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Abstract— We study stability and input-state analysis of three
dimensional (3D) incompressible, viscous flows with invariance
in one direction. By taking advantage of this invariance prop-
erty, we propose a class of Lyapunov and storage functionals.
We then consider exponential stability, induced L2-norms, and
input-to-state stability (ISS). For streamwise constant flows,
we formulate conditions based on matrix inequalities. We
show that in the case of polynomial laminar flow profiles the
matrix inequalities can be checked via convex optimization.
The proposed method is illustrated by an example of rotating
Couette flow.

I. INTRODUCTION

The dynamics of incompressible fluid flows is described
by a set of nonlinear partial differential equations known as
the Navier-Stokes equations. The properties of such flows
are then characerized in terms of a dimensionless parameter
Re called the Reynolds number. Experiments show that
many flows have a critical Reynolds number ReC below
which global stability is ensured. However, spectrum analysis
of the linearized Navier-Stokes equations, considering only
infinitesimal perturbations, predicts a linear stability limit
ReL which upper-bounds ReC [1]. On the other hand, the
bounds using energy methods ReE , the limiting value for
which the energy of arbitrary large perturbations decreases
monotonically, are much below ReC [2]. For example,
ReE = 32.6 [3], ReL = ∞ [4] and ReC = 350 [5] for
3D Couette flow.

The discrepancy between ReL and ReC have long been
attributed to the eigenvalues analysis approach [6], citing a
phenomenon called transient growth; i.e., although the per-
turbations to the linearized Navier-Stokes equation are stable,
they undergo high amplitude transient amplifications that
steer the trajectories out of the region of linearization. This
has led to studying the resolvent operator or ε-pseudospectra
based on the general solution to the linearized Navier-
Stokes equations [7]. Another method for studying stability is
based on spectral truncation of the Navier-Stokes equations
into an ODE system. Recently in [8], [9], a method was
proposed based on keeping a number of modes from Galerkin
expansion and bounding the energy of the remaining modes.
However, these bounds on ReC turn out to be conservative.

Since the seminal paper by Reynolds [10], it was observed
that external excitations and body forces play an important
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role in flow instabilities. Mechanisms such as energy ampli-
fication of external excitations have shown to be crucial in
understanding transition to turbulence [2]. Energy amplifica-
tion of stochastic forcings to the linearized Navier-Stokes
equations in parallel channel flows was studied in [11],
[12]. In [12], using the linearized Navier-Stokes equation,
it was shown analytically, through the calculation of traces
of operator Lyapunov equations, that the H2-norm from
streamwise constant excitations to perturbation velocities is
proportional to Re3. The O(Re3) amplification mechanism
of the linearized Navier-Stokes equation was verified in [13]
and [14], where the influence of each component of the body
forces was calculated in terms of H2 and H∞-norms. Input-
output analysis of a model of plane Couette flow was carried
out in [15] to study the nonlinear mechanisms associated with
turbulence. In another vein, an input-state analysis method
for the linearized Navier-Stokes equation by calculating the
spatio-temporal impulse responses was given in [16].

In this paper, we study the stability and input-state proper-
ties of incompressible, viscous fluid flows. We study input-
state properties such as induced L2-norms from body forces
to perturbation velocities and ISS. In particular, we consider
flows with invariance in one of the three spatial coordinates.
For such flows, we formulate a suitable structure as a
Lyapunov/storage functional. Then, based on these function-
als, for streamwise constant flows, we propose conditions
based on matrix inequalities. In the case of polynomial
laminar velocity profiles, e.g. Couette and Poiseuille flows,
these inequalities can be checked via convex optimization
using available computational tools. The proposed method is
applied to the analysis problem of a rotating Couette flow.

The paper is organized as follows. The next section
presents some preliminary results. In Section III, we
formulate the Lyapunov/storage functional structure.
Section IV is concerned with the convex formulation
for streamwise constant flows. The proposed method is
illustrated by studying an example of a model of rotating
Couette flow in Section V. Finally, Section VI concludes
the paper and provides directions for future research.

Notation: The n-dimensional Euclidean space is denoted by
Rn. The n×n identity matrix is denoted by In×n. A domain
Ω ⊂ Rn is a connected, open subset of Rn, and Ω is the
closure of set Ω. The boundary ∂Ω of set Ω is defined as
Ω\Ω with \ denoting set subtraction. The space of p-th power
integrable functions defined over Ω is denoted LpΩ endowed
with the norm ‖(·)‖Lp

Ω
=
(∫∫

Ω
(·)p dΩ

) 1
p , for 1 ≤ p < ∞,

and ‖(·)‖L∞
Ω

= supx∈Ω |(·)|, for p = ∞. Also, we denote
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by L2
[t0,T ],Ω, with t0 ≥ 0, the space of square integrable

functions in x ∈ Ω and t ∈ [t0, T ] with the norm

‖(·)‖L2
[t0,T ),Ω

=

(∫ T

t0

‖u‖2L2
Ω

dt

) 1
2

.

The space of k-times continuous differentiable functions
defined on Ω is denoted by Ck(Ω). If p ∈ C1, then ∂x1

p
is used to denote the derivative of p with respect to variable
x1, i.e. ∂x1

:= ∂
∂x1

. A continuous strictly increasing function
k : [0, a)p → R≥0, satisfying k(0) = 0, belongs to class
K. If a = ∞ and limx→∞ k(x) = ∞, k belongs to class
K∞. The unit vector in direction xi is denoted by −→e i. For a
scalar function v,∇v =

∑
i ∂xi

v−→e i denotes the gradient and
∇2v =

∑
i ∂

2
i v denotes the Laplacian. For a vector valued

function w =
∑
i wi
−→e i, the divergence ∇ · w is given by

∇ ·w =
∑
i ∂xi

wi.

II. PRELIMINIARIES

A. Flow Model

We consider incompressible, viscous flows with invariance
in one of the directions1 xm, m ∈ {1, 2, 3}, i.e., ∂xm

= 0.
Let I = {1, 2, 3}−{m}. The flow dynamics is described by
the Navier-Stokes equations, given by

∂tū =
1

Re
∇2ū− ū · ∇ū−∇p̄+ F ū + d,

0 = ∇ · ū, (1)

where t > 0, F ∈ R3×3, and x ∈ Ω = Ωi × Ωj ⊂ R × R
with x = (xi, xj)

′, i, j ∈ I being the spatial coordinates. The
dependent variable d(t, x) =

[
d1(t, x) d2(t, x) d3(t, x)

]′
is the input vector representing exogenous excitations or
body forces, ū(t, x) =

[
ū1(t, x) ū2(t, x) ū3(t, x)

]′
is the

velocity vector, and p̄(t, x) is the pressure.
We consider perturbations (u, p) to the stationary flow

(U , P ). That is,

ū = u + U , p̄ = p+ P, (2)

where (U , P ) satisfy

0 =
1

Re
∇2U −U · ∇U −∇P + FU ,

0 = ∇ ·U . (3)

Substituting (2) in (1) and using (3), we obtain the pertur-
bation dynamics

∂tu =
1

Re
∇2u− u · ∇u−U · ∇u− u · ∇U

−∇p+ Fu + d,

0 = ∇ · u. (4)

In this paper, we concentrate on perturbations with no-
slip boundary conditions u|∂Ω ≡ 0 and periodic boundary
conditions.

1Invariance in one direction is a common assumption in the case of several
fluid models, namely, Couette flow, Poiseuille flow, Taylor-Couette flow, etc.

B. Stability and Input-to-State Analysis

In this section, we briefly review a number of definitions
and results from [17] and [18].

Definition 1 (Exponential Stability): The stationary solu-
tion (0, p0) of (4) with d ≡ 0 is exponentially stable in L2

Ω,
if there exists a λ > 0, such that for all t ≥ 0

‖u(t, x)‖2L2
Ω
≤ ‖u(0, x)‖2L2

Ω
e−λt. (5)

That is, system (1) converges to the laminar flow (U , P ) as
in (3).

Definition 2 (input-to-State Properties):
A. Induced L2-norm Boundedness: For some

ηi > 0, i = 1, 2, 3,

‖u(t, x)‖L2
[0,∞),Ω

≤
3∑
i=1

ηi‖di(t, x)‖L2
[0,∞),Ω

(6)

subject to zero initial conditions u(0, x) ≡ 0, ∀x ∈ Ω.
B. Input-to-State Stability: For some scalar ψ > 0, func-

tions β, β̃, χ ∈ K∞, and σ ∈ K, it holds that

‖u(t, x)‖L2
Ω
≤ β

(
e−ψtχ

(
‖u(0, x)‖L2

Ω

))
+ β̃

(
sup
τ∈[0,t)

( ∫∫
Ω

σ
(
|d(τ, x)|

)
dΩ
))
, (7)

for all t > 0.
Remark 1: Due to nonlinear dynamics, the actual induced

L2-norms of system (4) are nonlinear functions of ‖d‖L2
Ω

.
The quantities ηi, i = 1, 2, 3 provide upper-bounds on the
actual induced L2-norms.

Remark 2: The ISS property (7) implies the exponential
convergence to the laminar flow (U , P ) in L2

Ω when d ≡ 0.
Moreover, as t→∞, we obtain

lim
t→∞

‖u(t, x)‖L2
Ω
≤ β

(∫∫
Ω

‖σ(|d(t, x)|)‖L∞
[0,∞)

dΩ

)
≤ β

(∫∫
Ω

σ(‖d(t, x)‖L∞
[0,∞)

) dΩ

)
, (8)

wherein, the fact that σ, β ∈ K is used. Hence, as long as the
external excitations or body forces d are bounded in L∞[0,∞)

(this encompasses persistent excitations), the perturbation
velocities u are bounded in L2

Ω sense.
The next result converts the tests for exponential stability,

induced L2-norm boundedness, and ISS into the existence
problem of a Lyapunov or a storage functional satisfying a
set of inequalities.

Theorem 1: Consider perturbation model (4). If there exist
a positive definite Lyapunov functional V (u) and a pos-
itive semidefinite storage functional S(u), positive scalars
{ηi}i∈{1,2,3}, {ci}i∈{1,2,3}, ψ, and functions β1, β2 ∈ K∞,
σ ∈ K, such that
I) when d ≡ 0,

c1‖u‖2L2
Ω
≤ V (u) ≤ c2‖u‖2L2

Ω
, (9)

∂tV (u) ≤ −c3‖u‖2L2
Ω
, (10)



II)

∂tS(u) ≤ −
∫∫

Ω

u′u dΩ +

∫∫
Ω

d′

[
η2

1 0 0

0 η2
2 0

0 0 η2
3

]
d dΩ, (11)

III)
β1(‖u‖L2

Ω
) ≤ S(u) ≤ β2(‖u‖L2

Ω
), (12)

∂tS(u) ≤ −ψS(u) +

∫∫
Ω

σ(|d(t, x)|) dΩ, (13)

for all t > 0, then, respectively, system (4)
I) is exponentially stable,
II) has induced L2-norm upper-bounds ηi, i = 1, 2, 3 as
in (6),
III) is ISS and satisfies (7) with χ = β2, β(·) = β−1

1 ◦ 2(·)
and β̃(·) = β−1

1 ◦ 2
ψ (·).

Proof: This is a direct application of Theorem 1 in [17]
and Theorem 1 in [18].

III. LYAPUNOV AND STORAGE FUNCTIONALS
FOR FLUID FLOWS

In this section, we derive classes of Lyapunov and storage
functionals suitable for analysis of system (4) subject to
invariance in one of the three spatial coordinates. In the
following, we adopt Einstein’s multi-index notation over
index j, that is the sum over repeated indices j, e.g.,
vj∂xj

uj =
∑
j vj∂xj

uj .
The perturbation model (4) can be re-written as

∂tui =
1

Re
∇2ui − uj∂xj

ui − Uj∂xj
ui

−uj∂xj
Ui − ∂xi

p+ Fijuj + di,

0 = ∂xj
uj . (14)

where i, j ∈ {1, 2, 3} and Fij is the (i, j) entry of F .
The next theorem states, under which Lyapunov/storage

functional structure, the time derivative of the Lya-
punov/storage functional takes the form of a quadratic form
in dependent variables u and their spatial derivatives, by
removing the nonlinear convection and pressure terms.

Proposition 1: Consider the perturbation model (14) sub-
ject to periodic or no-slip boundary conditions u|∂Ω = 0.
Assume (14) is invariant with respect to xm, m ∈ {1, 2, 3}.
Let I = {1, 2, 3} − {m} and

V (u) =
1

2

∫∫
Ω

u′
[
km 0 0
0 ki 0
0 0 kj

]
u dΩ

=
1

2

∫∫
Ω

3∑
i=1

kiui(t, x)2 dΩ, (15)

where ki = kj for i, j ∈ I , be a candidate Lyapunov or
storage functional. Then, the time derivative of (15) satisfies

∂tV (u) ≤ −
3∑
i=1

ki

∫∫
Ω

(
C(Ω)

Re
u2
i + Ujui∂xj

ui

+ ujui∂xjUi − uiFijuj
)

dΩ, (16)

where C > 0.

Proof: The time derivative of Lyapunov functional (15)
along the solutions of (14) can be computed as

∂tV (u) =

3∑
i=1

∫∫
Ω

ki

(
1

Re
ui∇2ui − ujui∂xj

ui

−Ujui∂xjui−ujui∂xjUi−ui∂xip+uiFijuj+uidi

)
dΩ.

(17)

Consider
∫∫

Ω
kiujui∂xj

ui dΩ. Using the boundary condi-
tions, integration by parts and the incompressibility condition
∂xj

uj = 0, we obtain∫∫
Ω

kiujui∂xjui dΩ =
1

2

∫
Ωi

kiuju
2
i |∂Ωj dxi

− 1

2

∫∫
Ω

kiu
2
i

(
∂xj

uj
)

dΩ = 0. (18)

At this point, consider the pressure terms
∫∫

Ω
kiui∂xi

p dΩ.
Without loss of generality, we consider invariance in x1,
which yields∫∫

Ω

(k2u2∂x2
p+ k3u3∂x3

p) dΩ

=

∫
Ω3

(k2u2p)|∂Ω2 dx3 +

∫
Ω2

(k3u3p)|∂Ω3 dx2

−
∫∫

Ω

(k2∂x2
u2p+ k3∂x3

u3p) dΩ

= −
∫∫

Ω

(k2∂x2u2 + k3∂x3u3) p dΩ, (19)

where in the first equality above integration by parts and
in the second inequality the boundary conditions are used.
Then, if k2 = k3, using the incompressibility condition
∂x2u2 + ∂x3u3 = 0, (19) equals zero. Therefore, the time
derivative of the Lyapunov/storage functional (17) is modi-
fied to

∂tV (u) =

3∑
i=1

∫∫
Ω

ki

(
1

Re
ui∇2ui − Ujui∂xj

ui

− ujui∂xj
Ui + uiFijuj + uidi

)
dΩ. (20)

Integrating by parts the ui∇2ui term and using the boundary
conditions, we get

∂tV (u) =

3∑
i=1

∫∫
Ω

ki

(
1

Re
(∂xi

ui)
2 − Ujui∂xj

ui

− ujui∂xj
Ui + uiFijuj + uidi

)
dΩ. (21)

Applying Poincaré inequality (Lemma 1 in Appendix A)
to (21), we obtain (16).

Remark 3: A special case of (15) was used in [19] to
study the stability of viscous fluid flows.

Remark 4: In the sequel, we use structure (15) as a
Lyapunov functional when studying stability and as a storage
functional when studying input-to-state properties.



Remark 5: There are several estimates for the optimal
Poincaré constant. The optimal constant we use in this paper
is

C(Ω) =
π2

D(Ω)
, (22)

where D(Ω) is the diameter of the domain Ω [20].
The next corollary proposes conditions under which prop-

erties such as stability, input-state induced L2 bounds and
ISS can be inferred for the flow described by (14).

Corollary 1: Consider the flow described by (14) subject
to periodic or no-slip boundary conditions u|∂Ω = 0. As-
sume the flow is invariant with respect to xm, m ∈ {1, 2, 3}.
Let I = {1, 2, 3} − {m}. If there exist positive constants
ki, i = 1, 2, 3, with ki = kj , i, j ∈ I , positive scalars
{ψi}i∈{1,2,3}, {η}i∈{1,2,3}, and σ ∈ K such that
I) when d ≡ 0,

3∑
i=1

ki

∫∫
Ω

(
C(Ω)

Re
u2
i + Ujui∂xjui

+ujui∂xj
Ui − uiFijuj

)
dΩ > 0 (23)

II)

3∑
i=1

∫∫
Ω

((
kiC(Ω)

Re
− 1

)
u2
i + kiUjui∂xj

ui

+ kiujui∂xjUi − kiuiFijuj − kiuidi + η2
i d

2
i

)
dΩ ≥ 0

(24)

III)

3∑
i=1

∫∫
Ω

((
kiC(Ω)

Re
− ψiki

)
u2
i + kiUjui∂xj

ui

+ kiujui∂xjUi − kiuiFijuj

− kiuidi + σ(|d1|, |d2|, |d3|)
)

dΩ ≥ 0 (25)

Then,
I) perturbation velocities given by (14) are exponentially
stable. Therefore, the flow converges to the laminar flow
exponentially.
II) under zero perturbation initial conditions u(0, x) ≡ 0,
the induced L2 norm from inputs to perturbation velocities
is bounded by ηi, i ∈ {1, 2, 3} as in (6).
III) the perturbation velocities described by (14) are ISS in
the sense of (7).

Proof: Each item is proven as follows.
I) Considering Lyapunov functional (15), inequality (9) is
satisfied with c1 = mini∈{1,2,3} ki and c2 = maxi∈{1,2,3} ki.
Re-arranging the terms in (23) gives

−
3∑
i=1

ki

∫∫
Ω

(
C(Ω)

Re
u2
i + Ujui∂xjui + ujui∂xjUi

−uiFijuj − uidi
)

dΩ < 0. (26)

Then, from Proposition 1, we infer that, for d ≡ 0,
∂tV (u) < 0. By continuity, we infer that there exists c3 > 0
such that (10) holds. Then, form Item I in Theorem 1, we
infer that the perturbation velocities are exponentially stable.
II) Re-arranging terms in (24) yields

−
3∑
i=1

ki

∫∫
Ω

(
C(Ω)

Re
u2
i + Ujui∂xjui + ujui∂xjUi

− uiFijuj − uidi
)

dΩ

≤ −
3∑
i=1

∫∫
Ω

u2
i dΩ +

3∑
i=1

∫∫
Ω

η2
i d

2
i dΩ (27)

Then, from (16) in Proposition 1, we deduce that

∂tV (u) ≤ −
3∑
i=1

∫∫
Ω

u2
i dΩ +

3∑
i=1

∫∫
Ω

η2
i d

2
i dΩ.

From Item II in Theorem 1, we infer that, under zero initial
conditions, the perturbation velocities satisfy (6).
III) Adopting (15) as a storage functional, (12) is sat-
isfied with β1(·) = mini∈{1,2,3} ki(·)2 and β2(·) =
maxi∈{1,2,3} ki(·)2. Re-arranging the terms in (25), we ob-
tain

−
3∑
i=1

∫∫
Ω

(
kiC(Ω)

Re
u2
i + kiUjui∂xj

ui + kiujui∂xj
Ui

− kiuiFijuj − kiuidi
)

dΩ

≤ −
3∑
i=1

ψi

∫∫
Ω

kiu
2
i dΩ +

∫∫
Ω

σ(|d1|, |d2|, |d3|) dΩ

(28)

From (16) in Proposition 1, it follows that

∂tV (u) ≤ −ψV (u) +

∫∫
Ω

σ(|d1|, |d2|, |d3|) dΩ, (29)

with ψ = mini∈{1,2,3} ψi. Then, from Item III in Theorem 1,
we infer that the perturbation velocities satisfy the ISS
property (7).

IV. CONVEX FORMULATION FOR STREAMWISE
CONSTANT FLOWS

To present a convex method for checking the conditions in
Corollary 1, we restrict our attention to streamwise constant
flows in xm-direction with laminar flow U = Um(x)−→e m.

Corollary 2: Consider the perturbation dynamics given
by (14). Assume streamwise invariance in xm-direction with
laminar flow U = Um(x)−→e m where m ∈ {1, 2, 3}. Let I =
{1, 2, 3}−{m}. If there exist positive constants {kl}l∈{1,2,3}
with kp = kq , p, q ∈ I , {ηl}l∈{1,2,3}, {ψl}l∈{1,2,3}, and
functions {σl}l∈{1,2,3} such that
I) (30) holds,



M(x) =


(
C
Re − Fmm

)
km

km(∂xj
Um(x)−Fmj)−kjFjm

2

km(∂xi
Um(x)−Fmi)−kiFim

2
km(∂xj

Um(x)−Fmj)−kjFjm
2

(
C
Re − Fjj

)
kj −kjFjm

2
km(∂xi

Um(x)−Fmi)−kiFim
2 −kjFjm

2

(
C
Re − Fii

)
ki

 ≥ 0, i, j ∈ I, i 6= j, x ∈ Ω.

(30)

II)

N(x) =

−km2 0 0

M(x)− I3×3 0 −kj2 0

0 0 −ki2
−km2 0 0 η2

m 0 0

0 −kj2 0 0 η2
i 0

0 0 −ki2 0 0 η2
j


≥ 0, (31)

for i, j ∈ I, i 6= j and x ∈ Ω,
III) σl(x) ≥ 0, x ∈ Ω, l ∈ {1, 2, 3} and

P (x) =

−km2 0 0

M(x)−Q 0 −kj2 0

0 0 −ki2
−km2 0 0 σm(x) 0 0

0 −kj2 0 0 σj(x) 0

0 0 −ki2 0 0 σi(x)


≥ 0,

(32)

for i, j ∈ I, i 6= j and x ∈ Ω, where Q =

[
ψmkm 0 0

0 ψjkj 0
0 0 ψiki

]
.

Then, it follows that
I) the perturbation velocities are exponentially stable,
II) subject to zero initial conditions, the induced L2 norm
from inputs to perturbation velocities is bounded by ηi,
i = 1, 2, 3 as in (6),
III) the perturbation velocities are ISS in the sense of (7)
with σ(|d|) =

∑3
i=1 σi(x)d2

i .

Proof: The proof is straightforward and follows from
computing conditions (23), (27), and (25) considering xm-
invariance, the laminar flow U = Um

−→e m, and σ(|d|) =∑3
i=1 σi(x)d2

i . Since the flow is xm-invariant and the lam-
inar flow is given by U = Um

−→e m, Ujui∂xjui = 0,
i = 1, 2, 3.

I) Inequality (23) is given by

A =∫∫
Ω

((
C(Ω)

Re
− Fii

)
kiu

2
i − ui(kiFij)uj − ui(kiFim)um

+

(
C(Ω)

Re
− Fjj

)
kju

2
j − uj(kjFji)ui − uj(kjFjm)um(

C(Ω)

Re
− Fmm

)
kmu

2
m + um(∂xiUm − Fmi)ui

+ um(∂xj
Um − Fmj)

)
dΩ ≥ 0 (33)

for i, j ∈ I , i 6= j, which can be rewritten as∫∫
Ω

[ um
uj
ui

]′
M(x)

[ um
uj
ui

]
dΩ ≥ 0. (34)

with M(x) given in (30). Therefore, if (30) is satisfied, (34)
also holds and from Item I in Corollary 1 we infer that the
perturbation velocities are exponentially stable.
II) Inequality (27) is changed to

A+

∫∫
Ω

(kiuidi + kjujdj + kmumdm) dΩ

−
∫∫

Ω

(u2
i + u2

j + u2
m) dΩ

+

∫∫
Ω

(η2
i d

2
i + η2

jd
2
j + η2

md
2
m) dΩ ≥ 0, (35)

for i, j ∈ I , i 6= j, which can be rewritten as

∫∫
Ω

 um
uj
ui

dm
dj
di

′N(x)

 um
uj
ui

dm
dj
di

 dΩ ≥ 0, (36)

where N is defined in (31). Consequently, if (31) is satisfied
for all x ∈ Ω, (36) holds and from Item II in Corollary 1
we infer that, subject to zero initial conditions, the induced
L2 norm from inputs to perturbation velocities is bounded
by ηi, i = 1, 2, 3 as in (6).
III) The proof follows the same lines as the proof of Item II
above.

In the case that Um(x) is a polynomial in x, inequali-
ties (30), (31), and (32) are polynomial matrix inequalities
that should be checked for all x ∈ Ω. If the set Ω is a
semi-algebraic set then these inequalities can be cast as a
sum-of-squares (SOS) program (see Appendix B) by using
Putinar’s Positivstellensatz theorem [21, Theorem 2.14].

Remark 6: In order to find upper-bounds on the induced
L2-norm from the body forces (d1, d2, d3) to the perturbation



Fig. 1: Schematic of the rotating Couette flow geometry.

velocities u, we solve the following optimization problem

minki,kj (η2
1 + η2

2 + η2
3)

subject to N(x) ≥ 0, ki, kj > 0, i, j ∈ I. (37)
In the next section, we consider the analysis of the rotating

Couette flow, which illustrate the proposed results.

V. EXAMPLE: ROTATING COUETTE FLOW

We consider the flow of viscous fluid between two co-
axial cylinders, where the gap between the cylinders is
much smaller than their radii. In this setting, the flow
can be schematically illustrated as in Figure 1. The axis
of rotation is parallel to x3-axis and the circumferential
direction corresponds to x1-axis. Then, the dynamics of
the perturbation velocities is described by (4). The flow
is assumed to be invariant with respect to x1 (∂x1 = 0)
and periodic in x3 with period L. Therefore, Ω =
{(x2, x3) | (x2, x3) ∈ [−1, 1]× [0, L]}. The laminar flow is
given by U = (x2, 0, 0)′ = x2

−→e 1 and P = P0. In addition,

F =

 0 Ro 0
−Ro 0 0

0 0 0

 ,
where Ro ∈ [0, 1] is a parameter representing the
Coriolis force2. We consider no-slip boundary conditions
u|1x2=−1 = 0 and u(t, x2, x3) = u(t, x2, x3 + L). The
Poincaré constant is then given by C = π2

L2+22 .
Notice that the cases Ro = 0, 1 correspond to the Couette

flow. Thus, the obtained results for rotating Couette flow can
be applied to the Couette flow in special cases, as well. We
are interested in finding estimates of the critical Reynolds
number ReC using the following Lyapunov functional

V (u) =

∫ L

0

∫ 1

−1

[
u1
u2
u3

]′ [ k1 0 0
0 k2 0
0 0 k2

] [
u1
u2
u3

]
dx2dx3,

which is the same as Lyapunov functional (15) considering
invariance with respect to x1.

2 That is, Ro = 0 (Ro = 1) corresponds to the case where only the outer
(inner) cylinder is rotating and Ro = 0.5 is the case where both cylinders
are rotating with the same velocity but in opposite direction.

Ro

0 0.2 0.4 0.6 0.8 1

R
e
C

0

2

4

6

8

10

12

14

16

18

Fig. 2: Estimated critical Reynolds numbers Re in terms of
Ro for rotating Couette flow.

For stability analysis, we need to check inequality (30)
according to Item I in Corollary 2. For this flow (m = 1, j =
2, i = 3), we have

M =

 k1C
Re

k2Ro−k1(Ro−1)
2 0

k2Ro−k1(Ro−1)
2

k2C
Re 0

0 0 k2C
Re

 ≥ 0 (38)

This is a linear matrix inequality (LMI) feasibility problem
with decision variables k1, k2 > 0.

To find estimates of ReC in the case of Couette Flow
Ro = 0, applying Schur complement theorem [22, p. 650]
to (38), we have

k1C

Re
−
(
k1

2

)2(
Re

k2C

)
≥ 0,

k2C

Re
≥ 0,

which yields the inequality3

k2

k1
≥
(
Re

2C

)2

. (39)

This implies that the Couette flow is stable for all Re. Hence,
for Couette flow, ReC =∞ obtained using Lyapunov func-
tional (15) coincides with linear stability limit ReL =∞ [4].

Let L = π. Figure 2 illustrates the estimated critical
Reynolds numbers ReC as a function of Ro obtained from
solving the LMI (38) and performing a line search over Re.
Notice that for the cases Ro = 0, 1 the flow is stable for all
Reynolds numbers.

For induced L2-norm analysis, we apply inequality (31)
which for this particular flow is given by the following LMI

N =



−k1

2 0 0

M − I3×3 0 −k2

2 0

0 0 −k2

2

−k1

2 0 0 η2
1 0 0

0 −k2

2 0 0 η2
2 0

0 0 −k2

2 0 0 η2
3


≥ 0

3For Ro = 1, we can similarly obtain k1
k2
≥

(
Re
2C

)2
.
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Fig. 3: Upper bounds on induced L2-norms from d to perturbation velocities u of rotating Couette flow for different Reynolds
numbers: Re = 2 (left), Re = 2.8 (middle), and Re = 2.83 (right).

with M as in (38).
Figure 3 depicts the obtained results for three different

Reynolds numbers. As the Reynolds number approaches the
estimated ReC for Ro = 0.5, the upper-bounds on the
induced L2-norm from the body forces d to perturbation
velocities u increases dramatically.

The obtained upper-bounds on the induced L2-norm for
Couette flow Ro = 0, are also given in Figure 4. Since the
flow is stable for all Reynolds numbers, the induced L2-
norms keep increasing with Reynolds number. The obtained
upper-bounds depicted in Figure 4 are consistent with Corol-
lary 2 and Corollary 4 in [13] and Theorem 1 in [12], wherein
it was demonstrated that η2

1 ∝ O(Re), and η2
2 , η

2
3 ∝ O(Re3)

for Couette flow.
In order to check the ISS property, we check inequal-

ity (32) from Corollary 2 for the rotating Couette flow under
study, i.e.,

P =



−k1

2 0 0

M −Q 0 −k2

2 0

0 0 −k2

2

−k1

2 0 0 σ1 0 0

0 −k2

2 0 0 σ2 0

0 0 −k2

2 0 0 σ3


≥ 0

with M given in (38) and Q =

[
k1ψ1 0 0

0 k2ψ2 0
0 0 k2ψ3

]
. We fix

ψi = 10−4, i = 1, 2, 3 and L = 2π. Figure 5 depicts the
maximum Reynolds number for which ISS certificates could
be found ReISS and stability critical Reynold’s numbers
ReC as a function of Ro. It appears that for Ro ∈ (0, 1) these
two quantities coincide. However, for the case of Couette
flow Ro = 0, 1, we obtain ReISS = 316 and ReC = ∞.
The quantity ReISS = 316 is the closest estimate to the
empirical Reynolds number Re ≈ 350 [5].

VI. CONCLUSIONS AND FUTURE WORK
A. Conclusions

We studied stability and input-state properties of fluid
flows with invariance in one direction. We formulated a
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Fig. 4: Upper bounds on induced L2-norms for perturbation
velocities of Couette flow for different Reynolds numbers.

class of appropriate Lyapunov/storage functionals for such
flows. Conditions based on matrix inequalities are given for
streamwise constant flows. When the laminar flow is given by
a polynomial of spatial coordinates, the matrix inequalities
can be checked using convex optimization. For illustration
purposes, we applied the proposed method to study a model
of rotating Couette flow.

B. Future Work

In this study, we considered flows in the Cartesian coor-
dinate system. For many flows, like pipe Poiseuille flow, the
coordinate system is naturally cylindrical. An extension of
the results proposed in this paper to cylindrical coordinates
is under study.

In several scenarios in fluid mechanics, we are interested
in a functional of the perturbation dynamics. For example, in
the drag estimation problem, we are interested in estimating
the functional of pressure over the surface of an airfoil. We
are currently applying the methodology proposed in [23] to
address such problems in fluid mechanics.
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[14] M. R. Jovanović, “Modeling, analysis, and control of spatially dis-
tributed systems,” Ph.D. dissertation, University of California, Santa
Barbara, 2004.

[15] D. F. Gayme, B. J. McKeon, B. Bamieh, A. Papachristodoulou,
and J. C. Doyle, “Amplification and nonlinear mechanisms in plane
Couette flow,” Physics of Fluids, vol. 23, no. 6, 2011.
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APPENDIX

A. Poincaré Inequality

Lemma 1 ([20]): Assume Ω ⊂ R2 is a bounded, convex,
Lipschitz domain with diameter D, and u ∈ C1(Ω) with no-
slip u|∂Ω = 0 or periodic such that

∫∫
Ω
u dΩ = 0 boundary

conditions. Then, the following inequality holds
π

D
‖u‖L2

Ω
≤ ‖∇u‖L2

Ω
.

B. Sum-of-Squares Programming

Denote the ring of polynomials with real coefficients by
R[x], and the ring of polynomials with a sum-of-squares
decomposition by Σ[x] ⊂ R[x]. A polynomial p(x) ∈ Σ[x]
if ∃pi(x) ∈ R[x], i ∈ {1, . . . , nd} such that p(x) =∑nd

i=1 p
2
i (x). Hence, p(x) is clearly non-negative. The set of

polynomials {pi}nd
i=1 is called SOS decomposition of p(x).

The converse does not hold in general, that is, there exist non-
negative polynomials which do not have an SOS decompo-
sition [24]. To test whether an SOS decomposition exists for
a given polynomial, one can solve an SDP (see [25], [24],
[26]). SOSTOOLS [27] is a software package for solving
SOS programs.
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