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Abstract—We consider the network reliability problem in
wireless sensor networks secured by the heterogeneous ran-
dom key predistribution scheme. This scheme generalizes
Eschenauer-Gligor scheme by considering the cases when the
network comprises sensor nodes with varying level of resources;
e.g., regular nodes vs. cluster heads. The scheme induces the
inhomogeneous random key graph, denotedG(n;µµµ,KKK,P ). We
analyze thereliability of G(n;µµµ,KKK,P ) against random link fail-
ures. Namely, we considerG(n;µµµ,KKK,P, α) formed by deleting
each edge ofG(n;µµµ,KKK,P ) independently with probability 1−α,
and study the probability that the resulting graph i) has no
isolated node; and ii) is connected. We present scaling conditions
onKKK, P , andα such that both events take place with probability
zero or one, respectively, as the number of nodes gets large.We
present numerical results to support these in the finite-node
regime.

Index Terms—Wireless Sensor Networks, Security, Inhomo-
geneous Random Key Graphs, Reliability, Connectivity.

I. I NTRODUCTION

Wireless sensor networks (WSNs) consist of low-cost,
low-power, small sensor nodes that are typically deployed
randomly in large numbers, with application areas as diverse
as military, health, environmental monitoring, etc [1]. In
most cases, WSNs are deployed in hostile environments, e.g.,
battlefields, making it crucial to use cryptographic protection
to secure sensor communications. Therefore, significant ef-
forts have been devoted to developing methods for securing
WSNs, andrandom key predistribution schemeshave been
widely accepted as feasible solutions in the face of the
unique challenges of WSNs. Namely, limited computational
capabilities, limited transmission power, lack of a priori
knowledge of deployment configuration, and vulnerability
to node capture attacks; e.g., see [2]–[5] for a detailed
discussion on security challenges in WSNs and solutions
based on key predistribution. In this paper, we consider ahet-
erogeneouskey predistribution scheme introduced recently
by Yağan [6] as a variation of theclassicalEschenauer-Gligor
(EG) scheme [2]. The heterogeneous key predistribution
scheme accounts for the cases when the network comprises
sensor nodes with varying level of resources, e.g., regular
nodes vs. cluster heads, which is likely to be the case for
many WSN applications [7]. According to this scheme, each
sensor belongs to one ofr priority classes that controls
the numberof cryptographic keys assigned to them. More
specifically, each of then sensors is independently assigned

to class-i with probability µi > 0, for eachi = 1, . . . , r;
obviously we have

∑r

i=1 µi = 1. Sensors from class-i are
each givenKi keys selected uniformly at random from a
pool of sizeP . Then, pairs of sensors that have at least one
key in common can communicate securely after deployment.
With µµµ = {µ1, . . . , µr} and KKK = {K1, . . . ,Kr}, we let
G(n,µµµ,KKK,P ) denote the random graph induced by the
heterogeneous key predistribution scheme. This model was
referred to as theinhomogeneousrandom key graph in [6],
wherein, zero-one laws for absence of isolated nodes and
connectivity are established.

The main goal of this paper is to investigate thereliability
of secure WSNs under the heterogeneous key predistribu-
tion scheme. In particular, to account for the possibility
that links between two sensor nodes may fail (e.g., due
to random failures, adversarial attacks, etc.), we apply a
Bernoulli link-failure model to the inhomogeneous random
key graphG(n;µµµ,KKK,P ). Namely, we assume that each link
in G(n;µµµ,KKK,P ) is operational with probabilityα and fails
with probability 1 − α, independently from others. This
models random attacks as well as random failures due to
sensor malfunctioning or harsh environmental conditions.

Let G(n;µµµ,KKK,P, α) denote the resulting random graph
that contains all operational links inG(n;µµµ,KKK,P ). The
network reliability problem is concerned [8], [9, Section 7.5]
with deriving the probability thatG(n;µµµ,KKK,P, α) exhibits
certain desired properties – that captures the ability of the
network to continue its services – as a function of the link
failure probability1−α. Here, we focus on two standard and
related properties that the network i) has noisolatednode,
and ii) is connected. For arbitrary graphs with fixed sizen,
deriving these probabilities are known [10], [11] to be#P -
complete, meaning that no polynomial algorithm exists for
their solution, unlessP = NP . Given that it is not feasible
to derive them, we study theasymptoticbehavior of these
probabilities asn gets large, when the model parameters are
scaled withn; the finite-node case is also considered via
simulations.

Our contributions are as follows. We present conditions
on how to scaleKKK,P and the link failure probabilityα
such that the networkG(n;µµµ,KKKn, Pn, αn) is connected
with probability approaching to one and zero, respectively,
as n grows unboundedly large. We establish an analogous
zero-one law forG(n;µµµ,KKKn, Pn, αn) to have no node that
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is isolated (i.e., that has zero edge). These sharp results
are likely to be useful indimensioningthe heterogeneous
scheme, namelycontrolling the key ring parameters(µµµ,KKK),
and key pool sizeP such that the network has a desired
level reliability against link failures. A particularly surprising
conclusion derived from our results is that network reliability
is tightly dependent on thesmallestkey ring size used in the
network; see Section III-A for details.

Our results complement and generalize several previous
work in the literature. In particular, we complement the work
[12] that studies the reliability of secure WSNs against a
fixed numberk of link failures; in our case the number
of failed links can be unboundedly large. Our results also
contain as special cases the zero-one laws for connectivityin
inhomogeneous random key graphs [6] and reliability results
in homogeneous random key graphs [13]; see Section III-B
for details.

All limiting statements, including asymptotic equivalences
are considered with the number of sensor nodesn going
to infinity. The indicator function of an eventE is denoted
by 111[E]. We say that an event holds with high probability
(whp) if it holds with probability1 asn → ∞. In compar-
ing the asymptotic behavior of the sequences{an}, {bn},
we use the standard Landau notation, e.g.,an = o(bn),
an = w(bn), an = O(bn), an = Ω(bn), andan = Θ(bn).
We also usean ∼ bn to denote the asymptotic equivalence
limn→∞ an/bn = 1.

II. T HE MODEL

The heterogeneous random key predistribution scheme
introduced in [6] works as follows. Consider a network
of n sensors labeled asv1, v2, . . . , vn. Each sensor node
is classified into one of ther classes, e.g., priority levels,
according to a probability distributionµµµ = {µ1, µ2, . . . , µr}
with µi > 0 for i = 1, . . . , r and

∑r

i=1 µi = 1. Then, a class-
i node is assignedKi cryptographic keys selected uniformly
at random andwithout replacementfrom a key pool of size
P . It follows that the key ringΣx of nodevx is a random
variable (rv) with

P[Σx = S | tx = i] =

(

P

Ki

)−1

, S ∈ PKi
,

wheretx denotes the class ofvx andPKi
is the collection

of all subsets of{1, . . . , P} with size Ki. The classical
key predistribution scheme of Eschenauer and Gligor [2]
constitutes a special case of this model withr = 1, i.e.,
when all sensors belong to the same class and receive the
same number of keys; see also [14], [15].

Let KKK = {K1,K2, . . . ,Kr} and assume without loss of
generality thatK1 ≤ K2 ≤ . . . ≤ Kr. Consider a random
graphG induced on the vertex setV = {v1, . . . , vn} such that
a pair of nodesvx andvy are adjacent, denoted byvx ∼G vy,
if they have at least one cryptographic key in common, i.e.,

vx ∼G vy if Σx ∩ Σy 6= ∅. (1)

The adjacency condition (1) defines the inhomogeneous
random key graph denoted byG(n;µµµ,KKK,P ) [6]. This model

is also known in the literature as thegeneral random inter-
section graph; e.g., see [12], [16], [17]. The probabilitypij
that a class-i node and a class-j node are adjacent is given
by

pij = P[vx ∼G vy | tx = i, ty = j] = 1−

(

P−Ki

Kj

)

(

P
Kj

) (2)

as long asKi + Kj ≤ P ; otherwise ifKi + Kj > P , we
have pij = 1. Let λi denote themean probability that a
class-i node is connected to another node inG(n;µµµ,KKK,P ).
We have

λi = P[vx ∼G vy | tx = i] =

r
∑

j=1

pijµj . (3)

To account for the possibility that links between two sensor
nodes may fail, e.g., due to random failures, adversarial
attacks, etc., we apply a Bernoulli link-failure model to
the inhomogeneous random key graphG(n;µµµ,KKK,P ): With
α ∈ (0, 1) let {Bij(α), 1 ≤ i < j ≤ n} denote independent
Bernoulli rvs, each with success probabilityα. Then the
link between sensorsvx andvy is deemed to be operational
(i.e., up) if Bxy(α) = 1, and not operational (i.e.,down) if
Bxy(α) = 0. Put differently, every edge inG(n;µµµ,KKK,P ) is
deleted independently with probability1− α1.

Let G(n;µµµ,KKK,P, α) denote the resulting random graph
that contains all the operational links inG(n;µµµ,KKK,P ). To
simplify notation, we letθθθ = (KKK,P ), andΘΘΘ = (θθθ, α). In
G(n;µµµ,ΘΘΘ), distinct nodesvx and vy are adjacent, denoted
vx ∼ vy, if and only if they are adjacent inG(n;µµµ,KKK,P )
and the edgevx ∼G vy is operational (i.e., has not failed). By
independence, the probability of an edge between a class-i
node and a class-j node inG(n;µµµ,ΘΘΘ) is then given by

P[vx ∼ vy | tx = i, ty = j] = αpij .

Similar to (3), we denote the mean edge probability for a
class-i node inG(n;µµµ,ΘΘΘ) asΛi. It is clear that

Λi =

r
∑

j=1

µjαpij = αλi, i = 1, . . . , r. (4)

Throughout, we assume that the number of classesr is
fixed and does not scale withn, and so are the probabilities
µ1, . . . , µr. All other parameters are scaled withn.

III. M AIN RESULTS AND DISCUSSION

We refer to a mappingΘΘΘ = K1, . . . ,Kr, P, α : N0 →
N

r+1
0 × (0, 1) as ascaling if

1 ≤ K1,n ≤ K2,n ≤ . . . ≤ Kr,n ≤ Pn/2 (5)

for all n = 2, 3, . . .. We note that under (5), the edge
probabilitypij is given by (2).

1An interesting direction for future work would be to consider a heteroge-
neous link-failure model, where the link between a type-i and type-j node
fails with probability 1− αij .



A. Results

We first present a zero-one law for the absence of isolated
nodes inG(n;µµµ,ΘΘΘn).

Theorem 3.1:Consider a probability distributionµµµ =
{µ1, µ2, . . . , µr} with µi > 0 for i = 1, . . . , r and a scaling
ΘΘΘ : N0 → N

r+1
0 × (0, 1) such that

Λ1(n) = αnλ1(n) ∼ c
logn

n
(6)

for somec > 0. We have

lim
n→∞

P

[

G(n;µµµ,ΘΘΘn) has

no isolated nodes

]

=

{

0 if c < 1

1 if c > 1

The scaling condition (6) will often be used in the form

Λ1(n) = cn
logn

n
, n = 2, 3, . . . (7)

with limn→∞ cn = c > 0.
Next, we present an analogous result for connectivity.
Theorem 3.2:Consider a probability distributionµµµ =

{µ1, µ2, . . . , µr} with µi > 0 for i = 1, . . . , r and a scaling
ΘΘΘ : N0 → N

r+1
0 × (0, 1) such that (6) holds for somec > 0.

Then, we have

lim
n→∞

P[G(n;µµµ,ΘΘΘn) is connected] =

{

0 if c < 1

1 if c > 1

under the extra conditions that

Pn ≥ σn, n = 1, 2, . . . (8)

for someσ > 0 and

αnp11(n) = ω

(

1

n

)

. (9)

Theorem 3.1 (resp. Theorem 3.2) states thatG(n;µµµ,ΘΘΘn)
has no isolated node (resp. is connected) whp if the mean
degree of class-1 nodes (that receive the smallest number
K1,n of keys) is scaled as(1 + ǫ) logn for some ǫ > 0.
On the other hand, if this minimal mean degree scales as
(1 − ǫ) logn for some ǫ > 0, then whpG(n;µµµ,ΘΘΘn) has
an isolated node, and hence not connected. These results
indicate that the minimum key ring size in the network
has a surprisingly significant impact on the reliability of
G(n;µµµ,θθθn). This is more clearly seen under the additional
assumption thatλ1(n) = o(1) which gives [6, Lemma 4.2]

λ1(n) ∼
K1,nKavg,n

Pn

whereKavg,n =
∑r

j=1 µjKj,n denotes the mean key ring
size. Using this in (6), we see that for fixed mean number
Kavg,n of keys per sensor, network reliability is directly
affected by the minimum key ring sizeK1,n. For example,
reducingK1,n by half means that the smallestα for which the
network remains connected is increased by two-fold, which
then reduces the largest link failure probability1−α that can
be sustained by a similar order.

The resemblance of the results presented in Theorem 3.1
and Theorem 3.2 indicates that the absence of isolated

nodes property and connectivity property are asymptotically
equivalent forG(n;µµµ,ΘΘΘn), similarly with some well-known
random graph models; e.g., inhomogeneous random key
graphs [6], ER graphs [9], and (homogeneous) random key
graphs [14].

We remark that conditions (8) and (9) are enforced mainly
for technical reasons and they are only needed in the proof
of the one-law of Theorem 3.2. These conditions are likely
to hold in real-world WSN implementations. In particular,
(8) should hold in practice to ensure the resiliency of the
WSN against node capture attacks [18], while (9) is needed
as otherwise the network would be trivially disconnected [6,
Section 3.2].

B. Comparison with related work

Our main results extend the work by Yağan [6] who estab-
lished zero-one laws for the connectivity of inhomogeneous
random key graphG(n,µµµ,KKK,P ) without employing a link-
failure model. It is clear that, although a crucial first step
in the study of heterogeneous key predistribution schemes,
the assumption that all links are operational, i.e.,reliable, is
not likely to hold in most practical settings. In this regard,
our work extends the results by Yağan [6] to more practical
WSN scenarios where the unreliability of links are taken into
account. In fact, by settingαn = 1 for eachn = 1, 2, . . . (i.e.,
by assuming that all links arereliable), our results reduce to
those given in [6].

The reliability of secure WSNs was also studied in [13],
but under the Eschenauer-Gligor scheme [2] where all sensors
receive the same number of keys. However, when the network
consists of sensors with varying level of resources (e.g.,
computational, memory, power) and/or with varying level of
security and connectivity requirements, it may no longer be
sensible to assign the same number of keys to all sensors.
Our work addresses this issue by generalizing [13] to the
cases where nodes can be assigned different number of keys.
When r = 1, i.e., when all nodes belong to the same class
and receive the same number of keys, our result recovers the
main result in [13].

Another notable work that is related to ours is by Zhao
et al. [12], who studied thek-connectivity andk-robustness
in the inhomogeneous random key graph. A graph is said to
be k-connected if it remains connected after removal (i.e.,
failure) of any k − 1 nodes. Thus, the results obtained in
[12] ensure the reliability of the network against the failure
of any k − 1 nodes, for some integer constantk. Sincek-
vertex-connectivity impliesk-edge-connectivity, the network
is ensured to be reliable against the failure of at leastk − 1
edges, for some integer constantk. Our work complements
these results by considering the case wheneach and every
edge fails with probability1−α, so that the total number of
failed links is possibly infinite; e.g., as many asO(n2) links
may fail.

C. Significance of the results

Our results are helpful in ensuring network reliability in
multitude of applications where inhomogeneous random key



graphs are utilized. For instance, reliability against thefailure
of wireless links is important in WSN applications where
sensors are deployed in hostile environments (e.g., battlefield
surveillance), or, are unattended for long periods of time
(e.g., environmental monitoring), or, are used in life-critical
applications (e.g., patient monitoring).

Considering the asymptotic regime, a key question in
network reliability analysis is whether or not there exists
a thresholdα∗

n ∈ (0, 1) such that ifαn is slightly smaller
than (resp. slightly larger than)α∗

n then the probability that
G(n;µµµ,KKK,P, α) is connected is close to zero (resp. close
to one); e.g., see [9, Section 7.5]. Our results constitute an
asymptotic solution of the network reliability problem for
inhomogeneous random key graphs. More specifically, we
show thatαn exhibits a threshold behavior as given at (6).
Although asymptotic in nature, these results can still provide
useful insights about the reliability of heterogeneous WSNs
with number of sensorsn being on the order of hundreds;
see Section IV for numerical experiments.

IV. N UMERICAL RESULTS

We present numerical results that support Theorem 3.1 and
Theorem 3.2 in the finite node regime. In all experiments, we
fix the number of nodes atn = 500 and the size of the key
pool atP = 104. To help better visualize the results, we use
the curve fitting tool of MATLAB. In Figure 1, we consider
the link-failure parametersα = 0.2, α = 0.4, α = 0.6, and
α = 0.8, while varying the parameterK1 (i.e., the smallest
key ring size) from5 to 35. The number of classes is fixed at
4 with µµµ = {0.25, 0.25, 0.25, 0.25} and we setK2 = K1+5,
K3 = K1 + 10, andK4 = K1 + 15. For each parameter
pair (KKK,α), we generate200 independent samples of the
graphG(n;µµµ,ΘΘΘ) and count the number of times (out of a
possible 200) that the obtained graphs i) have no isolated
nodes and ii) are connected. Dividing the counts by200, we
obtain the (empirical) probabilities for the events of interest.
We observed thatG(n;µµµ,ΘΘΘ) is connected whenever it has
no isolated nodes yielding the same empirical probability
for both events. This is in parallel with the asymptotic
equivalence of the two properties as implied by Theorems
3.1 and 3.2.

In Figure 1 we show thecritical threshold of connectivity
“predicted” by Theorem 3.2 by a vertical dashed line. More
specifically, the vertical dashed lines stand for the minimum
integerK1 such that

λ1(n) =

4
∑

j=1

µj

(

1−

(

P−Kj

K1

)

(

P
K1

)

)

>
1

α

logn

n
. (10)

We see that the probability of connectivity transitions from
zero to one within relatively small variation ofK1, with
critical values ofK1 from (10) lying within this transition
interval.

Figure 2 is generated in a similar manner with Figure 1,
this time with an eye towards understanding the impact of
the minimum key ring sizeK1 on network reliability. To that,
we fix the number of classes at2 with µµµ = {0.5, 0.5} and
consider four different key ring sizesKKK each with mean 30;
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Fig. 1. Empirical probability thatG(n;µµµ,KKK,P, α) is connected withn =
500, µµµ = (1/4, 1/4, 1/4, 1/4), KKK = (K1,K1 + 5,K1 + 10, K1 + 15),
andP = 104. Vertical dashed lines give the minimumK1 for which (10)
holds.
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K1 = 10, K2 = 70

K1 = 20, K2 = 60

K1 = 30, K2 = 50

K1 = 40, K2 = 40

Fig. 2. Empirical probability thatG(n;µµµ,KKK, P, α) is connected with
n = 500, µµµ = (1/2, 1/2), and P = 104; we consider four choices of
KKK = (K1,K2) each with the same mean. Vertical dashed lines give the
minimumα for which (10) holds.

namely, we considerKKK = {10, 70}, KKK = {20, 60}, KKK =
{30, 50}, andKKK = {40, 40}. As we compare the probability
of connectivity in the resulting networks with link failure
probability ranging from zero to one, we see that network
reliability improves dramatically as the minimum key ring
sizeK1 increases.

V. PROOF OFTHEOREM 3.1

The proof of Theorem 3.1 relies on the method of first and
second moments applied to the number of isolated nodes
in G(n;µµµ,ΘΘΘn). Let In(µµµ,ΘΘΘn) denote the total number of
isolated nodes inG(n;µµµ,ΘΘΘn), namely,

In(µµµ,ΘΘΘn) =
n
∑

ℓ=1

111[vℓ is isolated inG(n;µµµ,ΘΘΘn)] (11)

The method of first moment [19, Eqn. (3.10), p. 55] gives

1− E[In(µµµ,ΘΘΘn)] ≤ P[In(µµµ,ΘΘΘn) = 0]

A. Preliminaries

Several technical results are collected here for conve-
nience. The first result is established in [6, Proposition 4.1]



and follows easily from the scaling condition (5): For any
scalingK1,K2, . . . ,Kr, P : N0 → N

r+1
0 , we have

λ1(n) ≤ λ2(n) ≤ . . . ≤ λr(n) (12)

for eachn = 2, 3, . . ..
Another useful bound that will be used throughout is

(1 ± x) ≤ e±x, x ∈ (0, 1) (13)

Finally, we find it useful to write

log(1− x) = −x−Ψ(x) (14)

whereΨ(x) =
∫ x

0
t

1−t
dt. From L’Hôpital’s Rule, we have

lim
x→0

Ψ(x)

x2
=

−x− log(1 − x)

x2
=

1

2
. (15)

B. Establishing the one-law

It is clear that in order to establish the one-law, namely
that limn→∞ P [In(µµµ,ΘnΘnΘn) = 0], we need to show that
limn→∞ E[In(µµµ,ΘΘΘn)] = 0. Recalling (11), we have

E [In(µµµ,ΘΘΘn)]

= n
r
∑

i=1

µiP [v1 is isolated inG(n;µµµ,ΘΘΘn) | t1 = i]

= n

r
∑

i=1

µiP
[

∩n
j=2[vj ≁ v1] | t1 = i

]

= n

r
∑

i=1

µi (P [v2 ≁ v1 | t1 = i])
n−1 (16)

where (16) follows by the independence of the rvs{vj ≁

v1}nj=1 given Σ1. By conditioning on the class ofv2, we
find

P[v2 ≁ v1 | t1 = i] =
r
∑

j=1

µjP[v2 ≁ v1 | t1 = i, t2 = j]

=

r
∑

j=1

µj(1 − αpij) = 1− Λi(n). (17)

Using (17) in (16), and recalling (12), (13) we obtain

E[In(µµµ,ΘΘΘn)] = n

r
∑

i=1

µi (1− Λi(n))
n−1

≤ n (1− Λ1(n))
n−1

= n

(

1− cn
logn

n

)n−1

≤ elogn(1−cn
n−1

n )

Taking the limit asn goes to infinity, we immediately get
limn→∞ E[In(µµµ,ΘΘΘn)] = 0 since limn→∞(1 − cn

n−1
n

) =
1 − c < 0 under the enforced assumptions (withc > 1) and
the one-law is established.

C. Establishing the zero-law

Our approach in establishing the zero-law relies on the
method of second moment applied to a variable that counts
the number of nodes that are class-1 and isolated. Clearly if
we can show that whp there exists at least one class-1 node
that is isolated under the enforced assumptions (withc < 1)
then the zero-law would immediately follow.

Let Yn(µµµ,ΘΘΘn) denote the number of nodes that are class-1
and isolated inG(n;µµµ,ΘΘΘn), and let

xn,i(µµµ,ΘΘΘn) = 111[ti = 1 ∩ vi is isolated inG(n;µµµ,ΘΘΘn)],

then we haveYn(µµµ,ΘΘΘn) =
∑n

i=1 xn,i(µµµ,ΘΘΘn). By applying
the method of second moments [19, Remark 3.1, p. 55] on
Yn(µµµ,ΘΘΘn), we get

P[Yn(µµµ,ΘΘΘn) = 0] ≤ 1−
E[Yn(µµµ,ΘΘΘn)]

2

E[Yn(µµµ,ΘΘΘn)2]
(18)

where
E[Yn(µµµ,ΘΘΘn)] = nE[xn,1(µµµ,ΘΘΘn)] (19)

and

E[Yn(µµµ,ΘΘΘn)
2] =nE[xn,1(µµµ,ΘΘΘn)]

+ n(n− 1)E[xn,1(µµµ,ΘΘΘn)xn,2(µµµ,ΘΘΘn)]
(20)

by exchangeability and the binary nature of the rvs
{xn,i(µµµ,ΘΘΘn)}ni=1. Using (19) and (20), we get

E[Yn(µµµ,ΘΘΘn)
2]

E[Yn(µµµ,ΘΘΘn)]2
=

1

nE[xn,1(µµµ,ΘΘΘn)]

+
n− 1

n

E[xn,1(µµµ,ΘΘΘn)xn,2(µµµ,ΘΘΘn)]

E[xn,1(µµµ,ΘΘΘn)]2

Accordingly, in order to establish the zero-law, we need to
show that

lim
n→∞

nE[xn,1(µµµ,ΘΘΘn)] = ∞, (21)

and

lim sup
n→∞

(

E[xn,1(µµµ,ΘΘΘn)xn,2(µµµ,ΘΘΘn)]

E[xn,1(µµµ,ΘΘΘn)]2

)

≤ 1. (22)

The following propositions establish (21) and (22) which
in turn establish the zero-law.

Proposition 5.1:Consider a scalingK1, . . . ,Kr, P :
N0 → N

r+1
0 and a scalingα : N0 → (0, 1) such that (6)

holds with limn→∞ cn = c > 0. Then, we have

lim
n→∞

nE[xn,1(µµµ,ΘΘΘn)] = ∞, if c < 1

Proof. We have

nE [xn,1(µµµ,ΘΘΘn)]

= nµ1P
[

∩n
j=2[vj ≁ v1] | t1 = 1

]

= nµ1





r
∑

j=1

µjP [v2 ≁ v1 | t1 = 1, t2 = j]





n−1



= nµ1





r
∑

j=1

µj(1 − αnp1j)





n−1

(23)

= nµ1 (1− Λ1(n))
n−1

= µ1e
βn (24)

where

βn = logn+ (n− 1) log(1 − Λ1(n))

= logn− (n− 1) (Λ1(n) + Ψ(Λ1(n)))

= logn− (n− 1)

(

cn
logn

n
+Ψ

(

cn
logn

n

))

= logn

(

1− cn
n− 1

n

)

− (n− 1)

(

cn
logn

n

)2 Ψ
(

cn
logn
n

)

(

cn
logn
n

)2
(25)

by virtue of (14). Now, recalling (15), we have

lim
n→∞

Ψ
(

cn
logn
n

)

(

cn
log n
n

)2
=

1

2
(26)

sincecn
logn
n

= o(1). Thus,βn = logn
(

1− cn
n−1
n

)

− o(1).
Using (24), (25), (26), and lettingn go to infinity, we get

lim
n→∞

nE[xn,1(µµµ,ΘΘΘn)] = ∞

wheneverlimn→∞ cn = c < 1.

Proposition 5.2:Consider a scalingK1, . . . ,Kr, P :
N0 → N

r+1
0 and a scalingα : N0 → (0, 1) such that (6)

holds withlimn→∞ cn = c > 0. Then, we have (22) ifc < 1.

We omit the proof of Proposition 5.2 from this conference
version. All details can be found in [20].

VI. PROOF OFTHEOREM 3.2

The proof of Theorem 3.2 is lengthy and technically
involved. Therefore, we omit most of the details in this
conference version. All details can be found in [20]. In this
section, we present an outline of our proof. LetCn(µµµ,ΘΘΘn)
denote the event that the graphG(n,µµµ,ΘΘΘn) is connected,
and with a slight abuse of notation, letIn(µµµ,ΘΘΘn) denote
the event that the graphG(n,µµµ,ΘΘΘn) has no isolated nodes.
Clearly, if a random graph is connected then it does not have
any isolated node, henceCn(µµµ,ΘΘΘn) ⊆ In(µµµ,ΘΘΘn) and we get

P[Cn(µµµ,ΘΘΘn)] ≤ P[In(µµµ,ΘΘΘn)] (27)

and

P[Cn(µµµ,ΘΘΘn)
c] = P[In(µµµ,ΘΘΘn)

c] + P[Cn(µµµ,ΘΘΘn)
c ∩ In(µµµ,ΘΘΘn)].

(28)

In view of (27), we obtain the zero-law for connectivity,
i.e., that

lim
n→∞

P[G(n;µµµ,ΘΘΘn) is connected] = 0 if c < 1,

immediately from the zero-law part of Theorem 3.1, i.e.,
from that limn→∞ P[In(µµµ,ΘΘΘn)] = 0 if c < 1. It remains
to establish the one-law for connectivity. From Theorem 3.1
and (28), we see that the one-law for connectivity, i.e., that

lim
n→∞

P[G(n;µµµ,ΘΘΘn) is connected] = 1 if c > 1,

will follow if we show that

lim
n→∞

P[Cn(µµµ,ΘΘΘn)
c ∩ In(µµµ,ΘΘΘn)] = 0. (29)

The proof of the one-law passes through obtaining a
proper upper bound for (29) and then showing that the
bound goes to zero asn gets to infinity (with c > 1)
under appropriate conditions of the parameter scalings. Due
to space limitations, the details of this technically involved
result are given in [20].
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