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Abstract— This paper studies the synchronization problem
for a network of identical discrete-time agents with unknown,
nonuniform constant input delays. The agents are at most criti-
cally stable and non-introspective (i.e. the agents have no access
to their own states or outputs). There exists full state coupling
among the agents. An upper bound for the delay tolerance is
obtained which explicitly depends on agent dynamics. For any
unknown delay satisfying this upper bound, a controller design
methodology is proposed without relying on exact knowledge
of the network topology so that synchronization in a set of
unknown networks can be achieved.

I. Introduction

The synchronization problem for a network has received
substantial attention in recent decades, where the objective
is to secure asymptotic agreement on a common state or
output trajectory through decentralized control protocols. The
analysis and design method for synchronization problem
largely depends on the information available to the agents
in a network. If the agents have access to their own states
or outputs, they are called introspective (e.g., [22], [10]);
otherwise non-introspective (e.g., [2], [9]). These works are
all related to continuous-time agents. Synchronization in a
network of discrete-time agents has been studied in both
introspective (e.g., [18]) and non-introspective cases (e.g.,
[3], [4], [6], [14] and references therein). In particular, for
non-introspective agents, [3] introduces the concept of a ‘disc
margin’ in the context of the discrete-time Linear Quadratic
Regulator (LQR) problem, based on which a static synchro-
nization controller can be designed for critically unstable
agents using relative information of neighboring agents.
An observer-based distributed synchronization controller is
constructed in [4] for general linear agents, which however
requires communication between controllers using the same
network topology.

All the works above assume an idealized network model.
But, in practical applications, the network model is always
imperfect. In particular, time-delay effects are inescapable,
resulting from two main aspects: communicating limitations
among agents and information processing at the input of
an agent. The former reason leads to communication de-
lay, while the latter one leads to input delay. Tremendous
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effort has been put into this problem. For continuous-time
systems with input delay see for instance [12], [7], [13]
while communication delay has been studied in for instance
[1] [12]. For discrete-time systems [21] studies input and
communication delays for introspective consensus problems.
In [5] the focus is on communication delays in the discrete-
time case.

However, the above results for systems with delays are
restricted to simple agent models such as first/ second-order
dynamics. Recently, in [17] and [16], the synchronization
problem under uniform constant input delay is solved for
both discrete- and continuous-time general linear agents that
are at most critically unstable.

The objective of this paper is to extend [17] to the case of
unknown, nonuniform constant input delay, which is more
reasonable in practical applications. It is very normal that
distributed agents with different hardware configurations may
need varying time for information processing.

Nonuniform delays require an intrinsically different ap-
proach. The standard approach is using Wu and Chua’s
idea from [20] to convert consensus problems for a network
of agents to a robust stabilization problem for a single
system. However, the key step in this transformation fails
if the delays are nonuniform. Our current approach can
only address undirected networks while for uniform input
delays, the network can be directed as well. Finally, when
considering nonuniform input delay, synchronization can
only be achieved in a regulation way. That is, one agent is
selected as the reference and all other agents will be regulated
asymptotically to the reference trajectories.

In this paper, the synchronization problem is considered
for a network of identical discrete-time agents, but with
nonuniform, unknown input delay. We assume the network
topology is undirected and the agents can multi-input multi-
output (MIMO), higher-order, and at most critically unstable,
i.e., each agent has all its eigenvalues in the closed unit circle.
In other words, we allow the agents to have eigenvalues
on the unit circle. The agents are non-introspective and
have full-state coupling where relative state information for
neighboring agents are measured and can be used by the
controller. We find a sufficient condition on the tolerable
input delay for agents with general dynamics. This bound
on the delay explicitly depends on the agent dynamics, but
is independent of network topology.

Our results recover the bounds on the delay in case the
delays are uniform. Moreover, in the special case where the
agents only have unstable eigenvalues at 1, arbitrarily large
but bounded input delay can be tolerated. This recovers many
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of the earlier results for first- and second-order systems.
Finally, for any delay satisfying the proposed upper bound,
a low-gain controller design methodology without exact
knowledge of network topology is presented to achieve
multi-agent synchronization in a set of networks.

A. Notations and preliminaries

C, R, and N denote, respectively, the sets of all complex
numbers, real numbers, and natural numbers. For α, β ∈ R,
(α, β) denotes the real set {γ ∈ R : α < γ < β}. 1
denotes a vector with all ones. [x1; ...; xn] or col{xi } is the
stacking column vector of x1, ..., xn . For a matrix A, A′ is
the conjugate, σ(A) and σ̄(A) denote the smallest and the
largest singular values of A, respectively.

A matrix D = {di j }N×N is called a row stochastic matrix
if

1) di j ≥ 0 for any i, j;
2)

∑n
j=1 di j = 1 for i = 1, ...,N .

A row stochastic matrix D has at least one eigenvalue at 1
with right eigenvector 1. D can be associated with a graph
G = (N ,E). The number of nodes in N is the dimension
of D and an edge ( j, i) ∈ E if di j > 0. Let G be the graph
associated with D. It is shown in [11] that 1 is a simple
eigenvalue of D if and only if G contains a directed spanning
tree. Moreover, the other eigenvalues are in the open unit disc
if dii > 0 for all i. In the special case of undirected graphs, if
(i, j) ∈ E, then ( j, i) ∈ E, and di j = d j i > 0. Furthermore, 1
is a simple eigenvalue of D if and only if G is connected, and
all the other eigenvalues are real and located in the interval
of (−1, 1).

II. Multi-agent systems and problem formulation

Consider a multi-agent system (network) of N identical
agents {

xi (k + 1) = Axi (k) + Bui (k − κi ),
zi (k) =

∑N
j=1 di j [xi (k) − x j (k)], (1)

for i = 1, . . . ,N , where xi ∈ Rn , ui ∈ Rm , and zi ∈ Rn ,
κ1, . . . , κN are unknown constants satisfying κi ∈ [0, κ̄], i =

{1, . . . ,N }. D = {di j }N×N is a symmetric row stochastic
matrix that satisfies dii > 0. In (1), each agent collects a
measurement, denoted by zi , of relative states of neighboring
agents through the network.

Remark 1: The network measurement zi is the only in-
formation that is available to each agent for controller
design. The agent does not have separate observation of its
own dynamics. This kind of agent is referred to as non-
introspective.

The following assumptions are made throughout this pa-
per.

Assumption 1: We assume that
• (A,B) is stabilizable, and A has all its eigenvalues in

the closed unit disc,
• The communication topology represented by an undi-

rected graph G is connected.

Remark 2: Under Assumption 1, according to [11, Corol-
lary 3.5], D has a simple eigenvalue at 1 with the correspond-
ing right eigenvector 1 and all the other eigenvalues are real
and in the interval of (−1, 1). Let λd1 , . . . , λdN denote the
eigenvalues of D such that λd1 = 1 and −1 < λdi < 1, for
i = 2, . . . ,N .

It should be noted that, in practice, perfect information
of the communication topology is usually not available for
controller design and only some rough characterization of
the network can be obtained. Next we will define a set of
graphs based on some rough information of the graph. Before
doing so, we first define some matrices associated with the
undirected graph G. Let M = I − D, where M = {mi j }N×N .
We note that, M has a simple eigenvalue at 0, and all other
eigenvalues are in the interval of (0,2).

Based on the matrix M of the network graph G, we
define an associated matrix M̄ by removing one arbitrarily
selected row and its corresponding column from matrix M .
The properties of the eigenvalues of M̄ are presented in the
following lemma.

Lemma 1: All the eigenvalues of M̄ are in the open right-
half real axis. Furthermore, the maximum eigenvalue of M̄
is bounded by 2.

Proof: This is a consequence from the fact that the
eigenvalues of M are in (0,2) and Cauchy’s interlacing
theorem [8].

Now by using the smallest eigenvalue of M̄ as a “measure”
for the graph, we can introduce the following definition to
characterize a set of unknown communication topologies.

Definition 1: For given δ ∈ (0,1] and N , the set GN
δ is

the set of undirected graphs composed of N nodes such
that the eigenvalues of the associated matrix M̄ , denoted by
λ1, . . . , λN−1, satisfy λi > δ.

We define state synchronization as follows.
Definition 2: The agents in the network (1) achieve state

synchronization if

lim
k→∞

(xi (k) − x j (k)) = 0, ∀i, j = {1, . . . ,N }.
The synchronization problems can be formulated as fol-

lows.
Problem 1: Consider a network of agents (1) with full-

state coupling. For a given set GN
δ and a delay upper bound

κ̄, the state synchronization problem is to design linear
static controllers ui = Fi zi for i ∈ {1, . . . ,N }, such that
the agents (1) achieve state synchronization in the network
with any communication topology belonging to GN

δ and any
κ1, . . . , κN ≤ κ̄.

III. State synchronization under nonuniform input delays

In this section, we consider state synchronization problems
for homogeneous multi-agent systems defined in (1).

Here we achieve state synchronization in such a way
that all the other agents are regulated asymptotically to the
trajectory given by one arbitrarily selected agent, denoted by
agent ρ. The main idea is to set the control input of agent
ρ, to zero. That is, the controller for agent ρ is designed
as Fρ = 0. In the following, we fix the agent ρ, and
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then design controllers ui = Fi zi for the other agents with
i ∈ {1, . . . ,N }\ρ , V .

Remark 3: Note that when agent ρ is selected to be
followed by the other agents, M̄ is constructed by removing
the ρth column and ρth row from matrix M .

A decentralized local homogeneous controller for each
agent i ∈ V , is designed by using a low-gain feedback as
follows.

ui = βFε zi , (2)

with the design parameter β to be chosen later and

Fε = −(B′PεB + I)−1B′PεA, (3)

where for ε ∈ (0,1], Pε is the unique positive definite
solution of the H2 algebraic Riccati equation

Pε = A′PεA + εI − A′PεB(B′PεB + I)−1B′PεA. (4)

The low-gain parameter ε will be chosen depending only on
δ and κ̄. Define

ωmax =

{
0, A is Schur stable.
max{ω ∈ [0, π]| det(e jω I − A) = 0}, otherwise.

The first main result of this paper is stated in the next
theorem, which solves Problem 1.

Theorem 1: For a given set GN
δ with δ ∈ (0,1) and κ̄ > 0,

consider the agents (1) with any communication topology
belonging to the set GN

δ . In that case, Problem 1 is solvable
via synchronization controller (2) if

ωmax κ̄ <
π

2
. (5)

Specifically, for given GN
δ and κ̄ > 0 satisfying (5), there

exist β > 0 and ε∗ such that for any ε ∈ (0, ε∗], the agents
(1) with controller (2) achieve state synchronization for any
communication topology in GN

δ and for any κ1, . . . , κN ∈
[0, κ̄].

Proof: To clarify the controller design, here we intro-
duce a delay operator R. A delay operator Ri is defined for
agent i such that (Riui )(k) = ui (k − κi ). In the frequency
domain, R̃i (ω) = z−κi = e− jωκi . In terms of the matrix M ,
the relative state measurement zi in (1) can be rewritten as

zi =

N∑
j=1

mi j x j .

Define x̄i = xi − xρ as the state synchronization error for
agent i ∈ V and x̄ = col{ x̄i }. Then, the dynamics of x̄i is
governed by{

x̄i (k + 1) = Ax̄i (k) + BRiui (k),
zi =

∑N
j=1, j,ρ mi j x̄ j ,

(6)

where i ∈ V and the second equation results from∑N
j=1 mi j xρ (k) = 0. Combined with the controller (2), we

obtain the full closed-loop system of the whole network as:

x̄(k + 1) = Āx̄(k) + β(RM̄ ⊗ BFε ) x̄(k), (7)

where
Ā = IN−1 ⊗ A, R = diag{Ri }.

To prove Theorem 1, we need to prove that the closed-loop
system (7) is Schur stable. In the following, we will have
two steps to prove (7) is Schur stable.

Step 1: We will first show that the closed-loop system
without delay is Schur stable. The closed-loop system with-
out delay is

x̄(k + 1) = Āx̄(k) + β(M̄ ⊗ BFε ) x̄(k). (8)

Because κ̄ satisfies condition (5), there exists β such that

βδ cos(ωmax κ̄) > 1. (9)

Note that β can be chosen independent of ε. Let this β be
fixed.

Lemma 3 implies that (8) is Schur stable if and only if
the N − 1 systems

ξi (k + 1) = (A + βλiBFε )ξi (k), (10)

are asymptotically stable for i = 1, . . . ,N − 1 where
λ1, . . . , λN−1 are the eigenvalues of M̄ . For λi ∈ (δ,2) and
the previous selected β, we have

βλi ∈ (βδ, 2β) ⊂ H1 =

{
z ∈ C : Re(z) >

1
2

}
(11)

because (9) implies that βδ > 1. Lemma 5 implies that
(βδ, 2β) is contained in a compact subset of H1, and there
exists ε1 such that for ε ∈ (0, ε1], (βδ, 2β) ⊂ Ωε , where Ωε
is the disc margin defined in (21). Lemma 5 then implies that
(10) is asymptotically stable for i = 1, . . . ,N − 1. Therefore,
the closed-loop system without delay (8) is Schur stable.

Step 2: We need to prove (7) is Schur stable. According
to Lemma 4, system (7) is asymptotically stable if

det[e jω I− Ā− (1−α) β(M̄ ⊗BFε )−αβ(R̃(ω)M̄ ⊗BFε )] , 0,
(12)

for all ω ∈ [−π,π], for all α ∈ [0,1], for all κ1, . . . , κN ∈
[0, κ̄] and all possible M̄ associated with a network graph in
the set GN

δ .
By (9), there exits η > 0 independent of ε such that

βδ cos((ωmax + η) κ̄) > 1, for |ω | < ωmax + η

Next we will split the proof of (12) in two cases where
|ω | < ωmax + η and π ≥ |ω | ≥ ωmax + η respectively.

If π ≥ |ω | ≥ ωmax + η, det[e jω I − Ā] , 0, which yields
σ(e jω I− Ā) > 0. Because σ(e jω I− Ā) depends continuously
on ω and the set {π ≥ |ω | ≥ ωmax + η} is compact, there
exists a µ such that

σ(e jω I − Ā) > µ, ∀ω,s.t. π ≥ |ω | ≥ ωmax + η. (13)

Given β, there exists ε2 > 0 independent of ε1 such that

‖[(1 − α) βM̄ + αβ R̃(ω)M̄] ⊗ BFε ‖ ≤ µ/2 (14)

for ε ∈ (0, ε2]. Note that µ and ε2 can be chosen independent
of M̄ but only relying on the parameter δ. Combining (13)
and (14) we obtain

σ(e jω I − Ā − [(1 − α) βM̄ + αβ R̃(ω)M̄] ⊗ BFε ) ≥ µ/2,
∀ω s.t. π ≥ |ω | ≥ ωmax + η.
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Fig. 1: Eigenvalues of β R̃(ω)M̄

Therefore, (12) holds for all π ≥ |ω | ≥ ωmax + η.
It remains to verify condition (12) for ω with |ω | < ωmax+

η. It is clearly sufficient to prove

Ā + S(ω) ⊗ BFε (15)

is asymptotically stable for any |ω | < ωmax + η where

S(ω) =
[
(1 − α)I + αR̃(ω)

]
βM̄

We want to use Lemma 3 so we need to analyse the
eigenvalues of S(ω).

We first note that the eigenvalues of β R̃(ω)M̄ belong to
H1 for any fixed ω satisfying |ω | < ωmax + η.

Clearly βM̄ is symmetric and R̃(ω) = diag{e− jωκi }, where
ωκi satisfies

−(ωmax + η) κ̄ < ωκi < (ωmax + η) κ̄.

Moreover the real part of the eigenvalues of βM̄ are larger
than

βδ cos((ωmax + η) κ̄) = 1

According to Lemma 2, the eigenvalues of β R̃(ω)M̄ are in
the fan shaped area of Figure 1. Clearly, also the eigenvalues
of βM̄ are in this same region. Using [19, Theorem 1],
we note that the eigenvalues of S(ω) are in this region as
well. By Lemma 5, there exists ε3 such that this region
is contained in Ωε for all ε ∈ (0, ε3]. We can then apply
Lemma 3 to conclude that (15) is asymptotically stable for
any |ω | < ωmax + η.

Remark 4: The consensus controller design depends only
on the agent model and parameter κ̄, δ and is independent
of specific network topology.

In the special case where ωmax = 0, i.e. the eigenvalue of
A are either 1 or in the unit circle, then arbitrarily bounded
input delay can be tolerated as formulated in the following
corollary:

Corollary 1: For a given set GN
δ with δ ∈ (0,1) and

κ̄ > 0, consider the agents (1) with any communication
topology belonging to the set GN

δ . Suppose ωmax = 0. In that

Fig. 2: The network topology

case, Problem 1 is always solvable via the synchronization
controller (2). Specifically, for given GN

δ and κ̄ > 0, there
exists β and ε∗ such that for any ε ∈ (0, ε∗], the agents (1)
with controller (2) achieve synchronization for any commu-
nication topology in GN

δ and for any κ1, . . . , κN ∈ [0, κ̄].

IV. Examples
We will illustrate our result on a network of four identical

agents. The agent dynamics (A,B,C) are given as follows,

A =
*..
,

0.5 1 1
0

√
3/2 −0.5

0 0.5
√

3/2

+//
-
, B =

*.
,

0
0
1

+/
-
, C =

(
1 0 0

)
.

Eigenvalues of A are 0.5,
√

3/2 ± 0.5. So, ωmax = π/6. The
network topology is given by Figure 2.

We choose matrix D as

D =

*....
,

0.5 0.3 0 0.2
0.3 0.7 0 0
0 0 0.6 0.4

0.2 0 0.4 0.4

+////
-

(16)

Since the graph is connected and undirected, we can choose
any agent as the reference. In this example, we select agent 2
as the reference. Thus, by selecting δ = 0.04, the eigenvalues
of M̄ are all larger than δ. From (5), κ̄ < 3 and we select
κ̄ = 2. More specifically Agent 1 has delay κ1 = 2, Agent 3
has delay κ3 = 1, and Agent 4 has delay κ4 = 2.

According to (9), we select β = 55. By choosing ε =

1e− 5, Fε = [−0.000003, −0.0042, −0.0073]. The low-gain
feedback controller of the form (2) is

ui =
(
−0.00015 −0.2309 −0.4033

)
zi , i = 1, 3, 4.

(17)
Figure (3a) - (4b) show that the state synchronization is
achieved for the network with D in (16).

Appendix
The following lemma is adapted from [19, Corollary 3].
Lemma 2: Let A be unitary with eigenvalues α1, . . . ,αn ;

let B be hermitian and positive semi definitive with eigen-
values β1 ≤ . . . ≤ βn and let λ be any eigenvalue of AB or
BA. Then β1 ≤ |λ | ≤ βn , and if all the αi are contained in
an arc Φ of the unit circle of length ≤ π, then arg λ ∈ Φ.

Lemma 3: Let x = [x1; ...; xN ] and xi ∈ Rn , A ∈ Rn×n ,
S ∈ RN×N , M ∈ Rn×n . Then, the system

x(k + 1) = (I ⊗ A)x(k) + (S ⊗ M)x(k) (18)
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Fig. 3: Trajectories of State xi,1 and xi,2 achieve the same
among agents
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Fig. 4: Trajectories of State xi,3 achieve the same among
agents

is asymptotically stable if and only if the following systems

x(k + 1) = (A + λi M)xi (k)

are asymptotically stable for i = 1, . . . ,N , where λ1, . . . , λN

are the eigenvalues of the matrix S.
Proof: Let ξ = [ξ1; , , , ; ξN ] = (T ⊗ In )x, where T is

selected such that J = T ST−1 is in the Jordan canonical form.
Moreover the diagonal elements of J are the eigenvalues of
the matrix S. Then the system (18) is stable if and only if

ξ (k + 1) = (I ⊗ A)ξ + (J ⊗ M)ξ

is stable. Due to the upper-triangle structure of I ⊗ A and
J ⊗ M , the stability of the above system is determined by
the N subsystems

ξi (k + 1) = Aξi + λi Mξi .

Thus, the result in Lemma 3 follows.
Lemma 4: Consider a linear time-delay system

x(k + 1) = Ax(k) +

m∑
i=1

Ai x(k − κi ), (19)

where x(k) ∈ Rn and κi ∈ N. Suppose A +
∑m

i=1 Ai is Schur
stable. We have that (19) is asymptotically stable if

det[e jω I − A − (1 − α)
m∑
i=1

Ai − α

m∑
i=1

e− jωκi Ai] , 0,

for all ω ∈ [−π,π], and for all α ∈ [0,1].
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Proof: The proof follows from [15].
Lemma 5: Consider a linear uncertain system

{
x(k + 1) = Ax(k) + λBu(k), x(0) = x0, (20)

where λ ∈ C is unknown. Let Assumption 1 hold. A low-
gain state feedback u = Fε x is constructed, where Fε =

−(B′PεB+ I)−1B′PεA, and Pε is the unique positive definite
solution of the H2 algebraic Riccati equation (4).

Then, we have that A + λBFε is Schur stable if

λ ∈ Ωε :=



z ∈ C :
�����
z −

(
1 +

1
γε

) �����
<

√
1 + γε

γε



, (21)

where γε = σ̄(B′PεB). As ε → 0, Ωε approaches the set

H1 := {z ∈ C : Re(z) > 1
2 }

in the sense that any compact subset of H will be contained
in Ωε for ε is small enough.

Proof: The proof can be found in [3].
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