Control of Sensors
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Abstract— With which intensity to request high-quality com-
ponents of the observed output of a Gaussian system driven
by Brownian motions so as to minimize the trace of the error
covariance when there is a cost for doing so? The optimal
stochastic control problem is considered on an infinite horizon
and with a discounted cost, and separately also for discounted
impulse control. The optimal control law is for the scalar cases
proven to be a threshold control law. The dynamic behavior of
the closed-loop system is such that if the conditional variance
is large then the sensor input for better quality observations is
switched on while if the uncertainty is small then the input for
better quality observations is switched off. The optimal control
law for the drift input is identical to the classical LQG case.

I. INTRODUCTION

The purpose of this paper is to present the optimal control
laws for the problem of control of sensors of a Gaussian
stochastic control system.

The problem is motivated by control of a set of underwater
vehicles, see [1]. Other motivations are smart grids, medical
systems, and a variety of networked control problems. A
particular underwater vehicle does not know the state of other
vehicles in the neighborhood. In that case it can send a sonar
communication to another vehicle to request its position and
speed vector. But such a communication requires electric
energy which is a scarce resource. The problem is thus
whether or not to request sensor information and, if so, when.
A related problem arises in the competition of commercial
firms where a firm can request a report about another firm
at a cost.

The problem of control of the activation of sensors has
been investigated but the assumptions on the models differ
widely. Early publications are [2], [3], [4]. The results
differ by case. In several papers it is assumed that there
is a discrete-time system and that the optimal control law
is periodic. With these assumptions it is then computed
what the length of the period should be. This is useful for
particular applications. But it leaves open the question what
the form of the optimal control law actually is. A more
theoretical motivation is to increase the understanding of the
interaction of the control of the diffusion process and the
control of the observation process

The problem of control of the observation channel was
formulated by the authors in [5]. That paper differs from the
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current paper in that a discrete-time system was formulated.
In addition this paper uses a different control objective and
investigates optimality of a particular control law. Computa-
tions for the model of [5] were carried out by a student and
these are described in [6].

The contribution of this paper is to show for a particular
continuous-time Gaussian stochastic control system and an
infinite-horizon discounted cost function that the optimal
control law is a threshold control law as defined in the
paper which depends on the conditional variance or the
uncertainty of the state estimate. The problem is investigated
for the optimal stochastic control with partial observations
and dynamic programming, and for an impulse control
formulation. The control law uses an information system
consisting of the state estimate of the Kalman filter and
of the estimation variance provided by the solution of the
filter Riccati differential equation. The latter equation is a
deterministic differential equation whose parameters depend
on the past outputs. The optimal control law for the drift or
diffusion is an ordinary LQG control law though the control
law depends on the states of the filter system which in turn
depend on the sensor input. The optimal control law for the
sensor input is a threshold control, which is defined in this
paper as a generalization of a threshold control law of control
of queueing systems. Thus, the sensor is activated if the error
variance exceeds a threshold. The dynamic behavior of the
closed-loop system controlled with a threshold control law
may be periodic or not depending on the particulars of the
problem.

The contents of this paper is briefly summarized. The
next section contains a detailed verbal problem formulation.
Section III presents the stochastic control problem, the set
of control laws, the closed-loop systems, the cost function,
and a few special cases. Section IV treats only the scalar
case with dynamic programming. The impulse control case
is treated in Section V.

II. PROBLEM

The problem is motivated by control of underwater ve-
hicles as described in the introduction. Another motivation
is the operation of sensor networks where the available en-
ergy is finite and both sensor activation and communication
require a considerable amount of energy.

A second motivation is to develop control theory with
results on the interaction of observation and control. How
can the input be used to obtain state estimates with smaller
uncertainty? What types of control laws for the sensor input
are to be expected?



In the literature there are several variants of the problem
which may not be transformed into each other. In a version,
the controller may choose only one extra sensor. In another
version, the controller can choose any subset of the available
sensors. In a third model, the controller may choose a linear
combination of all sensors. The authors have chosen the
general model described in the next section.

The problem is thus to determine when and with what
intensity to request additional sensor information from the
control system so as to minimize a cost. The costs consist
of the sum of two components, the first component of the
performance contains the drift input and the controlled-
behavior of the control system. The second component of
the performance criterion contains the sensor input and the
quality of the state estimate.

The authors have published a paper, see [5], with a
discrete-time model and a finite-horizon cost function. The
dynamic programming recursion was derived. Subsequently,
a student working with A.C.M. Ran and Jan H. van Schuppen
has carried out computations which show that the optimal
control law becomes almost periodic if time progresses for
the numerical cases considered. The authors had conjectured
that for the infinite-horizon control problem the optimal
control law is periodic. But this may not be true in general.
They now prefer the viewpoint that the optimal control law
is a threshold control law.

Several papers in the literature deal with what may now
be called the problem of control of sensors. The paper by
M. Athans, [2], formulates a problem which is solved by the
matrix minimum principle but not by dynamic programming
based on past observations. Willsky et al. in [7] provide a
solution in another special case. See further the reference
on the discrete-time infinite-horizon case [8], [9] and the
references mentioned in those papers. The paper by Wu and
Arapostathis [10] formulates an optimal stochastic control
problem for discrete-time stochastic systems. The authors of
that paper prove that the optimal control law for the drift of
the control system has the same structure as the LQG control
law.

In the engineering literature there are still other publi-
cations which provide algorithms to compute the optimal
control law on an infinite-horizon. In those papers the
assumption is made that the control law is periodic and then
the best optimal periodic control law is computed. For the
latter approach see for example the papers of Ling Shi and
co-authors, see [11].

The heart of the problem is control of the Riccati dif-
ferential equation. A paper on controllability of the Riccati
differential equation is [12].

The authors of this paper have chosen to investigate in
this paper the continuous-time version of the problem with a
discounted cost because they expected it to yield a periodic
control law which the discrete-time problem was conjectured
not to have. After the derivation of the results, it turns out
that the optimal control law may not necessarily lead to a
periodic behavior of the closed-loop system. The structure of
the control law is that of a general threshold control law. The

continuous-time case has its own merits besides the discrete-
time case.

III. APPROACH

A reference on continuous-time stochastic control prob-
lems with partial observations is the book [13].

Definition III.1 Consider a time-invariant continuous-time
Gaussian stochastic control system with representation,

dx(t) = Axz(t)dt + Bug(t)dt + Mdo(t), (1)
dy(t) = Clus(t))x(t)dt + Ndov(t), (2)
z(0) = zo, y(0) =0, 3)

= ()

in which (Q, F, P) denotes the probability space, T = [0, 00)
is the time index set, X = R", U = R™ Y = RP are
respectively the state space, the input space, and the output
space, g : 2 — R™ is the initial state which is a Gaussian
random variable with mean mq and variance Q) denoted by
xo € G(mo, Qo) (Gaussian random variables are denoted by
membership in G(m, Q) where m and Q) denote respectively
the mean and the variance), v : Q x T — R™v, is a
standard (variance equal to identity times time) Brownian
motion process, F° and F_ are independent o-algebras,
u : QxT — R™ is a stochastic process of which the
dependence is specified below, mg, ms € Z, such that
m = mg+ ms, ug : QX T — R™ called the drift input,
ug : QX T — R™s called the sensor input, A € R™*™,
B € Rnxm’ M € Rn)ﬂnl,’ C c Rpxn’ N € RPXmMw
are matrices, * : Q x T — X = R” is a stochastic
process defined by the stochastic differential equation (1),
and y : Q@ x T — 'Y = RP is a stochastic process defined
by the equation (2). Denote the filtration satisfying the usual
conditions generated by the o-algebras F*® and {F,t € T}
by {Fy C F, t € T}. Denote the filtration generated by
the output process y and satisfying the usual conditions by
{FY, t € T}. Restrict attention to the subclass of input
processes which are adapted to the filtration generated by
the output process, denoted by {u(t), FY,t € T}, hence for
all t € T, u(t) is F} measurable. These conditions then hold
for both ugq and u.

It is assumed that for any nonzero input vector ug, the matrix
pair (A, C(us)) is an observable pair. This is conjectured to
be a sufficient condition for a new observability condition
involving both the output function and the sensor input.

Denote the identity matrix of size n € Z, by I,,. Denote
the set of symmetric positive-definite matrices of size n X n
by R,

sp

Example IIL.2 The case of a scalar Gaussian stochastic
control system. The model is defined in terms of the for-
mulas,

nzlamd:]-amszlapzla (5)
1+ crus, ¢1 € R\{0}. (6)

c(u) =



The usefulness of this example is that the calculations are
straightforward.

Example IIL3 The case of two Gaussian stochastic control
systems which are interacting one-way only.

n=2 mg=1 ms=1 p=2 (7
c 0
cw = (00 ) e meROL ®
_ a1l a2
A = ( 0 2 ) )}

The matrix M € R?*? is a diagonal matrix. Thus the system
has two subsystems of which the first one is always observed
by the first output component and the second can be observed
if us # 0. The system consists of two subsystems of which
the second subsystem influences the first subsystem but not
conversely. Whether or not it is useful to switch on the
sensor of the second subsystem depends on the magnitude
of the elements of the A matrix, in particular on the ratio
afy/lariaszs|.

Example IIL.4 The case of the sensor selection per state-
component. The case is specified by the formulas,

p:n7 mdzl) m3:n7

Us,1 0 ... 0

0 Us 2 «-- 0
C(us) = Diag(us) =

: 0

0 0 R

The model is such that it is in principle possible to sense each
state component. The control objective will then determine
which sensors are most relevant where the cost of the use of
each sensor will influence the outcome.

Definition IILS Consider the Gaussian stochastic control
system. Define the class of partially-observed control laws
by the notation,
G = {g:TxL(T,Y)— Ulg(t,.) F} adapted},
L(T,Y) {h: Q x T — Y|measurable function},
y[0,t) = {y(s) eR?, Vs €[0,0)},

y?[0,t) € L(T,Y),

g(t,y?]0,t)) is F{ adapted, ¥ t € T.

9= (94, 9s)-

Definition II1.6 For any control law g € G define the
closed-loop system by the equations,

dz?(t) = Ax9(t)dt + Bga(t,y?]0,t))dt + Mdo(t),
dy?(t) = Cl(gs(t,99]0,t)))x?(t)dt + Ndv(t),
29(0) = xo, y9(0) =0,
uj(t) = galt,y°00,1)),
ud(t) = gs(t,y?00,t)).

Definition IIL.7 Define the discounted cost function J :
G — R with discount rate r € (0,00) by the equation,

fo exp(—r )X

9 = B | a(s), ult(s)) +

bs(29(s), uf (s))] ds

Problem II1.8 Consider the Gaussian stochastic control
problem of Def. IIl.1 and the cost function of Def. IIL.7.
Solve the following optimal stochastic control problem for
this system and for a discounted cost function,
J(g");

J* = inf J(g) =

[nf, (10)

thus, determine the value J* and prove existence of and
determine the optimal control law g* € G.

The filtering problem is to determine at any time the condi-
tional distribution of the state at that time conditioned on the
past observations. This is called the conditional Kalman filter
because the C' matrix depends on the current sensor input
which in turn depends on the past outputs. The conditional
Kalman filter is derived for discrete-time systems in [14]
and for continuous-time systems in [15, Ch. 11]. It is known
that the solution of that problem for the Gaussian stochastic
control system equals a conditional Gaussian distribution
function of the form,

Blexp(iw”z(t))| FY] (11)
= exp(iwl@(t) — %wTQe(t)w), YV w,
dz(t) = Az(t)dt + Bug(t)dt +
+E(t,us(t))dy(t) — C(us(t))(t)dt],
#(0) = mo, (12)
dQc(t)/dt = AQ.(t) + Q.()AT + MM" +
—H (t,us () [INNT] T H (8, us (1)
Qe(0) = Qo, (13)
e(t) = z(t)—z(), e: QxT =R, (14)
H(t,us(t))) = Qe(t)Clus(t)” + MNT, (15)
K(tus(t)) = [Qe(t)C(us(t))” + MNT]INNT],
2:OxT — R, QS.QXT%RZS{L.

Note that the filter system (12,13) is described by its state
at time ¢t € T, (2(t), Qc(t)). The variance Q. is of the
estimation error and is not equal to the variance of the state
z. The control system of the conditional variance is primarily
a deterministic system (there is no stochastic disturbance
process driving the system) though one of its parameters,
the matrix C'(us), depends on the sensor input us which can
be a stochastic process.

By conditioning, the cost function can be transformed to
the form,

foooexp( r8)X
x[ba,1(2(s), Qe(s), ua(s))+
+b571(Qe(s),us(s))]ds

Jg) = E , (16)



bd,l (j;(t)> Qe(t) Ud (t))

= Blba(a(t), ua(t)|F), a7)
ot (Qe (1), us(1))
= Elb(a(t), us(6) | FY): (18)

From now on it will be assumed that the conditional cost
function b, ; does not depend on the filter state & but only
on the filter variance @), and the sensor input u as indicated
above.

The partially-observed stochastic control problem III.8 can
then be transformed to the following competely-observed
optimal stochastic control problem.

Problem II1.9 Consider the completely-observed stochastic
control system of the equations (12,13) and the discounted
cost of equation (16). Define the class of time-invariant state-
based optimal control laws

Gpo {9po : X X Q. — U|measurable function},
ua(t) = gapo(2(t), Qe(t)), 9= (9aporgspo)s (19
us(t) = gspo(2(t), Qe(t)), (20)

Jpo(9) = J(9), Jpo: Gpo — Ry 1)
Solve the optimal stochastic control problem
gpolggpo T (Gpo). (22)

The dynamic programming equation for infinite-horizon
discounted-cost optimal stochastic control is known, [16,
Subsec. 3.1.2, p. 56].

Of interest to control theory is primarily the structure
of the control law. Statements about this follow which are
argued in this section in more detail than in the next two
sections.

In the literature it is often asserted that the optimal control
law is such that the behavior of the closed-loop system
is periodic. The authors consider this to be incorrect in
general, the behavior, after a transient phase, could be almost
periodic, meaning that regularly periods are followed by a
period of a different length.

The sensor control problem as formulated above has the
property that the value function decomposes additively into a
drift term and a sensor term. The optimal control law for the
drift has the same structure at the well known LQG control
law though the states of the filter system depend on the sensor
inputs. The control law of the sensor input is discussed in
the following two sections. Because of this decomposition,
several papers describe the solution as having a separation
property. The authors do not favor this term for the structural
result of the control law of the drift. The decomposition was
also derived by Wu and Arapostathis in [10] for the discrete-
time case. The authors have written about the sensor control
problem for a partially observed nonlinear and non-Markov
process see [17]. For that problem, there is no decomposition
of the drift and of the sensor activation problem as described
above.

A general threshold control law is defined next for later
use.

Definition IIL.10 Consider Problem II1.9. A control law is
called a threshold control law if there exists a partition of
the state set of the conditional variance such that the control
law has the form,

Rszdn = R{UOR1URsy, 23)
R1, Rs, open connected subsets,
ORy = ORs, the common boundary of Ry Ra;
gs,l(Q)v Q € Rla
gs(Q) = 9s,0R; (Q)a Q € aRla (24)
9s2(Q), Q € Ra.

If the state of the conditional variance is one (n = 1) then
the partition above has to be in two intervals and a point in
between as in

R—i— = [Orqe) U {qe} U (667 OO)

If the state-space dimension n is two or larger then the
boundary can be any manifold in the state set. The above
definition is a generalization of the classical threshold control
law of queueing systems and of communication networks to
more general spaces.

Of interest is now the dynamic behavior of the closed-
loop system of the conditional variance when it is controlled
by a threshold control law. First consider the scalar case. If
initially the conditional variance is below the threshold then
the sensor input is switched off. The conditional variance
of the filtering error, produced by the Riccati differential
equation then increases either till it reaches a limit below the
threshold or till it reaches the threshold from below. After
the variance crosses the threshold, the sensor is activated. If
at any time the conditional variance is above the threshold
then the sensor is activated. The conditional variance will
then decrease till it reaches an equilibrium state or till it
reaches the threshold from above. After the variance crosses
the threshold, the sensor input is deactivated. The character
of the dynamic behavior of the closed-loop system is thus
that of a switched system with two modes. The conditional
variance is either monotonically increasing or monotonically
decreasing depending on the mode. Whether the behavior is
actually periodic and what the length of the period is, are
questions that require further study.

The second case, that of a multivariable control system,
with n > 1, is more complicated than the scalar case.
Consider on the set of symmetric positive-definite matrices,
the partial order defined by the difference of two matrices to
be positive-definite. The trajectory of the conditional variance
is not necessarily monotonically increasing or decreasing
depending on the mode. Due to the form of the output matrix
C(us) and the geometry of the filter Riccati differential
equation, it could be that the error variance shrinks along
one axis while it grows along another axis. More time is
needed to investigate the dynamics of the closed-loop Riccati
differential equation.



Results are provided in the following two sections, the first
section deals with the regular optimal control with discounted
cost and the second section deals with discounted impulse
control.

The optimal control problem for the sensor input only,
can be considered a deterministic optimal control problem
with a special interpretation. The control system is described
by the Riccati differential equation, which is not driven by
a Brownian motion process. The class of control laws is
such that the control law can depend on the past outputs.
Hence the sensor input is a stochastic process and so is
the conditional variance which is the solution of the Riccati
differential equation. The optimal control law is a threshold
control which is a deterministic function of the conditional
variance. The closed-loop system is thus entirely a deter-
ministic system because the dependence on the inputs has
disappeared. It is for these reasons that the optimal control
problem is regarded as deterministic.

IV. THE SCALAR CASE

This section treats the case of a scalar stochastic control
system for the problem defined before in this paper. The
usefulness of the example is that the equations are simplified
and that analytic solutions are easier to obtain.

Denote the stochastic control system for the scalar system,

dz(t) = ax(t)dt+ bug(t)dt + Mdv(t), x(0) = xo,
dy(t) = c(us(t))dt + Ndo(t), y(0) =0, (25)
c(us) = 1+ ug, (26)

d<wv,v>(t)=Ldt, MNT =0,

di(t) = a@(t)dt + bug(t)dt +

+h(us (t)[dy(t) — c(us(t))2(t)dt],  (27)
= az(t)dt + bug(t)dt + k(us(t))dv(t), (28)

dge(t)/dt = 2aqe(t) + qu — qe(t)*c(us(t))?q,
k(us(t) = ge(t)e(us(t))gy" (29)
do(t) = dy(t) — c(us(t))2(t)dt, (30)
d<T,7> (t) = qudt = NNTdt, (31)

v is a Brownian motion,

Us =R, Us = [0,s max],

ba(z,ug) = c10? + cou?, (32)
bs,1(ges us) = bage + bac(us)’aZa,’  (33)
c1 €ERy, e € (0,00).

Assume that the system is stochastically controllable, b # 0,
and that c(us) # 0 for all us € U,. Assume also that
rank(N) = 1. The cost function Jp, and the dynamic
programming equation for the value function v are then,

Ipo(9po) (34)

= E[/O exp(—rs) X
X (bd,l(j:(s)a qe(s)v ud(s)) + bs,l(qe(s)a U(S(S)))ds]v

inf (35)
(ug,us)E(UgxUs)
L(jjv Ge, (ud7 us))U(Aa e)+
b

+b4,1(Z, ge; ua) + bs,1(ge, us) — 10(Z, ge)

Theorem IV.1 Consider the scalar control system. Assume
further that there exists a piecewise-differentiable function
vs : Ry — R which is a solution of the differential equation,

Ry = Qi1U{q.}UQq,
Q1 = {QE € R+|h(QE) > O}» (36)
Q2 = {g €Ry|h(qe) <0},
oQ1 = {Qe S R+|h(Qe) = O} = {66}7
dvs(ge)
h e = c by — s 7
(qe) qc + by da. 37
0 = C(O)Qh(%)qg/qw +c1ge — 1vs(qe) +
d S e
1 delde) e g, (38)
dge
0 = C(US,maX)2h( e)qg/Qw + c1qe — TUs(qe) +
d S e
+ U(Q)vae€Q27 (39)
dge
dUS (qe) d’US (qe)
dQe e+ — dqe ge— = Y4c + b4' (40)
Then:

(a) the value function satisfies an additive decomposition

v('fj?QE) = Ud(i'7Qe)+Us(QE)§ 41)

(b) the optimal control law and the value function of
Problem I11.9 for the drift input are equal to,

9a(d,qe) = —[bgecy '], (42)
va(®,qe) = qcd?, (43)
0 = (2a—71)g.+c1— quzcgl. (44)

thus the optimal control law has the same structure as
the well known LQG control law though the filter state
% depends on the sensor input via k(us);

(c) the optimal control law for the sensor input is a
threshold control law of the form,

gs(QG) _ { 07 Qe € Qla (45)

ge € Q2~
V. IMPULSE CONTROL

Us,max s

An alternative way to investigate the control of sensors,
and to quantify the value of observations for the reduction of
the future operations cost of the system, is to apply impulse
control to the sensor activation, assuming for simplicity that
no continuous observations are available, but that from time
to time the sensor can be activated at a cost b,, per activation.
The reader finds in this section a model and an algorithm for
selecting optimal sensor activation times.

For references on counting processes and on impulse
control see [18], [19], [20], [21], [22].



Definition V.1 A stochastic control system for control of
sensors using impulse control. Consider a probability space
and a stochastic control system like in Def. IIl.1 but with
the following objects. Define a collection of stopping times
{mk, k € Z4} which are predictable with respect to the
observation filtration {F?_,t € T} defined below. At each
stopping time Ty the sensors are activated. The process,

o0
n(t) = ZI{TkSt}’ n:QAxT— Ry,
k=1
counts how many observations have been taken up to the
current time t. Define the stochastic control system,

dz(t) = [Ax(t) + Bug(t)|dt + Mdv(t), x(0) = z46)
dy(t) = [Cz(t)+ Nw(t)]dn(t), y(0) =0, 47)

where most objects are defined as in Def. IIl.1, except that
v:QXT = R™ and w: QxT — R™ are standard
Brownian motion processes, the o-algebras F'*°, F , and
FY are independent, the state process x : {0 x T — R”
is the solution of the stochastic differential equation (46)
and the output process is the solution of the equation (47).
Assume that the drift input is adapted to the filtration of the
output process while the control process n(t) is predictable
with respect to that filtration.
The discounted cost function is defined by the equation,

B[ e x
([ba(x(s), ua(s)) + bs(Q(s))]ds + budn(s)) -

The solution of the stochastic control problem with partial
observations is carried out as described earlier in the paper.
The stochastic control system is in continuous time, with
sampled observations at the stopping times {7, k € Z,}.
Note that the difference between two successive stopping
times, Tp4+1 — Tk, varies in general with £k € Z,, but
that measurement update equations are the same as for the
discrete-time Kalman filter. In between observations the filter
equations are the same as for the continuous-time Kalman
filter but with y(¢) = 0, see [23].
The filter system is then described by the formulas,

Blexp(ia” x(1))| F]

J

= exp(ia” () - 54 Q(t)a),
di(t) = [AZ(t) 4+ Bug(t)]dt + K(t—
= [A&(t) + Bug(t)]dt +
+K(t—)[y(t—) — Ci(t—)]dn(t),
[AQ(t) + Q(H) AT + MM™]at +
—rQ(t—)CT[CQ(t—)CT + NNT)~1
x CQ(t—)prdn(t), Th—1 <t < 7%,
Q(0) = Qo,
exp(A(Ty — Tk—1)),
PQ(t=)CT[CQ(t—)CT + NNT]™
AQ(Q(Tr), us(mr)) = Q(Th+) — Q(Tr—)
= & Q(m)CT[CQ(T)CT + NNT]7?
xCQ(T)Pk-

)dy(t)

dQ(t) =

K(t-)

Note the inverse terms in the definition of K and in the
Riccati differential equation which are related to the discrete-
time Kalman filter. That in the formula there is no cross term
of the noises is due to the assumption that the Brownian
motion processes v and w are independent.

From now on it is assumed that the cost on the drift is
a quadratic form in (x,uy) and that the sensor cost is a
monotonically increasing function of the variance (). The
cost function can then be rewritten as,

o) (e )

=L" >0, Ly >0,
L1 2(t) >
Los ) ( uq(t) +

= trace(Q()Qs), Qs € ]Rgpxdn7
E[bs(Q(t),n)|FY]
= trace(Q(t)Qs)-

Note that, since n(t) is by definition adapted to F/, the
sensor activation part of the cost remains unchanged. The
optimal control law for the partially-observed stochastic
control problem then follows from the standard dynamic
programming calculations.

Theorem V.2 For the above defined stochastic control sys-
tem, cost function, and filter system, the optimal control laws
are given by the following equations, provided there exists a
solution to the functional BHJ equation:

gd(.fj, Q) = _1BTQCJA7
0 = AQc+QcA" + L1y — QcBL3) BT Q..
0= > <%”(Q) (AQ + QAT + MMT)m) +
iy Qi
—v.0(Q) + trace(QQ..) + trace(QQs),
sensor activation
gs(Q) _ lfv(Q) +bn < U(Q - AQ)a

no sensor activation

ifv(Q) + by, > v(Q — AQ).

Because of space limitations, not all details of the proof are
provided. The existence of an optimal control law and of
the value function requires further research. First one can
prove that the optimal control of the drift function is the
usual LQG control law which involves the algebraic control
Riccati equation with solution Q. € R™*"™. The remaining
discounted cost equals, up to constants not involving the filter



states,

/000 e 7! [trace(Q(t)Q.(t)) + trace(Q(t)Q,)] dt +
—|—/0 e~ bpdn(t).

The resulting deterministic dynamic programming equation
(the BHJ equation) and the optimal sensor control law is
then,

_ ov(Q) T N
0 = %:(8Qi,j (AQ + QAT + MM )m>+

—(Q) + trace(QQ.) + trace(QQs).

Note that the control problem optimizing the behavior of
Q(t) via the sensor activation control actually is a deter-
ministic control problem. Thanks to the separation theorem
the cost increase due to state uncertainty is independent
of the stochastically evolving states z(¢) and Z(t). Using
this deterministic character of this sensor activation control
problem it is possible to show that the behavior of the
optimally controlled plant is as follows. There exists a
manifold Switch C R:pfj” of positive semidefinite matrices
such that, whenever )(t) reaches a value in Switch, then
the sensor is activated, and the variance matrix Q(¢+) jumps
from a value () € Switch to a value in another manifold of
positive semidefinite matrices () — AQ (as defined in the
Kalman filter above).

Calculating these manifolds is in general quite compli-
cated. However in the scalar case z(t) € R, the optimal
sensor activation policy becomes very simple. The manifold
Switch is reduced to a threshold, an element g € R. When
no observations are taken the ¢(t) increases upto the next
sensor activation (the variance (t) in the Kalman filter
is now reduced to a scalar positive real number). Optimal
sensor activation is achieved by selecting as stopping time 7
the next time ¢(t) reaches ¢r. The value of ¢(7x) then jumps
immediately to W‘I(TH It then starts increasing again
until the next observation, at stopping time 71, when once
again the value gp is reached. Clearly the optimal sensor
activation policy leads to a-periodic behavior of the systzem,
after a short transient period. If initially ¢(0) < %C.w
then it will keep increasing until g7 is reached, and then the
periodic behavior starts; if initially g(0) > ¢r then the sensor
will be activated several times (almost) simultaneously, until
q achieves a value in the interval (#&n,qﬂ and then
starts increasing until it reaches g7, at which time the peri-
odic operation again starts. This argument also indicates that
the periodic cycle will be stable. For the higher dimensional
case however no periodic behavior can be expected.

For the scalar case the calculation of ¢p is actually
possible using v(gr) 70(%) = by, and the fact that in
between observations ¢(t) satisfies the scalar linear equation
q(t) = 2.a.q(t) + M?. It is therefore possible to calculate
explicitly the discounted cost in between two successive
observation times 75 and 7,41, and to explicitly obtain an
expression for v(g). These calculations are similar to those
in [10].
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