‖22 +
∑

(i,j)/∈Et+1

1

6
∑

(i,j)∈Et

‖xt+1(i)− xt+1(j)‖22 +
∑

(i,j)/∈Et

1 (by Lemma 2.1)

= 2Tr(xTt+1(Dt −At)xt+1) +
∑

(i,j)/∈Et

1

= 2Tr((D−1t Atxt)
T (Dt −At)D

−1
t Atxt) +

∑
(i,j)/∈Et

1
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Hence, it suffices to show that

Tr((D−1t Atxt)
T (Dt −At)D

−1
t Atxt)

= Tr(xTt AtD
−1
t (Dt −At)D

−1
t Atxt)

6 λ2tTr(x
T
t (Dt −At)xt) (8)

Let yt = D
1
2xt and B = D

1
2
t PtD

− 1
2

t = D
− 1

2
t AtD

− 1
2

t . It is straightforward to show that (8) simplifies to

Tr(yTt Bt(I −Bt)Btyt) 6 λ
2
tTr(y

T
t (I −Bt)yt) (9)

This inequality follows by standard linear algebra. �

The following is a standard result in spectral graph theory:

Proposition 2. For any t > 0, we have

|λt| 6 1− 1

n2diam(Cxt
)

(10)

where diam(Cxt
) denotes the graph diameter of Cxt

. If Cxt
is not connected, we interpret diam(Cxt

) as the
largest diameter of any connected component of Cxt

.

We are now ready to prove our main theorem. Observe that Eact(xt) > ε2 whenever the t’th step is
ε-non-trivial. Theorem 1.1 is therefore immediately implied by the result below.

Theorem 2.2. For any ε > 0, given a social HK system with n agents in Rd, there are O(n5/ε) values of t
for which Eact(xt) > ε.

Proof. Now given any initial configuration, we have diam(Cxt) 6 n (or else, we can decompose the system
into independent subsystems and analyze each separately). Applying Proposition 2, it follows that the energy

decrement in each step with Eact(xt) > ε is Ω( ε
n3 ) and such steps can hence occur at most O(n5

ε ) times.
�

2.1 Changing social network

One may ask what happens to the convergence rate when the social network itself evolves with time and
is not fixed. Let Gt denote the social network graph at time t. To make sure that the above proof carries
through, we need to suitably restrict the evolution of Gt.

Given a sequence of configurations xt = (xt(1), . . . , xt(n)), we again have the communication graph Cxt

where two nodes i and j are adjacent if (i, j) ∈ E(Gt) and ‖xt(i)− xt(j)‖2 6 1. As before, let Et = E(Cxt
).

Definition 2.3. Call a social HK system defined by a sequence of time-varying social networks Gt as
friendly if it is the case that whenever (i, j) ∈ Et and ‖xt+1(i)−xt+1(j)‖2 6 1, (i, j) ∈ E(Gt+1) (and hence,
(i, j) ∈ Et+1)).

In other words, in a friendly HK system, if two agents interact at time t, and they stay within distance
1 in the next time step, then they keep interacting with each other at time t + 1. Note that the evolution
of Gt may be endogenous (i.e., depend on the states xt). We observe that under this natural condition of
friendliness, the above proof goes through without any changes.

Theorem 2.4. For any ε > 0, given a friendly social HK system with n agents in Rd, there are O(n5/ε)
values of t for which Eact(xt) > ε.

Proof. The only part of the proof which needs a second look is case 3 in the proof of Lemma 2.1. Now, the
definition of friendliness ensures that if (i, j) /∈ Et+1 and (i, j) ∈ Et, then ‖xt+1(i)− xt+1(j)‖2 > 1. �

Note that without the friendliness assumption, Chazelle [Cha11] shows a bound of nO(n) for the number
of non-trivial steps. We conjecture that the friendliness assumption is necessary for a polynomial bound.
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Figure 3: The plot shows the convergence time for social HK systems when the initial states of the n agents are

uniform in [1, n] and the social network is the random graph G(n, p) of edge density p. n was varied from 1000 to

10000 as shown, and p was varied from 0.01 to 1 in steps of size 0.01. See text for discussion of “convergence time”.

2.2 Experimental Results

Our analysis above is very general in the sense that our bound for the number of non-trivial steps does not
depend on the structure of the social network. Is it true that some social network structures allow faster
convergence than others? As a first cut at this question, we explore how the edge density of the social network
affects dynamics. Let G(n, p) be the Erdős-Renyi random graph on n nodes, where each pair of nodes is
an edge with probability p independently. How does p change the time needed to converge? We study this
question when the initial positions of the agents are uniform in the interval [1, n]. Figure 3 summarizes the
results of our computer experiments.

We need to clarify what we mean by “convergence time” in the figure. As Figure 1b shows, the time
needed to converge can, in general, be arbitrarily long. However, it seems that if the initial positions of the
agents are chosen randomly, such pathological cases occur with probability 0, so that after a finite time,
all agents are confined to an interval of length 10−6 ever after. We do not have a rigorous proof of this
claim, but all our simulations support it. In view of this, the notion of convergence time we used to arrive at
Figure 3 was, for any given n and p, the least time t at which the sum of the movement of all the n agents
is less than 10−6, averaged over 1000 random initializations of the agents and random graphs from G(n, p) .

What is most interesting about Figure 3 is that there exists a value of p between 0 and 0.3 for which
the convergence time is maximized. When p is close to 0, the communication graph consists of many small
disconnected components and convergence occurs fast. p = 1 corresponds to the standard HK model.
Somewhere in between, the time needed to converge reaches a maximum. The lesson seems to be that
opinions take the longest time to converge when the probability of two agents interacting is neither too small
nor too large. We also conducted the experiment when the social network was chosen from the Barabási-
Albert generative model for scale-free networks. The results there (not shown) are qualitatively similar.

Note that the maximizing value of p seems to decrease slowly with n in Figure 3. It is not clear what
the limiting behavior is as n grows. Also, we currently do not have any analytical way to understand the
experimental results.
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3 Non-Deterministic Hegselmann-Krause Model

In this Section, we analyze the non-deterministic HK model. Recall that the update rule for the non-
deterministic HK model is:

xt+1(i) = xt(i) + (1 + εi,t)

∑
j∈Nt(i)

(xt(j)− xt(i))
|Nt(i)|

(11)

where εi,t is an arbitrary number generated from the interval (−ε, ε) at time t, for every t > 0. We analyze
the time needed for convergence when ε is sufficiently small.

We first establish some notation. Let `(t) be the index of the leftmost agent at time t. As already noted
in the Introduction, `(t) can change with t. Also, let xt(`) and Nt(`) be shorthand for xt(`(t)) and Nt(`(t))
respectively. Similarly, let r(t) be the index of the rightmost agent at time t, and let xt(r) and Nt(r) denote
xt(r(t)) and Nt(r(t)) respectively.

Lemma 3.1. Suppose ε < 1
n−1 . Then, for any agent i ∈ [n] and for all t > 0, xt+1(i) > xt(`). In particular,

xt+1(`) > xt(`).

Proof. Let δ = xt(i)− xt(`). At time t+ 1, without noise, agent i can move to the left by at most δ(1− 1
n ).

By substituting in (11), we get:

xt+1(i) > xt(i)− (1 + ε)δ ·
(

1− 1

n

)
Since ε < 1

n−1 , xt+1(i) > xt(i)− δ = xt(`). �

Remark 3.2. By exactly the same reasoning, the position of the rightmost agent does not move to the right
over time if ε < 1

n−1 .

Definition 3.3. For all t > 0, define the following sets:

L(t) = {i ∈ Nt(`) | Nt(i) = Nt(`)}
S(t) = {i ∈ Nt(`) | Nt(i) 6= Nt(`)}
T (t) = {i ∈ [n] | i /∈ Nt(`)}
M(t) = S(t) ∪ T (t)

We next show that any agent in M(t) actually satisfies Lemma 3.1 with strict inequality.

Lemma 3.4. For any agent i ∈ T (t) and for all t > 0, xt+1(i) > xt(`) + 1
n − ε.

Proof. Consider i ∈ T (t) and let k = |Nt(i)|.

xt+1(i) = xt(i) + (1 + εi,t)
∑

j∈Nt(i)

xt(j)− xt(i)
|Nt(i)|

> xt(i)− (1 + ε)
k − 1

k

> xt(`) + 1− (1 + ε)(1− 1

n
)

> xt(`) +
1

n
− ε

�

Lemma 3.5. For any agent i ∈ S(t) and for all t > 0, xt+1(i) > xt(`) + 1
n − ε

9



Proof. Consider i ∈ S(t). Let k = |Nt(`)| and δ = xt(i)− xt(`). Then agent i moves to its left by at most:

xt+1(i) > xt(i)− (1 + εi,t)
δ(k − 2) + 0− (1− δ)

k
(12)

> xt(i)− (1 + εi,t)
δ(k − 1) + 0− (1− δ)

k
(13)

= xt(i)− (1 + εi,t)(δ −
1

k
)

> xt(`) + δ − (1 + εi,t)(δ −
1

n
)

> xt(`) +
1

n
− ε

�

Combining Lemma 3.4 and Lemma 3.5:

Corollary 3.6. For any agent i ∈M(t) and t > 0, xt+1(i) > xt(`) + 1
n − ε

Lemma 3.7. Suppose ε < 1
n−1 . For any t > 0, if S(t) = ∅, then Nt(`) = L(t) evolves as an indepen-

dent system and for any ρ > 0, all the agents in L(t) lie within an interval of length at most ρ in time
O((log 1/ρ)/(log 1/ε)) time.

Proof. Because S(t) = ∅, Nt(`) = Nt(i) ∀i ∈ Nt(`). Then, by definition,

xt+1(i) = at+1(i) + εi,tbt+1(i)

where at+1(i) =
∑

j∈Nt(i)
xt(j)

|Nt(i)| and bt+1(i) =
∑

j∈Nt(i)
(xt(j)−xt(i))

|Nt(i)|

Observation 1. For any i, j ∈ Nt(`), we have Nt(i) = Nt(j) =⇒ at+1(i) = at+1(j)

Observation 2. Since ε < 1
n−1 , by Lemma 3.1, for any agent i ∈ Nt(`), Nt+s(i) = Nt(i) for all positive

integers s.

Let δt := xt(r)− xt(`) 6 1. Then:

δt+1 = εr,t+1bt+1(r(t+ 1))− ε`,t+1bt+1(`(t+ 1)) 6 2ε · bmax
t+1

where bmax
t+1 = maxi(|bt+1(i)|) 6 δt. Hence δt+1 6 2εδt. Therefore, for any ρ > 0, all the agents will lie within

an interval of length ρ in time O(log(1/ρ)/ log(1/ε)). �

Lemma 3.8. At any time t > 0, one of the following three cases must occur:

S1) S(t+ 1) = ∅

S2) |L(t+ 1)| < |L(t)|

S3) M(t) ∩Nt+1(`) 6= ∅

Proof. Assume Case S3 does not occur, meaning for all s ∈ M(t), s /∈ Nt+1(`). Then, we show that either
case S1 or S2 occurs.

By our assumption, Nt+1(`) ⊆ Nt(`) \ S(t) = L(t). Hence, L(t+ 1) = Nt+1(`)\S(t+ 1) ⊆ L(t)\S(t+ 1).
Now, either

– S(t+ 1) = ∅, which is case S1.

– S(t+ 1) 6= ∅, and so, L(t+ 1) ⊆ L(t) \ S(t+ 1) ( L(t), implying case S2.

10
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Note that case S1 of the above Lemma is irreversible in the sense that by Corollary 3.6, each time it
occurs, a subset of the agents converges independently into an interval of an arbitrarily small length ρ. We
next establish that case S3 can also occur only a finite number of times.

Lemma 3.9. Suppose ε < 1
4n2 . If M(t) ∩Nt+1(`) 6= ∅, then for all i ∈ [n], xt+2(i) > xt(`) + 1

4n2 .

Proof. Suppose s ∈ M(t) ∩ Nt+1(`) . Then, by Corollary 3.6, xt+1(s) − xt(`) > 1
n − ε >

1
n − 2ε. Now, we

consider two cases.

– Suppose xt+1(`) > xt(`) + 1
2n −ε. Then, for any i, by Lemma 3.1, xt+2(i) > xt+1(`) > xt(`) + 1

2n −ε >
xt(`) + 1

4n (∵ ε < 1
4n2 ).

– Otherwise, suppose xt+1(`) 6 xt(`) + 1
2n − ε. Then, xt+1(s) − xt+1(`) > 1

2n − ε. Now for any agent
i ∈ L(t+ 1), we have:

xt+2(i) = xt+1(i) + (1 + εi,t+1)
∑

j∈Nt+1(i)

xt+1(j)− xt+1(i)

|Nt+1(i)|
(14)

=
∑

j∈Nt+1(`)

xt+1(j)

|Nt+1(l)|
+ εi,t+1

∑
j∈Nt+1(i)

(xt+1(j)− xt+1(i))

|Nt+1(i)|
(∵ i ∈ L(t+ 1))

> xt+1(`) +
xt+1(s)− xt+1(`)

n
− ε(1− 1

n
)

> xt+1(`) +
( 1
2n − ε)
n

− ε(1− 1

n
)

> xt+1(`) +
1

2n2
− ε

If ε < 1
4n2 , then xt+2(i) > xt+1(`) + 1

4n2 > xt(`) + 1
4n2 , by Lemma 3.1. If i ∈ M(t + 1), then

by Corollary 3.6, we have xt+2(i) > xt+1(`) + 1
2n > xt(`) + 1

2n , the second inequality again due to
Lemma 3.1. So, the claim is proved for all i.

�

We are now ready to prove our main theorem.

Theorem 1.2 (recalled) Suppose ε < 1
4n2 . Starting with an arbitrary initial arangement of n agents

evolving according to the non-deterministic HK model, the number of steps before which all the agents are
confined within intervals of length ρ thereafter is O(n4 + log(1/ρ)/ log n).

Proof. Since for any t, |L(t)| 6 n, case S2 can occur consecutively at most n times. So, within every n time
steps, case S1 or case S3 must occur at least once. Case S1 can clearly occur at most n times, whereas by
Lemma 3.9, case S3 can occur O(n3) times. Hence, after time O(n4) time steps, all agents lie in independent
subsystems, each of diameter at most 1. Each of these subsystems, by Lemma 3.7, cluster into intervals of
length at most ρ in O(log(1/ρ)/ log(1/ε)) = O(log(1/ρ)/ log n) time steps. �

Remark 3.10. Suppose we change the definition of non-deterministic HK models so that each agent is
influenced non-uniformly by its neighbors. Specifically, let the update rule be:

xt+1(i) = xt(i) +

∑
j∈Nt(i)

(1 + εi,j,t)(xt(j)− xt(i))
|Nt(i)|

(15)
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where each εi,j,t is an arbitrary4 number generated from the interval (−ε, ε). Most of the above proof needs
no modification. (12) changes to:

xt+1(i) > xt(i)−
(1 + ε)δ(k − 2) + 0− (1− ε)(1− δ)

k

> xt(i)−
(1 + ε)δ(k − 1) + 0− (1− ε)(1− δ)

k

= xt(`) +
1

k
− ε (δ − 2δ/k + 1/k)

> xt(`) +
1

n
− 2ε > xt(`) +

1

2n

if ε < 1
4n2 . Everywhere else, the claims hold straighforwardly using the upperbound of ε on each εi,j,t. Hence,

for this system also, Theorem 1.2 holds.
An interesting aspect about (15) is that an agent might move in the opposite direction than it would move

in the classical HK model, whereas in (11), the direction of each agent’s movement is the same as in classical
HK.

4 Future Directions

There are a number of open directions suggested by the problems studied in this work.

– In our formulation of the social HK model, we required the underlying social network to be undirected.
This leads to bidirectional dynamical systems. What happens if the social network is directed? Proving
convergence for the HK model with a directed social network seems quite challenging because it in-
cludes, as a special case, the ill-understood HK model with stubborn agents (i.e., there are some agents
with confidence bound 0 while all others have confidence bound 1). To see this, let every non-stubborn
agent have edges to all agents and every stubborn agent have no outgoing edges.

– We introduced the notion of friendly social HK systems in Section 2.1 and showed that these allow only
a polynomial number of non-trivial steps. We conjecture that friendliness is necessary for a polynomial
bound. Can one demonstrate a non-friendly HK system for which there are an exponential number of
non-trivial steps? Is friendliness indeed a tight condition for a polynomial bound?

– Is there a rigorous justification for the empirical results reported in Section 2.2? In general, it would be
interesting to understand the effect of the social network structure on the dynamics of the HK model.

– For the non-deterministic HK model, it is important to increase the range of ε for which Theorem 1.2
is valid. Note that if ε is allowed to be in [−1, 0], then we could prove convergence for the HK system
with stubborn agents (by simply setting εi,t = −1 for all t if agent i is stubborn and εi,t = 0 otherwise).
Moreover, in the generalized non-deterministic HK systems described in Remark 3.10, if ε is allowed
to be in [−1, n− 1], then we can simulate arbitrary heterogeneous HK systems (by setting εi,j,t = −1

if j /∈ Nt(i) and εi,j,t = |{k:|xt(k)−xt(i)|61}|
|Nt(i)| − 1 otherwise).

– Can we prove a polynomial bound for the convergence of the non-deterministic HK model in multiple
dimensions? Our current proof does not extend while the approach used in Section 2 seems sensitive
to the presence of non-determinism.
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