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Abstract— We present a controller synthesis algorithm for
reach-avoid problems for piecewise linear discrete-time systems.
Our algorithm relies on SMT solvers and in this paper we
focus on piecewise constant control strategies. Our algorithm
generates feedback control laws together with inductive proofs
of unbounded time safety and progress properties with respect
to the reach-avoid sets. Under a reasonable robustness assump-
tion, the algorithm is shown to be complete. That is, it either
generates a controller of the above type along with a proof of
correctness, or it establishes the impossibility of the existence
of such controllers. To achieve this, the algorithm iteratively
attempts to solve a weakened and strengthened versions of
the SMT encoding of the reach-avoid problem. We present
preliminary experimental results on applying this algorithm
based on a prototype implementation.

I. INTRODUCTION

A Satisfiability Modulo Theory (SMT) problem is a clas-
sical decision problem in computer science [6]. It takes as
input a logical formula in first-order logic that can involve
combinations of background theories, and requires one to
decide whether or not the formula has a satisfying solution.
For a bounded time horizon k, a simplest SMT problem
in Equation (1), for instance, is an encoding of a search
for a sequence of control inputs vectors u1, . . . , uk that
drives a discrete time linear open-loop control system from
every initial state in the hypercube r0, 0.1sn to the hypercube
r0.9, 1sn in k steps, while always keeping the state inside the
hypercube r0, 1sn.

D u1, . . . uk,@ x0 P r0, 0.1s
n,@ t P t1, . . . , k ´ 1u,

let xt`1 “ Axt `But

such that xt P r0, 1sn and xk P r0.9, 1sn. (1)

This example has several constraints that are defined in
terms of the quantified variables ui and xi, numerical
constants (including those in the matrices A and B), and
the background theory of linear real arithmetic. An SMT
solver is a software tool that solves SMT problems by
either giving an assignment to the variables that satisfy
all the constraints or by saying that none exists. Modern
SMT solvers routinely handle linear problems with thousands
of variables and millions of constraints, so much as they
have become the engines for innovation in verification and
synthesis for computer software and hardware [2], [10], [13].
Although many control systems can only be modeled by
means of nonlinear arithmetic over the real numbers in-
volving transcendental functions that make the corresponding
SMT problems undecidable, the solvers are evolving rapidly
and several incorporate approximate decision procedures for
nonlinear arithmetic [15]. These technological developments

motivated us (and others [20], [21]) to explore SMT-based
controller synthesis.

In this paper, we present an algorithm that uses SMT
solvers for synthesizing controllers for discrete time systems.
The dynamics of the system is given as a piecewise linear
feedback control system. The control requirements are the
standard reach-avoid specification [7], [8]: a set of states
Goal that has to be reached while always staying inside a
Safe set.

A key difficulty in using SMT for synthesis, is that the
resulting SMT problem has to encode the unrolled dynamics
of the system with the unknown controller inputs. In the
above simple example, this gave rise to k control input vari-
ables and the intermediate states. For more general nonlinear
models, the intermediate states cannot be written down in
closed form and one has to unroll the over-approximations
of the dynamics. This can then lead to overtly conservative
answers from the solver. We present a technique that avoids
this problem by synthesizing the control law together with
an inductive proof of its correctness. The proof has two
parts: (a) an inductive invariant that implies safety and (b) a
ranking function that implies progress. A positive side-effect
of this is that it can not only synthesize controllers with
understandable correctness proofs, but it can also establish
the nonexistence of provably correct controllers (of a certain
template).

In Section III we define the system model, the reach-avoid
synthesis problem and a particular notion of robustness of
models. In Section IV we first present a basic SMT encoding
of the synthesis problem and then a strengthened and a weak-
ened version this encoding. Using these two encodings, in
Section V we present the synthesis algorithm, its soundness
and relative completeness. In Section VI we illustrate an
application of the algorithm in a vehicle navigation problem
and conclude in Section VII.

II. RELATED WORK

Researchers have recently used SMT solvers for synthesiz-
ing programs and strategies in games. The approach in [21]
uses SMT to find controllers for general linear temporal logic
(LTL) specifications by stitching together motion primitives
from a library. Unlike our encoding with inductive proofs, the
approach of [21] involves bounded unrolling of the dynamics.

In [20], the authors used SMT solvers to synthesize
integrated task and motion plans by constructing a placement
graph. In [4], a constraint-based approach was developed
to solve games on infinite graphs between the system and
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the adversary. Our work can be seen as introducing control
theoretic constraints to the SMT formulation.

The authors of [11], [26] proposed a game theoretical
approach to synthesize controller for the reach-avoid prob-
lem, first for continuous and later for switched systems. In
these approaches, the reach set of the system is computed
by solving a non-linear Hamilton-Jacobi-Isaacs PDE. Our
methodology, instead of formulating a general optimization
problem for which the solution may not be easily com-
putable, solves a special case exactly and efficiently. With
this building block, we are able to solve more general
problems through abstraction and refinement.

Model predictive control (MPC) can as well be used to
solve the reach-avoid problem [3], [24]. In each cycle of an
MPC, the optimal input for reaching the goal while avoiding
the obstacle, is computed for a fixed prediction horizon.
Then, the first part of the optimal control input is applied,
and a new input is computed from the new state, and so
on. As the prediction horizon increases, the applied input
converges to the optimal reach-avoid input. In the contrast,
our approach can be used to synthesis controls for possibly
unbounded horizon with safety and progress guarantees and
can establish nonexistence of controller of certain type.

There is a large body of results on automata theoretic
approaches for controller synthesis [1], [16], [18], [23], [25].
The approach here is to construct a finite abstraction of
the dynamical system and then invoke the LTL synthesis
algorithms such as the one in [5]. This approach has been
applied to several systems and several software tools for
synthesis have been implemented [9], [19].

The authors of [17], [22] build Markov decision trees
to synthesize control policies with maximum probability of
satisfying the specifications. Our method is very different
since we consider deterministic systems and try to synthesize
controller that are guaranteed to satisfy the specifications.

III. PRELIMINARIES AND BACKGROUND

Sets and Functions: For a natural number N , rN s
denotes the set t0, 1, . . . , N ´ 1u. Given two functions f, g :
A Ñ Rn, we use dpf, gq “ |fpaq ´ gpaq|8 to denote the
`8 distance between f and g, where | ¨ |8 is the standard
8-norm.

We will use finite collections of sets to approximate
arbitrary compact subsets in Rn. For a finite collection P
of subsets of Rn and a subset S Ď Rn, we say that P
preserves S if there exists a subset P 1 Ď P such that (i)

Ť

PPP 1

P “ S, and (ii) @ P P PzP 1, P X S “ H. In other

words, P 1 completely and exactly represents S.
A finite partition P of a compact subset S Ď Rn is a finite

disjoint collection of sets that exactly cover S. The resolution
of a partition P is the maximum diameter of the sets in P .
For two partitions P,P 1 of a compact set S, we say that P
subsumes P 1, if for any I P P , there exists I 1 P P 1 such that
I Ď I 1.

Piecewise Linear Systems, Feedback, and Robustness:
A piecewise linear system M is a tuple pX ,U , loc, I,Fq

where (a) X Ď Rn is a compact set called the state space,
(b) U Ď Rm is a compact set called the input space, (c) loc
is a finite set called the set of locations, (d) I “ tPlulPloc is
a partition of X and each element of I is called a location
invariant, and (e) F “ tflulPloc is a collection of linear
dynamic functions fl : X ˆ U Ñ X .

The evolution of the continuous state of the system is
governed by the dynamic function of the location invariant
it is currently in. For any time t P N, a state xt P Pl and
an input ut P U the next state of the system is given by the
discrete-time dynamics:

xt`1 “ flpxt, utq. (2)

A general static state-feedback control law can be thought
of as a function u : X Ñ U that maps each state to an input.
In many systems, sensors and controller hardware have a
finite resolution, and therefore, such a general law cannot be
implemented. In this paper, we assume that M is associated
with a controller table C which is a partition of the state
space X and the u : C Ñ U maps each partition in C to an
input. Essentially u is a look-up table, which assign an input
for every equivalence class defined by C.

For a feedback control policy u and a system (2), the
next state is just a function of the current state. We denote
postM px,uq “ flpx,upxqq if x P Pl. The subscript M is
dropped if it is clear in the context. We denote by posttpx,uq
the state reached from x after the tth step. For a compact
set of states S Ď X , we define postpS,uq “ tx1 : Dx P
S such that x1 “ postpx,uqu. The t step post operation
posttpS,uq is defined similarly.

Our synthesis algorithm will be complete for system
models upto some imprecision in the model. For a system
M “ pX ,U , loc, I,Fq and ε ą 0, another system M 1 is an
ε-perturbation of M if it is identical to M except that the
set of dynamic functions for M 1 is F 1 “ tf 1lulPloc , such that
for each l P loc, dpfl, f 1l q ď ε. We denote by BεpMq the set
of all models that are ε-perturbations of M .

Reach-Avoid Control Problem (RAC ): A reach-avoid
control(RAC ) problem is parameterized by the system
model M , the controller table C, and three sets of states
Init ,Safe,Goal Ď X called the initial, safe and goal states.
We will assume that these sets have some finite represen-
tation (for example, hyperrectangles, polytopes). We define
what it means to solve a RAC problem with a feedback
control policy u.

Definition 1. A solution to a RAC is a feedback control
policy u : C Ñ U such that for any initial state x P Init , the
states visited by the system satisfies the condition:
‚ (Safety) for all t P N, xt P Safe and
‚ (Progress) there exists T P N such that xT P Goal .

Throughout the paper a RAC is uniquely specified by a
model M as the rest parameters are fixed.

IV. CONSTRAINT-BASED SYNTHESIS

A major barrier in encoding RAC as an SMT problem is
that the safety and progress requirements are over unbounded



time. Moreover, these requirements are stated in terms of
the future reachable states of the system and computing
that in and on itself is a hard problem. Instead of working
with unbounded time reach sets, we address this problem
by encoding a set of rules that inductively prove safety and
progress of the control system.

A. Inductive Synthesis Rules

In addition to searching for the feedback control law u :
C Ñ U , the SMT problem will encode the search for (a) an
inductive invariant Inv Ď X that proves safety with u, and
(b) a ranking function V that proves progress with u.

In order to constrain the search, we will fix a template for
the ranking function. For this paper, we will use the template
C Ñ N, that is, any function that is piecewise constant on
the partition of the state space C. This choice has an easy
interpretation: each entry in the controller table gives the
rank of the controller along with the feedback law. Let V
denote the countable set of all such functions. Each ranking
function V P V maps every state in X to a natural number.
For any C P C, V pCq is the natural number that all the states
x P C map to. Now we are ready to present the basic rules
encoding inductive synthesis of RAC :

Find u : C Ñ U , V P V , Inv Ď X such that:
R1: Init Ď Inv
R2: postpInv,uq Ď Inv
R3: Inv Ď Safe
R4: C Ď Goal ðñ V pCq “ 0
R5: C Ď Inv ^ postpC,uq X C 1 ‰ H

ñ V pCq ě V pC 1q
R6: C Ď InvzGoal ^ postkpC,uq X C 1 ‰ H

ùñ V pCq ą V pC 1q.

Fig. 1: Basic rules ΠpM, C,Vq for synthesis for RAC .

Rules R1-R3 imply that Inv is a fixed-point of post with
control u that contains Init and is contained in Safe , and
therefore, is adequate for proving safety. Rule R4 states the
the rank of any region C vanishes iff it is in Goal . Rule
R5 encodes the (Lyapunov-like) property that the rank of
any region C is nonincreasing along trajectories. Finally,
rule R6 states that for any non-Goal region C, the rank
decreases with u within k steps, where k is an induction
parameter of this encoding. For RAC specified by model
M with controller table C and a template V , we denote the
SMT problem (Figure 1) as ΠpM, C,Vq For some control
u, ranking function V P V and Inv Ď X , we write
u, V, Inv |ù ΠpM, C,Vq1 if the Rules R1-R6 are satisfied.

Theorem 2 (Soundness). If u, V, Inv |ù ΠpM, C,Vq, then
u solves RAC specified by M .

Proof. Let u, V, Inv satisfy rules in Figure (1). Fixing any
x P Init , we prove safety and progress conditions separately.

1For the sake of clarity, we supress the dependence on k.

From R1, x P Inv. Combined with R2, we have for any
t P N, postupx, tq P Inv. Since Inv Ď Safe (R3) we have
postupx, tq P Safe for any t. Thus the safety condition holds.

We assume x P C such that CXGoal “ H; otherwise the
progress condition holds trivially. From R4 we have V pCq ą
0. From R5 and R6, in at most kV pCq steps, V decreases
to 0. By R4 this implies that x reaches the goal.

a) Robustness Modulo Templates: In Section III we
defined perturbations of system models, here we lift the
definition to the corresponding synthesis rules: ΠpM 1, C1,V 1q
is an ε-perturbation of ΠpM, C,Vq if (i) the controller table
and the ranking templates are identical C “ C1,V “ V 1, and
(ii) the model M 1 P BεpMq is an ε-perturbation of M .

Definition 3. For a controller table C and a template of
ranking functions V , a RAC specified by M is robust modulo
pC,Vq if there exists ε ą 0 such that either of the following
holds:

(i) there exists a control u and a ranking function V P

V such that for any M 1 P BεpMq, u, V, Inv |ù

ΠpM 1, C,Vq with some Inv Ď X , or
(ii) for none of M 1 P BεpMq, the synthesis problem

ΠpM 1, C,Vq is satisfiable.

In Theorem 7 we will show that our synthesis algorithm
is also relatively complete with respect to this notion of
robustness.

B. Weakened and Strengthened Rules

The main challenge in solving ΠpM, C,Vq is the post
operator in Rules R2, R5, and R6. We need a reasonable
representation of post for this computation to be effective.
In this work, we use a finite partition P of the state
space (which preserves C, Init ,Safe,Goal ) for computing
the post. This choices is somewhat independent of the rest
of the methodology and any other template (for example,
linear functions, support functions, zonotopes) could be used
instead of the fixed partitions.

The key idea to solve it is to create over and under
approximations of the post operator with respect to the
representation of choice—in this case representation using
the fixed partition P . These operators are then used to create
weakened and strengthened versions of the basic inductive
rules that can be effectively solved as SMT problems.

We define an over-approximation (P-post) and an under-
approximation (P-post) of the post operator with respect to
a partition P as follows: for any compact S Ď X ,

P-postpS,uq “
ď

PPP^PXpostpS,uq‰H

P, (3)

P-postpS,uq “
ď

PPP^PĎpostpS,uq

P. (4)

Roughly, the over-approximation P-postpS,uq computes the
minimum superset of S which is preserved by P and
the under-approximation P-postpS,uq computes the max-
imum subset of S which is preserved by P . We define



P-posttpS,uq and P-posttpS,uq as the t step over and
under-approximations in the usual way.

Proposition 4. For any measurable S Ď X , a post operator
and any partition P , the following properties hold:

(i) P-postpS,uq Ď postpS,uq Ď P-postpS,uq,
(ii) If P 1 subsumes P , then P 1-postpS,uq Ě P-postpS,uq

and P 1-postpS,uq Ď P-postpS,uq, and
(iii) For any ε ą 0, D δ ą 0 such that for any P with reso-

lution less than δ, dpP-postpS,uq,P-postpS,uqq ă ε.

Instead of searching for an exact inductive invariant
Inv, the weakened and strengthened versions of the syn-
thesis rules presented below try to find under (Must)
and over-approximations (May) of the invariant using the
P-postpS,uq and P-postpS,uq operators.

Find u : C Ñ U , V P V , Must Ď X such that
W1: Init Ď Must
W2: P-postpMust ,uq Ď Must
W3: Must Ď Safe
W4: C Ď Goal ðñ V pCq “ 0
W5: C Ď Must ^ C 1 Ď P-postpC,uq

ùñ V pCq ě V pC 1q
W6: C Ď MustzGoal ^ C 1 Ď P-postkpC,uq

ùñ V pCq ą V pC 1q

Fig. 2: Weakened rules Πw
PpM, C,Vq for synthesis.

Find u : C Ñ U , V P V , May Ď X s.t.:
S1: Init Ď May
S2: P-postpMay ,uq Ď May
S3: May Ď Safe
S4: C Ď Goal ðñ V pCq “ 0
S5: C Ď May ^ C 1 Ď P-postpC,uq

ùñ V pCq ě V pC 1q

S6: C Ď MayzGoal ^ C 1 Ď P-postkpC,uq
ùñ V pCq ą V pC 1q

Fig. 3: Strengthened rules Πs
PpM, C,Vq for synthesis.

Lemma 5. For any P , the following hold:
(i) if u, V, Inv |ù ΠpM, C,Vq, then there exist Must Ď X

such that u, V,Must |ù Πw
PpM, C,Vq; and

(ii) if u, V,May |ù Πs
PpM, C,Vq, then exists Inv Ď X

such that u, V, Inv |ù ΠpM, C,Vq.

Proof. Suppose u, V, Inv |ù ΠpM, C,Vq. We will show that
there exists a Must Ď X satisfying the weakened rules (W1-
W6). Fix a u. From Proposition 4, the operator P-postp¨,uq
is upper bounded by postp¨,uq. Since postp¨,uq has a
fixed point Inv, the fixed point of P-postpS,uq exists.
Let Must be the fixed point defined by W1-W2 and we
have Must Ď Inv. It follows that Must Ď Inv Ď Safe
and W3 holds. W4 is inherited from R4. For any C Ď

Must ^ C 1 Ď P-postpS,uqpCq, we have May Ď Inv and

P-postpS,uqpCq Ď postupCq. From R5, therefore, V pCq ě
V pC 1q and W5 holds. Similarly, P-postpS,uqpC, kq Ď

postupC, kq, thus W6 also holds. Therefore, u, V,Must |ù
Πw

PpM, C,Vq.
The proof of second part is similar.

The above lemma states that the weakening and strength-
ening of the synthesis rules are sound. With the additional
robustness condition, we can show that either the former is
unsatisfiable or the latter is satisfiable.

Lemma 6. If a RAC specified by M is robust modulo C,V ,
then there exists a sufficiently fine partition P such that
either (i) Πw

PpM, C,Vq is unsatisfiable or (ii) Πs
PpM, C,Vq

is satisfiable.

Proof. We discuss the two cases in Definition 3. In this
prove post,P ´ post,P ´ post without a subscript denote
the operator with respect to model M .

Suppose there exists ε ą 0 such that some controller u
and ranking function V P V solves all ε-perturbations of
ΠpM, C,Vq. That is, for each M 1 P BεpMq, there exists a
InvM 1 , such that u, V, InvM 1 |ù ΠpM 1q. We define Invε
as the union of all such InvM 1 ’s. Roughly, Invε is the set
of states that can be visited for some ε-perturbation of M
with controller u. Since every InvM 1 satisfies R3, R5, R6
in Figure 1, it can be shown that (i) Invε Ď Safe , (ii)
C Ď Invε ^ postpC,uq X C 1 ‰ H ùñ V pCq ě V pC 1q,
and (iii) C Ď InvεzGoal ^ postkpC,uq X C 1 ‰ H ùñ

V pCq ą V pC 1q. Also, any subset of Invε also satisfy the
above three formula. From Proposition 4, for sufficiently fine
partition P , for any S Ď X , dpP-postpS,uq, postpS,uqq ď
ε. We will inductively prove that the May set with re-
spect to this partition P is a subset of Invε. (i) Initially,
Init Ď Invε. (ii) For any set S Ď Invε, and any state
x P P-postpS,uq, it suffice to prove x P Invε. First,
since dpP-postpS,uq, postpS,uqq ď ε. We can find a state
x1 P postpS,uq Ď Invε such that ||x ´ x1|| ď ε. Since x1

is in Invε, it is reached by some model M 1 P BεpMq for
the first time. We construct a model M2 that is identical
to M 1 elsewhere except that at state x1 the dynamics is
x1 “ postM2px,uq. It is easy to show that M2 is a ε-
perturbation of M which visits x with controller u. Thus
x P Invε. By (i) and (ii) above, we derive May Ď Invε.
It follows that the strengthened rules S3, S5 and S6 are
satisfied. In addition, S1-S2 is satisfied by the definition
of Must and S4 is just inherited from R4. Therefore, the
strengthened rules are satisfiable.

Otherwise suppose exists ε ą 0 such that none of the ε-
perturbation of ΠpM, C,Vq is satisfiable. Again from Propo-
sition 4, for sufficiently fine partition P , for any S Ď X ,
dpP-postpS,uq, postpS,uqq ď ε. We on the contrary assume
there exists some controller u, V,Must |ù Πw

PpM, C,Vq.
We define a model M 1 such that for any cell C P C
and each statex P C, the dynamics of M 1 is captured
by postM1px,uq “ Projppostpx,uq,P-postpC,uqq. The
operator Projpx,Aq is a projection that maps x to a
state in A that is closest to x. It can be shown that



M 1 is an ε-perturbation of M . Moreover, for any cell
C Ď X , postM 1C “ P-postpC,uq. Thus, the problem of
ΠpM2, C,Vq and Πw

PpM, C,Vq are identical. It follows that
u, V,Must |ù ΠpM 1, C,Vq, which contradicts the fact none
of ε-perturbation of Π is satisfiable modulo C,V .

V. SMT-BASED SYNTHESIS ALGORITHM

We introduce an algorithm for controller synthesis for
RAC using the strengthened and weakened inductive SMT
encodings of the previous section. The algorithm takes as
input the model M , the controller table/partition C, the tem-
plate for the ranking function V and the three sets Init ,Safe
and Goal that define RAC problem. It iteratively refines the
partition P for representing invariants and makes subroutine
calls to the SMT solver with the strengthened and weakened
rules until it either finds a controller law u or outputs K.
Specifically, in each iteration, (a) if the strengthened problem
Πs

P is satisfiable then it returns the satisfying u. (b) if the
weakened problem Πw

P is unsatisfiable then it returns K.
Otherwise, (c) it refines the partition P (using the Must set
computed from Πw

P ). The RefinepP,Mustq function creates

Algorithm 1: SMT-based Synthesis Algorithm

1 input: M, C,V, Init ,Safe,Goal ;
2 P Ð initPartition;
3 while True do
4 pvals,uq Ð SolvepΠ s

PpM , C,Vqq;
5 pvalw,Mustq Ð SolvepΠ w

P pM , C,Vqq;
6 if vals “ SAT then
7 return u
8 else if valw “ UNSAT then
9 return K

10 else
11 P Ð RefinepP,Mustq;
12 end
13 end

a finer partition of P . For the completeness result, we require
that for any P , by iteratively applying Refine , the resolution
of the resulting partition can be made arbitrarily fine. In
Section V-B, we discuss several heuristics for refinement that
potentially improve the performance of the algorithm.

A. Soundness and Relative Completeness

We will next sketch the arguments for the correctness
of the algorithm. Soundness of the algorithm implies that
whenever it outputs u, (i) that u is a control law that solves
the RAC problem, (ii) the May set obtained from solving
Πs

P in the final iteration is an inductive proof certificates for
safety with u, and (iii) the V is a k-step inductive proof
certificate for progress with u. And, whenever the algorithm
outputs K then there does not exists a controller u, a ranking
function V P V and an invariant Inv Ď such that the above
(i)-(iii) holds.

In addition, we show that the algorithm is relative com-
plete. That is, if RAC is robust modulo C,V , then the
algorithm terminates with one of the above answers.

Theorem 7. The algorithm is sound and relatively complete.

Proof. Soundness. If the algorithm terminates and return u,
then for some partition P , the SMT solver returns a satisfying
solution u with Πs

PpMq. From Lemma 5, u solves the RAC .
Otherwise if the algorithm terminates and returns K, then
for some partition P , the SMT solver on Πw

PpMq returns
UNSAT. From Lemma 5, there is no control that solves the
RAC problem modulo V .

Relative Completeness. Since ΠpMq is a robust RAC
modulo V , from Lemma 6, we know that for a sufficiently
fine partition, either Πw

PpMq is unsatisfiable or Πs
PpMq is

are satisfiable. Thus the while-loop will terminate as the
algorithm creates fine enough partitions.

B. Guided Refinement

There are different ways in which the refinement of the
partition P can be implemented without compromising the
soundness and the relative completeness guarantees. The
naive strategy of subdividing every equivalence class in
P , increases the size of the SMT problems quickly. As
our algorithm solves both the weakened and strengthened
versions of the problem simultaneously, we can marshall
extra information in performing refinement. For example,
when the weakened rules return a possible control u along
with its proof V,Must , even though this controller u cannot
be proven (to be safe and progress making) with the strength-
ened rules, it can provide useful information for guiding the
refinement.

Definition 8. For a partition P and a set S that is preserved
by P , P 1 is a S-guided refinement of P if P 1 is derived by
refining the cells of P that are in S.

One key observation is that, a X zMust-guided refinement
helps in generating safety proofs (S3 and W3), while a Must-
guided refinement can improve the precesion of progress
proofs (S5-S6 and W5-W6). The following proposition for-
malizes part of this intuition and states that for given a
controller u, refining the cells in Must does not improve the
precision of the fixed-point Must ,May computed by rules
S1-S2 and W1-W2.

Proposition 9. For any control u, any set Init and any
partitions P , let Must ,May be the fixed point of operator
P-postp¨,uq and P-postp¨,uq containing Init . Let P 1 be a
Must-guided refinement of P 1 and Must 1,May 1 be the fixed
point of P 1-postp¨,uq and P 1-postp¨,uq containing Init .
Then, Must “ Must 1 and May “ May 1.

By above proposition, a Must-guided refinement provides
no help in generating better safety proofs. However, from
Proposition 4, a finer partition P increase the precision of
P-postpC,uq and P-postpC,uq. Since the rules S5-S6 and
W5-W6 involve computing P-postpC,uq and P-postpC,uq



for cells in May and Must respectively, a Must-guided
refinement possibly increases the precision of these rules.
Based on the above observations, we can adopt to the follow-
ing heuristics for refinement: If the Must set is close to the
unsafe set, perform X zMust-guided refinement, otherwise
perform Must-guided refinement.

VI. PROTOTYPE IMPLEMENTATION AND EXPERIMENTS

We implemented the synthesis algorithm in Python using
the the CVC4 SMT solver [2]. In this section, we briefly
report preliminary results on applying it to a simple class
of navigation problems. With this implementation, we were
able to automatically synthesize correct controls (and their
inductive proofs) for some configurations and proved impos-
sibility for others.

Vehicle Navigation Problem: We consider a reach-avoid
problem for a vehicle that follows piecewise linear approxi-
mation of Dubin’s dynamics. The system model has 4 state
variables rx, y, v, θsT : position, velocity and heading angle of
the vehicle. It has input variables rα, βsT : the acceleration
and the turning rate. From the continuous Dubin’s vehicle
model: 9x “ v cos θ, 9y “ v sin θ, 9v “ α, 9θ “ vβ. we
construct a switched linear model by partitioning the domain
of θ and v into 24 locations, and for each location we
compute an approximate linear dynamics. The result is a
switched-linear model:

x` “ x`av`b, y` “ y`cv`d, v` “ v`α, θ` “ θ`eβ,
(5)

where a, b, c, d, e have different values in different locations.
The piecewise linearized model preserves some properties of
the original system. For example, the linearized model cannot
turn in place: if the velocity is close to 0, the heading θ
cannot change. Moreover, the velocity is non-negative, which
further restricts its maneuverability. These properties give
rise to interesting RAC problem instances where the system
has no satisfying control law.

We allow finitely many discrete input values and compute
P-postpC,uq and P-postpC,uq offline as follows: For a
given partition P , and a cell C P P , we first identify a set
of cells N pCq such that C 1 P N pCq can visit some state in
C in one step. Then, for each possible input u, we compute
the one step reach set of postpN pCq,uq with the help from
reachability tools such as [12], [14]. Thus we just need to
identify the input combinations such that C is covered by or
intersected with postpN pCq,uq.

Experimental Results: We performed several experi-
ments for the above class of problems using our prototype
implementation. We search for a control policy as a look-
up table, specified by a controller table. We utilize a
controller table C with 768 cells in total. In Figure 5 and 4,
the grids illustrate the projection of controller table to x, y
coordinates.

We create a partition P by further partitioning each cell in
C into 4 pieces, with which we construct both the weakened
and the strengthened rules. For some cases, we proved
the impossibility of synthesis. We visualize such a case in

Fig. 4: A RAC instance that is impossible to solve. The grid
illustrates the controller table, the green block at the bottom
left corner is Init , the blue rectangle at the top right is Goal ,
the smaller red blocks are unsafe.

Fig. 5: A RAC instance that has a satisfying control law.
The lighter connected region is the Must set and the darker
region together with the lighter region is the May set.

Figure 4. While for other cases, we successfully synthesized
a control policy. An example is illustrated in Figure 5. The
satisfying control policy is synthesized with an inductive
proof, namely the May set and the ranking function V .

In the constraints of this synthesis problem, there are
768 real-valued variables for control input in each cell,
3072 integer variables for values of the ranking function
for each partition and 3072 boolean variables indicates
whether a partition is reached. The weakened or strengthened
inductive rules are encoded in roughly 7000 constraints. The
constraints are solved by CVC4 [2] in 10 minutes.

VII. CONCLUSION

In this work, we studied the controller synthesis problem
of discrete-time systems with possibly unbounded time safety
and progress specifications. Leveraging the growing strength
of modern SMT tools, we propose an algorithm that finds
controllers as well as inductive proofs of their correctness.
Specifically, the algorithm creates a weaker and a stronger
version of the synthesis problem and encodes them as SMT
problems. By solving the controller synthesis problems for
these two bounding systems automatically with SMT solvers,
we can solve the synthesis problem for the original system.
We prove that this algorithm is sound and relatively complete
and show that the solution given by the strengthened system



provide a guidance for refining the bounding system. Our
experimental results based on a prototype implementation
suggest that this can be a promising direction of investigation
for controller synthesis research.

Since the core problem of computing over-approximations
of post are decoupled from synthesis in this formulation,
one future direction of research that this work opens up is
to extend this framework to nonlinear system models. The
performance of the algorithm depends on the templates of
the control, ranking function and invariants. Thus, to explore
different classes of templates and study their performance in
our synthesis framework is also a natural next step.
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