
1

A randomized primal distributed algorithm

for partitioned and big-data non-convex

optimization

Ivano Notarnicola and Giuseppe Notarstefano

Abstract

In this paper we consider a distributed optimization scenario in which the aggregate objective

function to minimize is partitioned, big-data and possibly non-convex. Specifically, we focus on a set-

up in which the dimension of the decision variable depends on the network size as well as the number

of local functions, but each local function handled by a node depends only on a (small) portion of

the entire optimization variable. This problem set-up has been shown to appear in many interesting

network application scenarios. As main paper contribution, we develop a simple, primal distributed

algorithm to solve the optimization problem, based on a randomized descent approach, which works

under asynchronous gossip communication. We prove that the proposed asynchronous algorithm is a

proper, ad-hoc version of a coordinate descent method and thus converges to a stationary point. To

show the effectiveness of the proposed algorithm, we also present numerical simulations on a non-

convex quadratic program, which confirm the theoretical results.

Index Terms

primal, non-convex, proximal, asynchronous, randomized, coordinate, big-data, partitioned.

I. INTRODUCTION

In several network scenarios optimization problems arise in which an aggregate cost function,

sum of local cost functions, needs to be minimized in a distributed way. A typical approach

Ivano Notarnicola and Giuseppe Notarstefano are with the Department of Engineering, Università del Salento, Via Monteroni,

73100 Lecce, Italy, name.lastname@unisalento.it. This result is part of a project that has received funding from

the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant

agreement No 638992 - OPT4SMART).

November 19, 2021 DRAFT

ar
X

iv
:1

70
3.

08
37

0v
1

 [
cs

.D
C

]
 2

4
M

ar
 2

01
7

2

in distributed optimization is to develop algorithms in which the processors in the network

reach consensus on a minimizer of the problem. However, when the dimension of the decision

variable depends on the number of agents in the network the consensus approach gives rise to

algorithms which scale badly with the network size. Enforcing consensus on the entire vector of

decision variables is not necessary in many important applications, since the nodes are interested

in computing only part of the decision vector, namely only some local variables of interest. In

this paper we consider a partitioned problem set-up in which the aggregate function is the sum

of local functions, each one depending only on a portion of the decision vector. For this set-up

our goal is to design a distributed algorithm in which the nodes compute only a local portion of

interest of the entire solution vector, so that the whole minimizer can be obtained by stacking

together the local portions.

This partitioned set-up has been introduced in [1] where a distributed ADMM-based algorithm

is proposed. In [2] some concrete motivating scenarios are described for the same set-up and

a dual decomposition algorithm is proposed. In both the above references the algorithms are

designed for a synchronous network with a fixed communication graph. In [3], an analogous

problem formulation is considered within a parallel context. The authors propose a coordinate

descent method and derive its convergence rate. In [4] the authors propose a distributed algorithm

for a partitioned quadratic program under lossy communication. A distributed ADMM-based

algorithm with applications in MPC is proposed in [5] to deal with an unconstrained optimization

problem with local domains which is related to the set-up in this paper.

Usually, distributed approaches need a common clock (e.g., because a diminishing (time-

varying) step-size is used). We want to avoid this limitation designing an asynchronous, event-

triggered protocol based on local and independent timers, [6]. A Newton-Raphson consensus

strategy is proposed in [7] to solve unconstrained, convex optimization problems under asyn-

chronous, symmetric gossip communications. In [8] a self-triggered communication protocol is

considered. Based on an error condition a distributed, continuous-time algorithm is developed.

In [9] an asynchronous ADMM-based distributed method is proposed for a separable, constrained

optimization problem with a convergence rate O(1/t). A distributed, asynchronous algorithm for

constrained optimization based on random projections is proposed in [10].

The asynchronous, distributed algorithm we design in this paper is based on a (randomized)

coordinate descent method. In [11] the coordinate method for huge scale optimization has been

introduced. This powerful approach has been extended to deal with (convex) composite objective

November 19, 2021 DRAFT

3

functions and parallel scenarios, see [3], [12], [13]. In [14] a coordinate approach to solve linearly

constrained problems has been proposed. Using a coordinate ADMM-based approach, in [15] a

distributed, asynchronous algorithm is developed.

Regarding non-convex optimization problems, in [16], the authors extend the coordinate ap-

proach to large-scale non-convex optimization proving the rate of convergence of their algorithms.

A parallel algorithm based on local strongly convex approximations is exploited in [17] to cope

with non-convex optimization problems. The latter approach has been extended to a distributed

context in [18]. In [19], the authors proposed an auction-based distributed algorithm for non-

convex optimization.

As main paper contribution we propose an asynchronous, distributed algorithm to solve

partitioned, big-data non-convex optimization problems. The proposed primal algorithm is based

on local updates involving the minimization of a strongly convex, quadratic approximation of

the objective function. Each node constructs this approximation by exchanging information only

with neighboring nodes. The updates at each node are regulated by a local timer that triggers

independently from the ones of the other nodes. We prove the convergence in probability of

the distributed algorithm by showing that it is equivalent to a generalized coordinate descent

method for the minimization of non-convex composite functions. The generalized coordinate

descent algorithm extends the one proposed in [16] and thus represents a side interesting result.

The paper is organized as follows. In Section II we present the problem set-up. In Section III

we propose our algorithm and prove its convergence in Section IV. Finally, in Section V we

show some simulations.

Notation: Consider a vector x ∈ Rn partitioned in N block-components as follows

x = [x>1 , . . . , x
>
N]>, (1)

where, for all i ∈ {1, . . . , N}, we have xi ∈ Rni and
∑N

i=1 ni = n. Moreover, consider a block

decomposition of the N × N identity matrix I = [U1, . . . , UN], where for all i ∈ {1, . . . , N}
each Ui ∈ Rn×ni . Then we can write xi = U>i x and x =

∑N
i=1 Uixi. For a function ϕ : Rn → R,

we denote ∇xiϕ(x̄) = U>i ∇ϕ(x̄) the “partial” gradient of ϕ with respect to xi ∈ Rni .

II. OPTIMIZATION PROBLEM SET-UP

We consider a network of N nodes which can interact according to a fixed, undirected com-

munication graph G = ({1, . . . , N}, E), where E ⊆ {1, . . . , N}×{1, . . . , N} is the set of edges.

November 19, 2021 DRAFT

4

That is, the edge (i, j) models the fact that node i and j can exchange information. We denote by

Ni the set of neighbors of node i in the fixed graph G, i.e., Ni := {j ∈ {1, . . . , N} | (i, j) ∈ E},
and by |Ni| its cardinality. Here we assume that the graph contains also self-edges, so that Ni
contains also i.

We want to stress that the fixed graph only models, for each node, the set of possible neighbors

the node can communicate with. On top of this graph, we will consider an asynchronous

communication protocol described later.

We start by a common set-up in distributed optimization, i.e., the minimization of a separable

cost function composed by two contributions, i.e., minx∈Rn

∑N
i=1 fi(x)+gi(x), where fi : Rn →

R and gi : Rn → R ∪ {+∞}, with N, n ∈ N. Usually this composite structure of the objective

functions, is used to split the effective cost into a smooth part (modeling some local objective)

and a (possibly) non-smooth one being a regularization term or a constraint.1

In this paper we consider problems in which the composite function has a partitioned structure,

that we next describe. Let the decision variable x ∈ Rn be partitioned as stated in (1), then the

sub-vector xi ∈ Rni with ni � n, represents the relevant information at node i. Each local

objective fi has a sparsity consistent with the interaction graph, namely, for i ∈ {1, . . . , N}, the

function fi depends only on the component of node i and of its neighbors. To highlight this

property we let fi : R
∑

j∈Ni
nj → R and write fi(xNi

). Also, each function gi depends only on

the component xi, i.e., gi : Rni → R ∪ {+∞}.
In light of the described structure, the problem we aim at solving in a distributed way can be

written as

min
x∈Rn

N∑
i=1

fi(xNi
) + gi(xi), (2)

where node i knows only the functions fi and gi. We call this problem partitioned (due to the

structure of the functions fi and gi) and big-data (since the dimension of the decision variable

depends on the number of nodes).

Note that, in this partitioned scenario, network structure and objective function are inherently

related. That is, nodes that share a variable are neighbors in the communication graph. As pointed

out in the introduction this set-up appears in several interesting applications [2]. In the following

assumptions we state the main properties of problem (2).

1A constraint x ∈ ∩i∈{1,...,N}Xi ⊂ Rn is modeled by setting gi(x) = IXi(x), with IXi(x) = 0 ∀x ∈ Xi and IXi(x) = +∞

otherwise.

November 19, 2021 DRAFT

5

Assumption II.1. For all i ∈ {1, . . . , N}, fi is a smooth function of xNi
. In particular, fi has

block-coordinate Lipschitz continuous gradient, i.e., for all j ∈ Ni there exists constants Lij > 0

such that for all xNi
∈ R

∑
`∈Ni

n` and sj ∈ Rnj it holds

‖∇xjfi(xNi
+ Uijsj)−∇xjfi(xNi

)‖ ≤ Lij‖sj‖.

where Uij is a suitable matrix such that Uijsj is a vector in R
∑

`∈Ni
n` with j-th block-component

equal to sj and all the other ones equal to zero. �

In light of Assumption II.1, it is easy to show that the following lemma holds.

Lemma II.2. Let Assumption II.1 hold, then the aggregate function f(x) :=
∑N

i=1 fi(xNi
) has

block-coordinate Lipschitz continuous gradient. In particular, for all i ∈ {1, . . . , N}, the partial

gradient ∇xif has Lipschitz constant given by Li :=
∑

j∈Ni
Lij .

Proof. The proof follows straight by simply writing the norm of the aggregate cost f and then

bounding each term of its gradient by using its block Lipschitz constant.

Remark II.3. Note that one can assume directly that ∇xif is Lipschitz continuous, but while

the condition we impose can be checked in a distributed way, the weaker one needs a global

knowledge of the cost f . �

Assumption II.4. For all i ∈ {1, . . . , N}, the function gi is a proper, closed, proper, convex

function. �

We stress that we have not assumed any convexity condition on fi, thus optimization prob-

lem (2) is non-convex in general. Finally, we state the following assumption which is quite

standard for non-convex scenarios.

Assumption II.5. The cost V (x) :=
∑N

i=1 fi(xNi
)+gi(xi) of problem (2) is a coercive function.

�

Assumption II.5 guarantees that at least a local minimum for problem (2) exists.

Figure 1 visualizes the sparsity structure for a function partitioned according to a path graph

of N = 4 nodes. Each i-th column shows the variables on which fi depends, while along each

i-th row it is possible to see in which functions a variable xi appears. It is worth noticing that the

November 19, 2021 DRAFT

6

sparsity in the i-th row shows the consistency that needs to be maintained among neighboring

nodes on variable xi.

x1

x2

x3

x4

f1 f2 f3 f4

Fig. 1. Partitioned optimization problem over a path graph of N=4 nodes.

III. DISTRIBUTED OPTIMIZATION ALGORITHM

In this section we present our asynchronous distributed algorithm.

In order to develop our algorithm, we need to introduce some technical tools: (i) the asyn-

chronous communication protocol necessary to manage the overall behavior of the algorithm,

and (ii) the local approximation model that each node will use to perform its local (descent)

update.

We consider an asynchronous communication protocol where each node i ∈ {1, . . . , N} has its

own concept of time defined by a local timer τi, which randomly and independently of the other

nodes triggers when to awake itself. The timers trigger according to exponential distributions

with a common parameter. We denote Ti a realization drawn by node i. Between two triggering

events the node is in an idle mode, i.e., it continuously receives messages from neighboring

nodes and updates some internal variables. When a trigger occurs, it switches into an awake

mode in which it updates its local variable and transmits the updated information to its neighbors.

A formal discussion on this protocol is given in [6].

The proposed distributed algorithm is based on local quadratic, strongly-convex approxima-

tions of the cost function that each node computes.

November 19, 2021 DRAFT

7

Formally, each node i ∈ {1, . . . , N} constructs the following local approximation of the entire

cost function at a fixed x̄ ∈ Rn (neglecting the constant term f(x̄) which does not affect the

optimization),

qi(si; x̄) := ∇xif(x̄)>si +
1

2
‖si‖2

Qi(x̄)+ gi(x̄i + si) (3)

=
∑
j∈Ni

∇xifj(x̄Nj
)>si +

1

2
‖si‖2

Qi(x̄)+ gi(x̄i + si)

with Qi(x) ∈ Rni×ni a symmetric, positive definite matrix satisfying the following assumption.

Assumption III.1. For any x ∈ Rn and i ∈ {1, . . . , N} it holds that Qi(x) � LiI . �

Intuitively Assumption III.1 guarantees the strong convexity of qi. The role of the Lipschitz

constant Li in the bound will be clear in the analysis of the algorithm given in Section IV.

Informally, the asynchronous distributed optimization algorithms is as follows. A node i takes

care of modifying the variable xi. We denote x̄i the current state of node i, which is the estimated

optimal value of the variable xi. Consistently we denote x̄Ni
the vector of states of nodes in Ni.

When a node i wakes up, it updates its state x̄i by moving in the direction obtained from

the minimization of its local approximation qi(si; x̄), being x̄ the current value of the decision

variable. Then, it sends to each neighbor j ∈ Ni the updated xi and ∇xjfi(x̄Ni
). When in

idle, node i is in a listening mode. If an updated ∇xifj(x̄Nj
) is received from a neighbor j no

computation is needed. If x̄j is also received (j was an awake node) the following happens.

Node i updates the partial gradients of its local function fi according to the new x̄j , and sends

back the updated partial gradients to its neighbors. In order to highlight the difference between

updated and old variables at node i during the awake phase, we denote the updated ones with

a “+” symbol, e.g., as x̄+
i .

We want to stress two important aspects of the idle/awake cycle. First, these two phases are

regulated by local timers without the need of any central clock. Second, when in idle a node only

receives messages and from time to time evaluates a partial gradient, which takes a negligible

time compared to the computation performed in the awake phase.

The distributed algorithm is formally reported in the table below (from the perspective of node

i).

We point out some aspects involving the local approximation (3) that each node uses in its

local computations.

November 19, 2021 DRAFT

8

Distributed Algorithm Partitioned Coordinate Descent
Processor state: x̄i

Initialization: set τi = 0 and get a realization Ti

Evolution:

IDLE:

WHILE: τi ≤ Ti DO:

receive x̄j and/or ∇xifj(x̄Nj
) from j ∈ Ni

evaluate ∇xjfi(x̄Ni
) and send it to j ∈ Ni

go to AWAKE.

AWAKE:

compute di = argmin
si

qi(si; x̄) (4)

update x̄+
i = x̄i + di (5)

broadcast x̄+
i , ∇xjfi(x̄

+
Ni

) to j ∈ Ni

set τi = 0, get a new realization Ti and go to IDLE.

First, it is worth noting qi(si; x̄) does not depend on the entire state x̄, but only on x̄Nj
, j ∈ Ni

and therefore is constructed by node i by using only information from its neighbors. Moreover,

node i does not needed the expression of neighboring cost functions fj to build qi(si; x̄), but

only the gradients ∇xifj . In some special cases (discussed in the following paragraph), Qi(x)

could include second order information of fj , j ∈ Ni, i.e., ∇2
xi,xi

fj , that should be sent together

with the gradients.

Second, different choices for the weight matrix Qi(x) are allowed. By exploiting the block

Lipschitz continuity of the gradient of f , a first simple choice is to set Qi(x) := LiI for all

i ∈ {1, . . . , N} and x ∈ Rn. Motivated by existing works in the literature, e.g., [17], non

diagonal choices for Qi(x) are reasonable: for instance, assuming f ∈ C2, one can select a

second order approximation, i.e., set Qi(x) := ∇2
xi,xi

f(x) + εiI for a sufficiently large εi > 0

for all i ∈ {1, . . . , N}. As mentioned above this information can be constructed in a distributed

November 19, 2021 DRAFT

9

manner.

Third and final, recalling the definition of the proximal operator proxα,ϕ : Rn → Rn of a

closed, proper, convex function ϕ : Rn → R∪ {+∞} given by proxα,ϕ(v) := argminx
(
ϕ(x) +

1
2α
‖x − v‖2

)
with α > 0, we have that for Qi(x) = LiI the update law described in (4)-(5),

can be rephrased in term of proximal operators and, thus, leading to a distributed coordinate

proximal gradient method. On this regard it is worth noting that our algorithm, with a general

expression for Qi, can be written in terms of a generalized, weighted version of the proximal

operator as follows. Given a positive definite matrix W ∈ Rn×n, we define

proxW,ϕ(v) := argmin
x

{
ϕ(x) +

1

2

∥∥x− v∥∥2

W−1

}
, (6)

thus, the iteration (4)-(5) can be recast as

x̄+
i = proxQi(x̄)−1,gi

(
x̄i −Qi(x̄)−1

∑
j∈Ni

∇xifj(x̄Nj
)
)
.

IV. CONVERGENCE ANALYSIS OF THE PARTITIONED COORDINATE DESCENT DISTRIBUTED

ALGORITHM

In this section we prove the convergence in probability of the proposed algorithm.

First, it is worth pointing out that being the algorithm asynchronous, for the analysis we need

to carefully formalize the concept of algorithm iterations. We will use a nonnegative integer

variable t indexing a change in the whole state x̄ = [x̄>1 . . . x̄
>
N]> of the distributed algorithm.

In particular, each triggering will induce an iteration of the distributed optimization algorithm

and will be indexed with t. We want to stress that this (integer) variable t does not need to be

known by the agents. That is, this timer is not a common clock and is only introduced for the

sake of analysis.

Theorem IV.1. Let Assumptions II.1, II.4, II.5 and III.1 hold true. Then, the Partitioned Coordi-

nate Descent distributed algorithm generates a sequence x(t) := [x̄1(t)>, . . . , x̄N(t)>]> (obtained

stacking the nodes’ states) such that the random variable V (x(t)) converges almost surely, i.e.,

there exists a random variable V ? such that

Pr
(
V (x(t)) = V ?

)
= 1.

Moreover, any limit point x? of [x̄1(t)>, . . . , x̄N(t)>]> is a stationary point of problem (2) and,

thus, satisfies its first order optimality condition, i.e., there exists a subgradient ∇̃g(x?) of g at

x? such that ∇f(x?) + ∇̃g(x?) = 0. �

November 19, 2021 DRAFT

10

A. Coordinate descent method for composite non-convex minimization

In this subsection we consider a more general composite optimization problem and prove a

result that is instrumental to the convergence proof of our distributed algorithm. We introduce a

generalization of the algorithm proposed in [13], [16], [20] based on the quadratic approximation

introduced in (3). We present the algorithm for problem (2), but we want to stress that the

algorithm can be applied to a general function f : Rn → R with block-Lipschitz continuous

gradient. This will be clear from the analysis.

We consider a coordinate descent method based on selecting a random block-component, say

xi, of x at each iteration and updating only xi through a suitable descent rule. The descent step

is based on the quadratic approximation of the cost function given in (3). The coordinate descent

method is formally summarized in the table below.

Algorithm Generalized Coordinate Descent Algorithm
Choose a random block it∈{1, . . . , N} with probability pit

Compute a descent direction dit solving

dit = argmin
si

qit(si;x(t)) (7)

Update the decision variable according to

xit(t+ 1) = xit(t) + dit

xj(t+ 1) = xj(t), for all j 6= it

(8)

In the following we present results for the theoretical convergence of the generalized coordinate

descent algorithm.

Lemma IV.2. Let Assumption II.1, II.4, III.1 hold. Let x(t) be the random sequence generated

by Generalized Coordinate Descent Algorithm, then for all t ≥ 0 it holds

V (x(t+ 1)) ≤ V (x(t))− Lit
2
‖dit‖2.

November 19, 2021 DRAFT

11

Proof. From Assumption II.1 (Lipschitz continuity of ∇f), we can write the well-known descent

lemma (see [21, Proposition A.24]), for all i ∈ {1, . . . , N} and for all x̄ ∈ Rn

V (x̄+ Uisi) ≤ f(x̄) +∇xif(x̄)>si

+
Li
2
‖si‖2 + gi(x̄i + si) +

∑
j 6=i gj(x̄j),

with Ui introduced in the Notation paragraph.

Since Qi satisfies Assumption III.1, then we can generalize the above descent condition by

introducing a uniform bound depending on the Lipschitz constant of block i, i.e.,

V (x̄+ Uisi) ≤ f(x̄) +∇xif(x̄)>si

+
1

2
‖si‖2

Qi(x̄)+gi(x̄i + si)+
∑

j 6=i gj(x̄j)

Due the partitioned structure of f , the explicit expression of ∇xif(x) actually depends only

on fj , j ∈ Ni, thus the latter condition can be further rephrased as

V (x̄+ Uisi) ≤ qi(si; x̄) + f(x̄) +
∑

j 6=i gj(x̄j). (9)

with qi(si; x̄) defined as in (3).

Consider a descent direction dit computed as in (7), then dit satisfies the first order necessary

condition of optimality for problem (7)

∇xit
f(x(t))+Qit(x(t))dit +∇̃git(xit(t) + dit) = 0, (10)

where ∇̃git ∈ Rmit is a particular subgradient of git .

Starting form equation (9) with the following identification x̄ = x(t) and x̄+Uitdit = x(t+1),

and adding and subtracting the term git(xit(t)) we obtain

V (x(t+ 1)) ≤ V (x(t)) +∇xit
f(x(t))>dit+

1

2
‖dit‖2

Qit (x(t))

+ git(xit(t) + dit)− git(xit(t))

≤ V (x(t)) +∇xit
f(x(t))>di

+
1

2
‖dit‖2

Qit (x(t)) + ∇̃git(xit(t) + dit)
>dit

≤ V (x(t))− 1

2
‖dit‖2

Qit (x(t))

≤ V (x(t))− Li
2
‖dit‖2

where we used the convexity of git , the optimality condition (10) and the uniform bound in

Assumption III.1.

November 19, 2021 DRAFT

12

Theorem IV.3. Let Assumptions II.1, II.4, II.5 and III.1 hold true. Then, the Generalized

Coordinate Descent Algorithm generates a sequence x(t) such that the random variable V (x(t))

converges almost surely. Moreover, any limit point x? of x(t) is a stationary point of V and,

thus, satisfies the first order necessary condition for optimality for problem (2), i.e., there exists

a subgradient ∇̃g(x?) of g at x? such that

∇f(x?) + ∇̃g(x?) = 0

Proof. The result is proven by following the same line as in [16, Theorem 1] where the

generalized Lemma IV.2 is used in place of [16, Lemma 3].

B. Proof of Theorem IV.1

Our proof strategy is based on showing that the iterations of the asynchronous distributed

algorithm can be written as the iterations of an ad-hoc version of the coordinate descent method

for composite non-convex functions given in Section IV-A.

Timer model and uniform node extraction. Since the timers trigger independently according to

the same exponential distribution, then from an external, global perspective, the induced awaking

process of the nodes corresponds to the following: only one node per iteration wakes up randomly,

uniformly and independently from previous iterations. Thus, each triggering, which induces an

iteration of the distributed optimization algorithm and is indexed with t, corresponds to the

(uniform) selection of a node in {1, . . . , N} that becomes awake. We denote it the extracted

node. Notice that node it changes the value of its state x̄it while all the other states are not

changed by the algorithm.

State consistency (inductive argument). Next we show by induction that if all the nodes have

a consistent and updated information before a node i gets awake, then the same holds after the

update. By consistent we mean that for a variable x`, all the nodes in N` have the same state

x̄`. By updated we mean that each node ` has an updated value of the gradients ∇x`fj , j ∈ N`.
First, node i changes only its state x̄i relative to the variable xi. This variable is shared only

with neighbors j ∈ Ni, which receive the new state x̄i after the update. As regards the gradients,

the ones affected by the change of the variable xi are ∇xifj , with j ∈ Ni. Notice that these

gradients are only used by nodes k ∈ Nj . But after the broadcast performed by i, each idle

j ∈ Ni receives the updated x̄i, updates the gradients, and sends them to its neighbors k ∈ Nj .

November 19, 2021 DRAFT

13

The variables and gradients for the rest of the nodes in the network are not changed by the

update of node i.

Coordinate descent equivalence and convergence. Finally, we simply notice that, thanks to

the consistency argument just shown, steps (4)-(5) correspond to steps (7)-(8). Thus, we have

shown that our distributed algorithm implements the centralized coordinate method and therefore

inherits its convergence properties. By invoking Theorem IV.3, the proof follows.

V. NUMERICAL SIMULATIONS ON A NON-CONVEX CONSTRAINED QUADRATIC PROGRAM

In this section we present a numerical example showing the effectiveness of the proposed

algorithm.

We consider an undirected connected Erdős-Rényi random graph G, with parameter 0.2,

connecting N = 50 nodes and we test the distributed algorithm on a partitioned non-convex

constrained quadratic program in the form

min
x∈Rn

N∑
i=1

x>Ni
HixNi

+ r>i xNi
+ IXi

(xi), (11)

where each xi ∈ R for all i ∈ {1, . . . , N} and each cost matrix Hi ∈ R|Ni|×|Ni| is only symmetric

(not positive definite). We construct Hi as the difference between a positive definite matrix

H̃i ∈ R|Ni|×|Ni| and a suitable scaled version of the identity matrix. Finally, each function IXi

denotes the indicator function of the segment Xi = [−`i, ui], i.e., we constrain each xi to lie

into an interval. We set `i = −30 and ui = 20 for all i ∈ {1, . . . , N}.
Problem (11) fits our set-up described in Section II by defining

fi(xNi
) := x>Ni

HixNi
+ r>i xNi

and

gi(xi) := IXi
(xi) =

xi if `i ≤ xi ≤ ui

+∞ otherwise.

Moreover, we use the local approximation qi(si, x̄) as in (3) with Qi = 1
αi
I with αi = 0.01 for

all i ∈ {1, . . . , N}.
In Figure 2 we plot the evolution of two selected components of the decision variable x at

each iteration t (defined as discussed in Section IV), i.e., xi(t), i = 14, 48. The horizontal dotted

lines represent the centralized solution. Since the algorithm is asynchronous and based on a

November 19, 2021 DRAFT

14

0 10 20

−18

−17

−16

−15

−14

t/N
x
1
4
(t
),
x
? 1
4

0 10 20

12.4

12.6

12.8

13

t/N

x
4
8
(t
),
x
? 4
8

Fig. 2. Evolution of two decision variables xi, i = 14, 48, for the distributed algorithm.

coordinate approach, we plot the rate of convergence with respect to the normalized iterations

t/N in order to show the effective behavior with respect to the global time.

In Figure 3 we show the difference, in logarithmic scale, between the cost V (x(t)) at each

iteration t and the value of V attained at the limit point x? of x(t) (proven to be a stationary

point).

0 5 10 15 20 25
10−3

10−2

10−1

100

101

102

103

t/N

V
(x
(t
))

−
V

?

Fig. 3. Evolution of the cost error, in logarithmic scale, for the distributed algorithm.

VI. CONCLUSIONS

In this paper we have proposed an asynchronous, distributed algorithm to solve partitioned, big-

data non-convex optimization problems. The main idea is that each node updates its local variable

by minimizing a suitable, local quadratic approximation of the cost, built via an information

exchange with neighboring nodes. We prove the convergence of the distributed algorithm by

showing that it corresponds to a proper instance of a coordinate descent method.

November 19, 2021 DRAFT

15

ACKNOWLEDGMENTS

The authors would like to thank Angelo Coluccia e Massimo Frittelli for their help and

suggestions.

REFERENCES

[1] T. Erseghe, “A distributed and scalable processing method based upon admm,” IEEE Signal Processing Letters, vol. 19,

no. 9, pp. 563–566, 2012.

[2] R. Carli and G. Notarstefano, “Distributed partition-based optimization via dual decomposition,” in IEEE 52nd Annual

Conference on Decision and Control (CDC), 2013, pp. 2979–2984.

[3] I. Necoara and D. Clipici, “Parallel random coordinate descent method for composite minimization: Convergence analysis

and error bounds,” SIAM Journal on Optimization, vol. 26, no. 1, pp. 197–226, 2016.

[4] M. Todescato, G. Cavraro, R. Carli, and L. Schenato, “A robust block-Jacobi algorithm for quadratic programming under

lossy communications,” in IFAC-PapersOnLine, vol. 48, no. 22. Elsevier, 2015, pp. 126–131.

[5] J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Puschel, “Distributed optimization with local domains: Applications in

MPC and network flows,” IEEE Transactions on Automatic Control, vol. 60, no. 7, pp. 2004–2009, 2015.

[6] I. Notarnicola and G. Notarstefano, “Randomized dual proximal gradient for large-scale distributed optimization,” in IEEE

54th Conference on Decision and Control (CDC), 2015, pp. 712–717.

[7] F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, and L. Schenato, “Asynchronous Newton-Raphson consensus for

distributed convex optimization,” in 3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems,

2012.

[8] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed event-triggered control for multi-agent systems,” IEEE

Transactions on Automatic Control, vol. 57, no. 5, pp. 1291–1297, 2012.

[9] E. Wei and A. Ozdaglar, “On the O(1/k) convergence of asynchronous distributed alternating direction method of

multipliers,” in IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2013, pp. 551–554.

[10] S. Lee and A. Nedić, “Asynchronous gossip-based random projection algorithms over networks,” arXiv preprint

arXiv:1304.1757, 2013.

[11] Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale optimization problems,” SIAM Journal on

Optimization, vol. 22, no. 2, pp. 341–362, 2012.

[12] P. Richtárik and M. Takáč, “Parallel coordinate descent methods for big data optimization,” Mathematical Programming,

pp. 1–52, 2012.

[13] ——, “Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function,”

Mathematical Programming, vol. 144, no. 1-2, pp. 1–38, 2014.

[14] I. Necoara, “Random coordinate descent algorithms for multi-agent convex optimization over networks,” IEEE Transactions

on Automatic Control, vol. 58, no. 8, pp. 2001–2012, 2013.

[15] P. Bianchi, W. Hachem, and F. Iutzeler, “A stochastic primal-dual algorithm for distributed asynchronous composite

optimization,” in GlobalSIP, 2014, pp. 732–736.

[16] A. Patrascu and I. Necoara, “Efficient random coordinate descent algorithms for large-scale structured nonconvex

optimization,” Journal of Global Optimization, vol. 61, no. 1, pp. 19–46, 2015.

[17] F. Facchinei, G. Scutari, and S. Sagratella, “Parallel selective algorithms for nonconvex big data optimization,” IEEE

Transactions on Signal Processing, vol. 63, no. 7, pp. 1874–1889, 2015.

November 19, 2021 DRAFT

16

[18] P. Di Lorenzo and G. Scutari, “NEXT: In-network nonconvex optimization,” IEEE Transactions on Signal and Information

Processing over Networks, vol. 2, no. 2, pp. 120–136, 2016.

[19] G. Binetti, A. Davoudi, D. Naso, B. Turchiano, and F. L. Lewis, “A distributed auction-based algorithm for the nonconvex

economic dispatch problem,” IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1124–1132, 2014.

[20] Y. Nesterov, “Gradient methods for minimizing composite functions,” Mathematical Programming, vol. 140, no. 1, pp.

125–161, 2013.

[21] D. P. Bertsekas, Nonlinear programming. Athena scientific, 1999.

November 19, 2021 DRAFT

	I Introduction
	II Optimization problem set-up
	III Distributed optimization algorithm
	IV Convergence analysis of the Partitioned Coordinate Descent distributed algorithm
	IV-A Coordinate descent method for composite non-convex minimization
	IV-B Proof of Theorem IV.1

	V Numerical simulations on a non-convex constrained quadratic program
	VI Conclusions
	References

