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Abstract

The purpose of this paper is to prove a local optimality property of a recently
proposed coherent feedback configuration for distributed generation of EPR entangle-
ment using two nondegenerate optical parametric amplifiers (NOPAs) in the idealized
infinite bandwidth limit. This local optimality is with respect to a class of similar
coherent feedback configurations but employing different unitary scattering matrices,
representing different scattering of propagating signals within the network. The infi-
nite bandwidth limit is considered as it significantly simplifies the analysis, allowing
local optimality criteria to be explicitly verified. Nonetheless, this limit is relevant
for the finite bandwidth scenario as it provides an accurate approximation to the
EPR entanglement in the low frequency region where EPR entanglement exists.

1 Introduction

Entanglement is a quantum phenomenon in which states (represented by density operators)
of a composite system composed of several quantum subsystems cannot be written as a con-
vex combination of tensor products of the states of the subsystems. Such entangled states
have, in recent decades, been of much interest as a resource for quantum information appli-
cations, such as for quantum communication [1, 2]. In particular, Einstein-Podolski-Rosen
(EPR)-like entanglement, generated in the continuous variables such as the amplitude
and phase quadratures of a Gaussian optical field, has evoked considerable interest over
discrete-variable entanglement, such as entanglement in finite-level systems like qubits,
because EPR entangled pairs can be prepared easily and rapidly in quantum optics. In
this paper, we are interested in EPR entanglement between two propagating continuous-
mode Gaussian fields. Such a kind of entanglement is more accessible compared to EPR
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entanglement between a pair of single-mode fields produced in, say, inside an optical cavity
[1, 3].

EPR entanglement between continuous-mode Gaussian fields can be realized by two-
mode squeezed states produced as the output of a nondegenerate optical parametric ampli-
fier (NOPA). By pumping a strong coherent beam (which can be regarded as an undepleted
classical light) to a crystal inside the cavity of the NOPA, two vacuum modes of the cav-
ity interact with the pump beam, and photons escaping the cavity through its partially
transmissive mirrors generate two output beams that are squeezed in amplitude and phase
quadratures. If the two outgoing fields are squeezed below the quantum shot-noise limit,
they are considered as EPR entangled beams [4, 5]. The input/output block representation
of a NOPA (Gi) is shown as Fig. 1. The NOPA has four ingoing fields and four outgoing
fields. Among the inputs, ξloss,a,i and ξloss,b,i are amplification losses, caused by unwanted
vacuum modes coupled into the cavity. As the two outputs corresponding to the loss fields
ξloss,a,i and ξloss,b,i are not of interest in this work, they are not shown in the figure. Note
Fig. 1 only presents the ingoing and outgoing noises of interest, and does not show the
pump beam.

Figure 1: Input/output block representation of a NOPA.

In a previous work [6], we have proposed a novel dual-NOPA coherent feedback sys-
tem to produce EPR entangled propagating Gaussian fields, as shown in Fig. 2. It was
shown that this scheme can produce better EPR entanglement between the propagating
Gaussian fields ξout,a,2 and ξout,b,1 (in the sense of producing more two-mode squeezing be-
tween quadratures of the fields) for the same amount of total pump power used in the two
NOPAs, and displays more tolerance to transmission losses in the system, as compared to
a conventional single NOPA and a cascaded two-NOPA system.

In a subsequent work [7], we presented a linear quantum system consisting of two
NOPAs connected to a static passive linear network, realizable by a network of beam split-
ters, mirrors and phase shifters, that are connected in a more general coherent feedback
configuration, see Fig. 3. Here, the system is ideally lossless, that is, there are no transmis-
sion and amplification losses influencing the system. Hence, each NOPA is simplified to
have only two ingoing fields, without amplification losses, as shown in Fig. 3. The transfor-
mation implemented by the passive network in this configuration is represented by a 6× 6
complex unitary matrix S̃. By employing a modified steepest descent algorithm, with the
matrix corresponding to the dual-NOPA coherent feedback network shown in Fig. 2 as a
starting point, we optimized the EPR entanglement at frequency ω = 0, with respect of
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Figure 2: The dual-NOPA coherent feedback network.

the transformation matrix S̃ of the passive network.

Figure 3: A coherent-feedback system consisting of two NOPAs and a static passive network
with six imputs and six outputs from [7].

In this paper, we employ the steepest descent method to optimize a coherent feedback
system shown in Fig. 4. The system contains two NOPAs and a static passive linear network
described by a 2 × 2 complex unitary matrix S̃. This system is a more restricted class of
configuration than the one as shown in Fig. 3; it can be seen that the configuration in
Fig. 4 is a special case of the configuration in Fig. 3. Moreover, different from our previous
work in [7], in which the system shown in Fig. 3 is considered lossless, here we take the
effect of transmission losses along channels and amplification losses of NOPAs into account.
However, we neglect time delays in transmission. The effect of delays on EPR entanglement
generated from related systems can be found in our previous works [6, 8]. In addition, unlike
the work in [7], the system is considered ideally static, that is, we consider the limit where
the NOPAs are approximated as static devices with an infinite bandwidth [9]. The merits
of studying this infinite bandwidth limit are twofold: (i) it allows a simplified analysis
of the system, and (ii) calculations in the infinite bandwidth setting gives a very good
approximation to the EPR entanglement in the low frequency region, discussed further in
Section 2.3. In this infinite bandwidth setting, we show explicitly that the choice of the
scattering matrix in the scheme of [6] is in a certain sense locally optimal with respect to all
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possible choices of scattering matrices S̃ in the coherent feedback configuration of Fig. 4,
under certain values of the effective amplitude of the pump laser driving the NOPA. Note
that there may exist another scattering matrix as a local minimizer that yields better EPR
entanglement than the network shown in Fig. 2. Searching for such a scattering matrix
can be a topic for future research.

Figure 4: A coherent-feedback system consisting of two NOPAs and a static passive network
with two inputs and two outputs.

The structure of the rest of this paper is as follows. We begin in Section 2 by giving a
brief review of linear quantum systems, EPR entanglement between two continuous-mode
fields, and linear transformations implemented by a NOPA in the infinite bandwidth limit.
Section 3 describes the system of interest. In Section 4, we discuss the optimization of the
system. Finally, we draw a short conclusion in Section 5.

2 Preliminaries

The notations used in this paper are as follows: ı =
√
−1 and Re denotes the real part of

a complex quantity. The conjugate of a matrix is denoted by ·#, ·T denotes the transpose
of a matrix of numbers or operators and ·∗ denotes (i) the complex conjugate of a number,
(ii) the conjugate transpose of a matrix, as well as (iii) the adjoint of an operator. Om×n
is an m by n zero matrix (if m = n then we simply write Om), and In is an n by n identity
matrix. Trace operator is denoted by Tr[·] and tensor product is ⊗. δ(t) denotes the Dirac
delta function.

2.1 Linear quantum systems

Here we consider an open linear quantum system without a scattering process. The linear
system contains n-bosonic modes aj(t) (j = 1, . . . , n) satisfying the commutation relations
[ai(t), aj(t)

∗] = δij, m-incoming boson fields ξin,i(t) (i = 1, . . . ,m) in the vacuum state,
which obey the commutation relations [ξin,j(t), ξin,j(s)

∗] = δ(t− s), as well as two outgoing
fields ξout,k(t) (k = 1, 2) which are Gaussian continuous-mode fields. A continuous-mode
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field means that the field contains a continuum of modes in a continuous range of fre-
quencies. Note that, a system may have more than two outputs. However, as we are only
interested in the entanglement generated by a certain pair of outgoing fields, in this work we
will only be interested in a particular pair of output fields, labelled out, 1 and out, 2 in the
following. The time-varying interaction Hamiltonian between the system and its environ-
ment is Hint(t) = ı(ξ(t)∗L − L∗ξ(t)), where ξ(t) = [ξin,1(t), . . . ξin,m(t)]T , L = [L1, . . . , Ll]

T

and Lj(j = 1, 2, · · · , l) is the j-th system coupling operator. In the Heisenberg picture,
time evolutions of a mode aj and an outgoing field operator ξout,i are [10, 11]:

aj(t) =U(t)∗ajU(t),

ξout,i(t) =U(t)∗ξin,i(t)U(t), (1)

where U(t) = exp−→ (−i
∫ t

0
Hint(s)ds) is a unitary process obeying the quantum white noise

Schrödinger equation U̇(t) = −ıHint(t)U(t). However, this is not an ordinary Schrödinger
equation as the interaction Hamiltonian Hint(t) is a time-varying observable involving the
singular quantum white noise processes ξ(t). This quantum white noise equation has to
be interpreted correctly within the framework of quantum stochastic calculus, for details
see [10, 12, 13, 14]. Employing quantum stochastic calculus, dynamics of a linear quantum
system is described by quantum Langevin equations and can be written in the following
form

ż(t) = Az(t) +Bξ(t), (2)

ξout(t) = Cz(t) +Dξ(t). (3)

where

z = (aq1, a
p
1, . . . , a

q
n, a

p
n)T ,

ξ = (ξq1, ξ
p
1 , . . . , ξ

q
m, ξ

p
m)T ,

ξout = (ξqout,1, ξ
p
out,1, ξ

q
out,2, ξ

p
out,2)T , (4)

with quadratures [12, 13]

aqj = aj + a∗j , apj = (aj − a∗j)/i,
ξqj = ξj + ξ∗j , ξpj = (ξj − ξ∗j )/i. (5)

The linear model described above is ubiquitous in fields such as quantum optics, optome-
chanics, and superconducting circuits, and are employed to describe the equations of motion
for devices as diverse as optical cavities, optical parametric amplifiers, optical cavities with
moving mirrors, cold atomic ensembles, and transmission line resonators, under appropriate
assumptions on the system’s parameters.

2.2 EPR entanglement between two continuous-mode fields

We keep in mind here that in this paper, we investigate EPR entanglement between two
continuous-mode Gaussian fields rather than entanglement between two single-mode Gaus-
sian fields. In the latter case, the degree of entanglement can be assessed via the logarithmic
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negativity as an entanglement measure, see, e.g., [15]. However, this measure is not di-
rectly applicable to continuous-mode fields. Instead, the EPR entanglement of two freely
propagating fields containing a continuum of modes, say ξout,1 and ξout,2, can be evaluated
in the frequency domain by the two-mode squeezing spectra V+(ıω) and V−(ıω) [3, 4, 5],
that will be defined below.

The Fourier transform of f(t) is defined as F (ıω) = 1√
2π

∫∞
−∞ f (t) e−ıωtdt. Similarly, we

have the Fourier transforms of ξout,1(t), ξout,2(t), z(t) and ξ(t) in (2) and (3) as Ξ̃out,1 (ıω),
Ξ̃out,2 (ıω), Z(ıω) and Ξ(ıω), respectively. Applying (2), (3), we have

Ξ̃q
out,1(ıω) + Ξ̃q

out,2(ıω) =

∫ ∞
−∞

ξqout,1(t)e−ıωtdt+

∫ ∞
−∞

ξqout,2(t)e−ıωtdt

= [1 0 1 0] (CZ (ıω) +DΞ (ıω)) ,

Ξ̃p
out,1(ıω)− Ξ̃p

out,2(ıω) =

∫ ∞
−∞

ξpout,1(t)e−ıωtdt−
∫ ∞
−∞

ξpout,2(t)e−ıωtdt

= [0 1 0 −1] (CZ (ıω) +DΞ (ıω)) . (6)

The two-mode squeezing spectra V+(ıω) and V−(ıω) are real functions defined via the
identities

〈(Ξ̃q
out,1(ıω) + Ξ̃q

out,2(ıω))∗(Ξ̃q
out,1(ıω′) + Ξ̃q

out,2(ıω′))〉 = V+(ıω)δ(ω − ω′),
〈(Ξ̃p

out,1(ıω)− Ξ̃p
out,2(ıω))∗(Ξ̃p

out,1(ıω′)− Ξ̃p
out,2(ıω′))〉 = V−(ıω)δ(ω − ω′), (7)

where 〈·〉 denotes quantum expectation. As described in [9, 16], V+(ıω) and V−(ıω) are
easily calculated by,

V+(ıω) = Tr [H1(ıω)∗H1(ıω)] , (8)

V−(ıω) = Tr [H2(ıω)∗H2(ıω)] , (9)

where H1 = [1 0 1 0]H, H2 = [0 1 0 −1]H and H is the transfer function

H(ıω) = C (ıωI − A)−1B +D. (10)

The fields ξout,1 and ξout,2 to be EPR-entangled at the frequency ω rad/s is [5],

V (ıω) = V+(ıω) + V−(ıω) < 4, (11)

which indicates that the two-mode squeezing level is below the quantum shot-noise limit.

A perfect Einstein-Podolski-Rosen state is represented by an infinite bandwidth two-
mode squeezing, that is V (ıω) = V±(ıω) = 0 for all ω. Of course, such an ideal EPR
correlation cannot be achieved in reality as it would require an infinite amount of energy
to produce. Thus, we aim to optimize EPR entanglement by making V (ıω) as small as
possible over a wide frequency range [5].

Note that (11) is a sufficient condition for EPR entanglement, with the two beams
squeezed in amplitude and phase quadratures. However, in general, they may be squeezed
in other quadratures. Hence, we give the following definition of EPR entanglement. Let
ξψ1

out,1 = eıψ1ξout,1, ξψ2

out,2 = eıψ2ξout,2 with ψ1, ψ2 ∈ (−π, π] and denote the corresponding

two-mode squeezing spectra between ξψ1

out,1 and ξψ2

out,2 as V ψ1,ψ2
± (ıω, ψ1, ψ2).
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Definition 2.1 Fields ξout,1 and ξout,2 are EPR entangled at the frequency ω rad/s if
∃ ψ1, ψ2 ∈ (−π, π] such that

V ψ1,ψ2
+ (ıω, ψ1, ψ2) + V ψ1,ψ2

− (ıω, ψ1, ψ2) < 4. (12)

Unless otherwise specified, throughout the paper, EPR entanglement refers to the case with
ψ1 = ψ2 = 0. EPR entanglement is said to vanish at ω if there are no values of ψ1 and ψ2

satisfying the above criterion.

2.3 The nondegenerate optical parametric amplifier (NOPA)

A NOPA (Gi) is an open linear quantum system containing a two-ended cavity with a pair
of orthogonally polarized bosonic modes ai and bi which satisfy [ai, a

∗
j ] = δij, [bi, b

∗
j ] = δij,

[ai, b
∗
j ] = 0 and [ai, bj] = 0. By assuming a strong undepleted coherent pump beam onto the

χ(2) nonlinear crystal inside the cavity, the pump can be treated as a classical field (hence,
quantum vacuum fluctuations are ignored) and the interaction of the modes ai and bi with
the pump is modelled by the two-mode squeezing Hamiltonian H = ı

2
ε (a∗i b

∗
i − aibi), where

ε is a real coefficient relating to the effective amplitude of the pump beam, for details see
[10, 17, 18].

As shown in Fig. 1, interactions between the NOPA and its environment are denoted by
coupling operators as follows. Modes ai and bi are coupled to ingoing fields ξin,a,i and ξin,b,i
via coupling operators L1 =

√
γai and L2 =

√
γbi, respectively. Unwanted amplification

losses ξloss,a,i and ξloss,b,i impact the NOPA through operators L3 =
√
κai and L4 =

√
κbi,

respectively. The constants γ and κ are damping rates of the outcoupling mirrors (from
which the output fields emerge from the NOPA), and of the loss channels, respectively.
Applying Section 2.1, we have the dynamics of the NOPA as [4, 11, 19, 20]

ȧi (t) = −
(
γ + κ

2

)
ai (t) +

ε

2
b∗i (t)−√γξin,a,i (t)−

√
κξloss,a,i (t) ,

ḃi (t) = −
(
γ + κ

2

)
bi (t) +

ε

2
a∗i (t)−√γξin,b,i (t)−

√
κξloss,b,i (t) , (13)

following the boundary conditions [4, 10], we have outputs

ξout,a,i (t) =
√
γai (t) + ξin,a,i (t) ,

ξout,b,i (t) =
√
γbi (t) + ξin,b,i (t) . (14)

Define the following quadrature vectors of the NOPA,

z = [aqi , a
p
i , b

q
i , b

p
i ]
T ,

ξ = [ξqin,a,i, ξ
p
in,a,i, ξ

q
in,b,i, ξ

p
in,b,i, ξ

q
loss,a,i, ξ

p
loss,a,i, ξ

q
loss,b,i, ξ

p
loss,b,i]

T ,

ξout = [ξqout,a,i, ξ
p
out,a,i, ξ

q
out,b,i, ξ

p
out,b,i]

T , (15)
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From (2), (3) and (10), the transfer function of the NOPA is

HN =


h1 0 h2 0 h3 0 h4 0
0 h1 0 −h2 0 h3 0 −h4

h2 0 h1 0 h4 0 h3 0
0 −h2 0 h1 0 −h4 0 h3

 , (16)

where hj (j = 1, 2, 3, 4) are functions of the frequency ω,

h1(ıω) =
ε2 + γ2 − (κ+ 2ıω)2

ε2 − (γ + κ+ 2ıω)2
,

h2(ıω) =
2εγ

ε2 − (γ + κ+ 2ıω)2
,

h3(ıω) =
2
√
γκ(γ + κ+ 2ıω)

ε2 − (γ + κ+ 2ıω)2
,

h4(ıω) =
2ε
√
γκ

ε2 − (γ + κ+ 2ıω)2
. (17)

As reported in [11, 21], parameters of the NOPA are set as follows. We set the reference
value for the transmissivity rate of the mirrors γr = 7.2× 107 Hz. The pump amplitude ε
is adjustable as ε = xγr, where the variable x satisfies 0 < x ≤ 1. We fix the damping rate
γ = γr and set κ = Kε with K = 3×106√

2×0.6×γr
based on the assumption that the value of κ

is proportional to the absolute value of ε and κ = 3×106√
2

when ε = 0.6γr. In this paper, we
consider the NOPAs have infinite bandwidth case where we take the limit γr → ∞ while
keeping ε and γ at a fixed ratio ε

γ
= x. In such a case, the transfer function of the NOPA

in (16) becomes a constant matrix with elements

h1 =
(1−K2)x2 + 1

x2 − (1 +Kx)2
,

h2 =
2x

x2 − (1 +Kx)2
,

h3 =
2
√
Kx(1 +Kx)

x2 − (1 +Kx)2
,

h4 =
2x
√
Kx

x2 − (1 +Kx)2
. (18)

It can be seen that for ω � ε, γ, κ, the constant scalar values of h1 to h4 given by (18)
in the infinite bandwidth limit approximates the frequency dependent values given in (17)
when the bandwidth is finite. Such an approximation is quite accurate for ω sufficiently
small, away from ε, γ, κ (with no error at ω = 0). Since in practice the EPR entangle-
ment will be in the low frequency region, entanglement in the idealised infinite bandwidth
scenario provides a good approximation for the entanglement that can be expected in the
finite bandwidth case.
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3 The system model

Consider again the coherent feedback system shown in Fig. 4. The whole network consists
of two NOPAs and a static passive linear subsystem. The subsystem has two inputs ξ′out,a,1
and ξ′out,b,2 connected to the outgoing fields ξout,a,1 of NOPA G1 and ξout,b,2 of NOPA G2,
respectively. The two outputs ξ′in,b,1 and ξ′in,a,2 of the subsystem are connected to incoming
signals ξin,b,1 of NOPA G1 and ξin,a,2 of NOPA G2, respectively. The incoming fields of the
system ξin,a,1 and ξin,b,2 are in the vacuum state [11] and the EPR entanglement of interest
is generated between outgoing fields ξout,b,1 and ξout,a,2. The transfer function of the passive
static subsystem is a 2× 2 complex unitary matrix denoted by S̃, which satisfies [11][

ξ′in,b,1
ξ′in,a,2

]
= S̃

[
ξ′out,a,1
ξ′out,b,2

]
, (19)

and
S̃∗S̃ = S̃S̃∗ = I2. (20)

Also, we shall denote the static passive matrix S̃ corresponding to the dual-NOPA coherent
feedback network shown in Fig. 2 as [6]

S̃cfb =

[
0 1
1 0

]
. (21)

Figure 5: Beamsplitter.

The NOPAs are placed at two distant communicating ends (Alice and Bob). The
distance between the two ends is d kilometres. Both NOPAs (G1 and G2) have identical
static transfer functions given by (16) and (18). Transmission loss in each path of the
network is modelled by a beamsplitter with an unwanted incoming vacuum noise ξBS, as
shown in Fig. 5. The other input is connected to an outgoing field of the NOPAs or the
subsystem. The outgoing signal ξBS,out of the beamsplitter is the combination of the two
incoming signals, satisfying ξBS,out = αξBS,in + βξBS, where α is the transmission rate and
β is the reflection rate of the beamsplitter. α and β are positive real parameters obeying
0 ≤ α, β ≤ 1 and α2 +β2 = 1 [22]. Based on the fact that transmission loss in optical fibre
is about 0.2 dB per kilometre at telecom wavelengths as reported in [23], the transmission
rate of each beamsplitter in our system is α = 10−0.005d.

Technically, transmission losses are accompanied by time delays in the transmission.
However, here we neglect the time delays in transmission. Nonetheless, the formalism and

9



Heisenberg picture analysis employed here can easily treat the presence of time delays in
the linear quantum networks considered herein, see [6, 8, 9, 16]. In previous works on
related studies [6, 8, 16], the effect of time delays has only been to narrow the bandwidth
over which the EPR entanglement exists, without affecting the EPR entanglement that
can be achieved in the low frequency region.

Define the following vectors of quadratures

z = [aq1, a
p
1, b

q
1, b

p
1, a

q
2, a

p
2, b

q
2, b

p
2]T ,

ξin = [ξqin,a,1, ξ
p
in,a,1, ξ

q
in,b,2, ξ

p
in,b,2]T ,

ξloss = [ξqloss,a,1, ξ
p
loss,a,1, ξ

q
loss,b,1, ξ

p
loss,b,1, ξ

q
loss,a,2, ξ

p
loss,a,2, ξ

q
loss,b,2, ξ

p
loss,b,2]T ,

ξBS = [ξqBS,a,1, ξ
p
BS,a,1, ξ

q
BS,b,1, ξ

p
BS,b,1, ξ

q
BS,a,2, ξ

p
BS,a,2, ξ

q
BS,b,2, ξ

p
BS,b,2]T ,

ξ = [ξTin, ξ
T
loss, ξ

T
BS]T ,

ξout = [ξqout,1, ξ
p
out,1, ξ

q
out,2, ξ

p
out,2]T . (22)

Define the real unitary matrix S as the quadrature form of matrix S̃. Based on the
definitions of the quadratures (5), we obtain

S =
1

2
K̃S̃K̃∗ +

1

2
K̃#S̃#K̃T , (23)

where

K̃ = I2 ⊗
[

1
−ı

]
. (24)

Note the quadrature form S is, by construction, a unitary symplectic matrix. That is, S

is unitary and symplectic, the latter meaning that S>
[

0 1
−1 0

]
S =

[
0 1
−1 0

]
.

Using the static transfer function of a NOPA given by (16) and (18), and given the
unitary matrix S̃ representing the passive static subsystem, we obtain the static linear
transformation H(S) (ξout = H(S)ξ) of the dual-NOPA coherent feedback static system as
a function of S,

H(S) = H̃2 + h1P [α2SH̃1 HBS], (25)
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where

P = (I4 − α2S(I2 ⊗ h̃2))−1,

HBS = β
[
O4×2 I4 O4×2

]
+ αβS


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 ,
H̃1 =

[
h̃1 O2 h̃3 h̃4 O2 O2

O2 h̃1 O2 O2 h̃4 h̃3

]
,

H̃2 =

[ [
h̃2 O2 h̃4 h̃3 O2 O2

O2 h̃2 O2 O2 h̃3 h̃4

]
O4×8

]
,

h̃1 = I2 ⊗ h1, h̃3 = I2 ⊗ h3,

h̃2 =

[
h2 0
0 −h2

]
, h̃4 =

[
h4 0
0 −h4

]
. (26)

4 Optimization of S̃

In this section, we aim to optimize the EPR entanglement generated in by the dual-
NOPA coherent feedback system of Fig. 4, in the infinite bandwidth limit, by finding a
complex unitary matrix at which the two-mode squeezing spectra of the two outgoing
fields are locally minimized, with respect of S̃. Since the system is infinite bandwidth,
V±(ıω) = V±(0) for all ω, thus we shall denote V (ıω) and V±(ıω) simply as V and V±,
with no dependence on ω. Based on (8), (9) and (11), the sum of the two-mode squeezing
spectra is

V = V+ + V−

= Tr [H∗1H1 +H∗2H2] ,

= Tr [H(S)∗M1,2H(S)] (27)

where

M1,2 =


1 0 1 0
0 1 0 −1
1 0 1 0
0 −1 0 1

 . (28)

As V is a function of S̃ or S, we define V (S̃) as the value of V for a fixed value of S̃, and
V (S) as the value of V for a fixed value of S.

We aim to find a complex unitary matrix S̃ as a local minimizer of the cost function
V (S̃). The optimization problem with a unitary constraint can be solved by the method
of modified steepest descent on a Stiefel manifold introduced in [24], which employs the
first-order derivative of the cost function. The Stiefel manifold in our problem is the set

St(2, 2) =
{
S̃ ∈ C2×2 : S̃∗S̃ = I

}
.
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Since (I−Y )−1 = (I−Y )−1(I+Y −Y ) = I+(I−Y )−1Y for any square matrix Y such
that I−Y is invertible, we expand H(S+∆S) as H(S)+H(∆S)+H(∆S2)+O(∆S3), where
O(∆S3) denotes terms that are products containing at least three ∆S. H(S), H(∆S) and
H(∆S2) are real matrices,

H(∆S) = P∆SQ

H(∆S2) = α2P∆S(I2 ⊗ h̃2)P∆SQ, (29)

where

Q = α2h1

[ (
I4 + α2

(
I2 ⊗ h̃2

)
PS
)
H̃1 (I2 ⊗ h̃2)PHBS

]
. (30)

Following (27) and based on the facts that a matrix and its transpose have the same trace,
we have

V (S + ∆S) = Tr [H(S + ∆S)∗M1,2H(S + ∆S)]

= V (S) + Tr[H(∆S)∗M1,2H(S) +H(S)∗M1,2H(∆S) +H(∆S2)∗M1,2H(S)

+H(S)∗M1,2H(∆S2) +H(∆S)∗M1,2H(∆S)] +O(‖∆S‖3)

= V (S) + 2 Tr[MH(∆S)] + 2 Tr[MH(∆S2)]

+ Tr[H(∆S)∗M1,2H(∆S)] +O(‖∆S‖3), (31)

where M = H(S)∗M1,2 and O(‖∆S‖3) denotes that the function O(‖∆S‖3) satisfies
O(‖∆S‖3)
‖∆S‖3 ≤ c for some positive constant c for all ‖∆S‖ > 0 sufficiently small. Further-

more, based on (23), we obtain that

V (S̃ + ∆S̃) = V (S̃) + Re Tr[∆S̃∗DS̃] +
1

2

[
vec(∆S̃)

vec(∆S̃#)

]∗
X

[
vec(∆S̃)

vec(∆S̃#)

]
+O(‖∆S̃‖3),(32)

where

DS̃ = 2K̃∗(QMP )T K̃,

X =
1

4

[
(K̃# ⊗ K̃) (K̃# ⊗ K̃)#

]∗
h
[

(K̃# ⊗ K̃) (K̃# ⊗ K̃)#
]
,

h = 4α2LT (QMP )T ⊗ ((I2 ⊗ h̃2)P ) + 2(QQT )⊗ (P TM1,2P ), (33)
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L =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



.

DS̃ is the directional derivative of V (S̃) at S̃ in the direction ∆S̃ [24].

Theorem 4.1 The matrix S̃cfb corresponding to the dual-NOPA coherent feedback system
given by (21) is a critical point of the function V (S̃).

Proof. According to [24], we have a one-to-one corresponding cost function gS̃(∆S̃) on
the tangent space to the Stiefel manifold at the point S̃, with ∆S̃ a vector on this tangent
space, defined by gS̃(∆S̃) = V (π(S̃ + ∆S̃)), where π(·) is the projection operator onto the
manifold. The descent direction Zd in the tangent space at S̃ is

Zd = S̃D∗
S̃
S̃ −DS̃. (34)

Based on (33), when S̃ = S̃cfb, DS̃ becomes

DS̃cfb
= dS̃cfb

[
0 1
1 0

]
, (35)

where dS̃cfb
is a real coefficient

dS̃cfb
=

1

(1 + 2α2x+ 2Kx− x2 +K2x2)3
(4α2(−1

+(−1 +K2)x2)(4x(1 + 2Kx+ x2 +K2x2)

+2α4x(−1 + (−1 +K2)x2) + α2(−1− 2Kx

+6Kx3 + 2K3x3 + x4 − 2K2x4 +K4x4))). (36)

Thus, the descent direction Zd is

Zd,cfb = S̃cfbD
∗
S̃cfb

S̃cfb −DS̃cfb
= O2. (37)
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Thus, the gradient of the function gS̃(∆S̃) at ∆S̃ = 0 along the tangent space at S̃cfb is
grad (gS̃(0)) = S̃cfbD

∗
S̃cfb

S̃cfb −DS̃cfb
= O2 (see [24][Eq. (27)]), which establishes that S̃cfb

is a critical point.

Now we check the Hessian matrix of the function gS̃(∆S̃). Based on Proposition 12 in
[24] and (32), we have following the second order expansion along any direction ∆S̃ on the
tangent space at S̃,

gS̃(∆S̃) = V (π(S̃ + ∆S̃))

= V (S̃) + Re Tr[∆S̃∗DS̃] +
1

2

[
vec(∆S̃)

vec(∆S̃#)

]∗
Hess(S̃)

[
vec(∆S̃)

vec(∆S̃#)

]
+O(‖∆S̃‖3), (38)

where

Hess(S̃) = X − 1

2

[
(S̃∗DS̃)T ⊗ I2 O4

O4 ((S̃∗DS̃)T ⊗ I2)#

]
(39)

denotes the Hessian matrix of gS̃(∆S̃). Firstly, we consider the system in an ideal case,
where there are no losses (κ = 0 and α = 1). As reported in [6], in this lossless scenario
the range of x over which the dual-NOPA coherent feedback system is stable in the finite
bandwidth case is x ∈ [0,

√
2− 1), independently of the actual bandwidth of the NOPAs.

Thus, it is natural to also take this as the range of admissible values for x in the infinite
bandwidth limit of this paper. By checking eigenvalues of the Hessian matrix, we have the
following theorem.

Theorem 4.2 In the absence of transmission and amplification losses, S̃cfb is a local min-
imizer of the function V (S̃) when x ∈ (

√
5− 2,

√
2− 1).

Proof. Let α = 1 and κ = 0. With the help of Mathematica, the eigenvalues of Hess(S̃)
at S̃ = ˜Scfb can be found to be

e1 =
8x(1− x2)(1 + x2)2

(1 + 2x− x2)4
,

e2 =
8x(1− x2)(1 + x2)2

(1− 6x2 + x4)2
,

e3 =
8x(1 + x2)2(−1 + 4x+ x2)

(1 + 2x− x2)4
,

e4 =
8x(1 + x2)2(3− 6x+ 2x2 + 6x3 + 3x4)

(1 + 2x− x2)3(1 + 2x+ x2)2
. (40)

As x ∈ (0,
√

2− 1), e1, e2 and e4 have positive values, while e3 > 0 when −1 + 4x+ x2 > 0,
that is, x >

√
5− 2. Therefore, for x ∈ (

√
5− 2,

√
2− 1), the Hessian matrix Hess(S̃cfb) is

positive definite, which establishes that S̃cfb is a local minimizer for these values of x.
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Table 1 and Table 2 illustrate the effect of transmission and amplification losses on
the range (xlm,

√
2 − 1) of over which S̃cfb is a local minimizer. We see that as either

transmission losses or amplification losses increase, the range of values of x over which the
dual-NOPA coherent feedback network is optimal become wider.

Table 1: Influence of transmission losses on the range (xlm,
√

2− 1) of over which S̃cfb is
a local minimizer with κ = 0 and α = 10−0.005d

d xlm
0 0.236068
1 0.212692
5 0.134477

Table 2: Influence of amplification losses on the range (xlm,
√

2− 1) of over which S̃cfb is
a local minimizer with d = 1 and α = 10−0.005d

κ xlm
0 0.212692

0.1 3×106√
2×0.6

x 0.211836

0.2 3×106√
2×0.6

x 0.210989

0.5 3×106√
2×0.6

x 0.208503
3×106√
2×0.6

x 0.204528

5 Conclusion

This paper has studied the optimization of EPR entanglement of a static linear quantum
system that is composed of a static linear passive optical network in a certain coherent
feedback configuration with two NOPAs in the infinite bandwidth limit. We reformulate
the optimization of the EPR entanglement to the problem of finding a 2 × 2 complex
unitary matrix at which a cost function V (S̃) is locally minimized, with respect of S̃. By
employing the modified steepest descent on Stiefel manifold method, we have found the
unitary matrix S̃cfb corresponding to the coherent feedback system shown as Fig. 2 as a
critical point of V (S̃). When losses are neglected, the coherent feedback system is a local
minimizer when x ∈ (

√
5−2,

√
2−1). When transmission and amplification losses increase,

the range of values of x over which the coherent feedback system is a local minimizer of
V (s̃) is enlarged. In addition, one may wonder if there exists other local minimizers at
which the system generates better EPR entanglement. Hence future work can consider
further developing the static passive optical network to search for another local optimizer
that may yield better EPR entanglement than the system studied in [6] as shown in Fig. 2.
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