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On the Analysis of a Continuous-Time Bi-Virus Model

Ji Liu, Philip E. Paré, Angelia Nedić, Choon Yik Tang, Carolyn L. Beck, and Tamer Başar∗

Abstract

Motivated by the spread of opinions on different social networks, we study a distributed continuous-time

bi-virus model for a system of groups of individuals. An in-depth stability analysis is performed for more

general models than have been previously considered, for the healthy and epidemic states. In addition,

we investigate sensitivity properties of some nontrivial equilibria and obtain an impossibility result for

distributed feedback control.

1 Introduction

The spread of epidemic processes over large populations is an important research area, and is in fact a widely
studied topic in epidemiology [1]. To model such a process, various epidemic models have been proposed such as
susceptible-infected-recovered (SIR), susceptible-exposed-infected-recovered (SEIR), and susceptible-infected-
susceptible (SIS) models [2–4]. Bernoulli developed one of the first known models inspired by the smallpox
virus [5]. In this paper we focus on continuous time SIS models [6–9]. Such models consist of a number of
agents that are either infected or healthy (susceptible), and cycle back and forth between these two states
depending on their current state, connection to infected neighbors, and infection and healing rates.

The idea of competing SIS virus models has been investigated in [10–13]. The main motivation for studying
these systems has been to understand how competing opinions spread on different social networks. Competing
viruses have also been explored for an SIR model in [14]. In [10], a homogeneous virus model is studied,
that is, one where the infection and healing rates are the same for all agents, with both viruses propagating
over the same undirected graph structure. The set of equilibrium points has been determined and sufficient
conditions for local stability are given for all equilibria except the coexisting equilibrium. In [11], the equilibria
of a heterogeneous virus model, with undirected graph structures for both viruses assumed, are studied. Co-
existence of the epidemic states from both viruses is shown with, however, no stability analysis provided. In [13],
a sufficient condition for the survival of a single virus is given for a model, where it is assumed that the virus,
homogeneous in the healing rate, propagates over undirected, regular graphs. Note all previous work has been
conducted for undirected graph structures with limited/local stability analysis.

In this paper, we study a distributed continuous-time bi-virus model over directed graphs. Consider n > 1
groups of individuals, labeled 1 to n. An individual may be infected by individuals in its own as well as nearest-
neighbor groups. Neighbor relationships among the n groups are described by a directed graph G on n vertices
with an arc (or a directed edge) from vertex j to vertex i whenever the individuals in group i can be infected
by those in group j. Thus, the neighbor graph G has self-arcs at all n vertices and the directions of arcs in G

represent the directions of the epidemic contagion. We assume that G is strongly connected.
One contribution of this paper is the analysis of the equilibria of the bi-virus model over directed graphs

(defined in Section 2) and their stability under appropriate conditions given in Section 3. A second contribution
is the development of a sensitivity result for nontrivial equilibria with respect to the infection rate and healing
rate, δi and βij , in Section 4. An interesting and surprising impossibility result for a distributed feedback
controller is also provided in Section 5. We now begin with some notation and preliminary results.
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1.1 Notation

For any positive integer n, we use [n] to denote the set {1, 2, . . . , n}. We view vectors as column vectors. We
use x′ to denote the transpose of a vector x and, similarly, we use A′ for the transpose of a matrix A. The ith
entry of a vector x will be denoted by xi. The ijth entry of a matrix A will be denoted by aij and, also, by
[A]ij when convenient. We use 0 and 1 to denote the vectors whose entries all equal 0 and 1, respectively, and
I to denote the identity matrix, while the dimensions of the vectors and matrices are to be understood from the
context. For any vector x ∈ IRn, we use diag(x) to denote the n× n diagonal matrix whose ith diagonal entry
equals xi. For any two sets A and B, we use A \ B to denote the set of elements in A but not in B.

For any two real vectors a, b ∈ IRn, we write a ≥ b if ai ≥ bi for all i ∈ [n], a > b if a ≥ b and a 6= b, and
a ≫ b if ai > bi for all i ∈ [n]. Similarly, for any two real matrices A,B ∈ IRm×n, we write A ≥ B if Aij ≥ Bij

for all i ∈ [m] and j ∈ [n], A > B if A ≥ B and A 6= B, and A ≫ B if Aij > Bij for all i ∈ [m] and j ∈ [n].
For a real square matrix M , we use ρ(M) to denote its spectral radius and s(M) to denote the largest real

part among its eigenvalues, i.e.,

ρ(M) = max {|λ| : λ ∈ σ(M)} ,

s(M) = max {Re(λ) : λ ∈ σ(M)} ,

where σ(M) denotes the spectrum of M .
The sign function of a real number x is defined as follows:

sgn(x) =







−1 if x < 0,
0 if x = 0,
1 if x > 0.

Note that for any real number x 6= 0,
d|x|

dx
= sgn(x).

1.2 Preliminaries

For any two nonnegative vectors a and b in IRn, we say that a and b have the same sign pattern if they have
zero entries and positive entries in the same places, i.e., for all i ∈ [n], ai = 0 if and only if bi = 0, and ai > 0
if and only if bi > 0. A square matrix is called irreducible if it cannot be permuted to a block upper triangle
matrix.

Lemma 1 Suppose that Mx = y where M ∈ IRn×n is an irreducible nonnegative matrix and x, y > 0 are two
vectors in IRn. If x has at least one zero entry, then x and y cannot have the same sign pattern. In particular,
there exists an index i ∈ [n] such that xi = 0 and yi > 0.

Proof: Suppose, to the contrary, that for all i ∈ [n] such that xi = 0, yi = 0. Since x has at least one zero
entry and x > 0, there exists a proper nonempty subset E ⊂ [n] such that for any i ∈ E , xi = 0, and for any
i ∈ [n] \ E , xi > 0. It follows that for any i ∈ E , yi = 0. Without loss of generality, set E = {1, 2, . . . ,m},
1 ≤ m < n. Then,

Mx =

[

A B

C D

]

=

[

0

x̄

]

= y =

[

0

ȳ

]

,

with A,D ≥ 0, B,C > 0, x̄ ≫ 0, and ȳ ≥ 0. This implies B = 0, which is a contradiction since M is an
irreducible matrix. Therefore, there exists an index i ∈ [n] such that xi = 0 and yi > 0, and thus x and y

cannot have the same sign pattern.
A real square matrix is called Metzler if its off-diagonal entries are all nonnegative. We will use the following

important properties of Metzler matrices.

Lemma 2 (Lemma 2.3 in [15]) Suppose that M is an irreducible Metzler matrix. Then, s(M) is a simple
eigenvalue of M and there exists a unique (up to scalar multiple) vector x ≫ 0 such that Mx = s(M)x.

Lemma 3 (Section 2.1 in [15]) Suppose that M is an irreducible Metzler matrix in IRn×n and x > 0 is a vector
in IRn. If Mx < λx, then s(M) < λ. If Mx = λx, then s(M) = λ. If Mx > λx, then s(M) > λ.



Proposition 1 Suppose that Λ is a negative diagonal matrix in IRn×n and N is an irreducible nonnegative
matrix in IRn×n. Let M = Λ + N . Then, s(M) < 0 if and only if ρ(−Λ−1N) < 1, s(M) = 0 if and only if
ρ(−Λ−1N) = 1, and s(M) > 0 if and only if ρ(−Λ−1N) > 1.

Proof: Suppose that Λ is a negative diagonal matrix in IRn×n and N is an irreducible nonnegative matrix
in IRn×n. Let M = Λ + N . By Theorem 3.29 in [15], s(M) < 0 if and only if ρ(−Λ−1N) < 1. To prove the
proposition, it is enough to show that s(M) = 0 if and only if ρ(−Λ−1N) = 1.

First suppose that s(M) = 0. Set Λε = Λ − εI with ε > 0. Let Mε = Λε + N = Λ − εI + N .
Then, limε→0+ ρ(−Λ−1

ε N) = ρ(−Λ−1N). Since ε > 0, s(Mε) < 0. Then, ρ(−Λ−1
ε N) < 1 and, therefore,

limε→0+ ρ(−Λ−1
ε N) ≤ 1. Thus, ρ(−Λ−1N) ≤ 1. To prove that ρ(−Λ−1N) = 1, suppose that, to the contrary,

ρ(−Λ−1N) < 1. Then, s(M) < 0, which is a contradiction. Therefore, ρ(−Λ−1N) = 1.
Now suppose that ρ(−Λ−1N) = 1. Again set Λε = Λ − εI with ε > 0 and Mε = Λε + N . Then,

limε→0+ s(Mε) = s(M). Since ε > 0, −Λ−1
ε N is a nonnegative matrix. Since N is irreducible and nonnegative,

so is −Λ−1
ε N . Note that the ith diagonal entry of −Λε is strictly larger than the ith diagonal entry of −Λ

since ε > 0. Thus, −Λ−1N > −Λ−1
ε N . By the Perron-Frobenius Theorem for irreducible nonnegative matrices,

ρ(−Λ−1
ε N) < 1. Then, s(Mε) < 0 and, thus, limε→0+ s(Mε) ≤ 0. Thus, s(M) ≤ 0. To prove that s(M) = 0,

suppose that, to the contrary, s(M) < 0. Then, ρ(−Λ−1N) < 1, which is a contradiction. Therefore, s(M) = 0.

Lemma 4 (Proposition 2 in [16]) Suppose that M is an irreducible Metzler matrix such that s(M) < 0. Then,
there exists a positive diagonal matrix P such that M ′P + PM is negative definite.

Lemma 5 (Lemma A.1 in [17]) Suppose that M is an irreducible Metzler matrix such that s(M) = 0. Then,
there exists a positive diagonal matrix P such that M ′P + PM is negative semi-definite.

2 The Bi-Virus Model

As noted in the introduction, we are interested in the following continuous-time distributed model for two
competing viruses, first proposed in a less general form in [10]:

ẋ1
i (t) = −δ1i x

1
i (t) + (1− x1

i (t)− x2
i (t))

n
∑

j=1

β1
ijx

1
j (t),

ẋ2
i (t) = −δ2i x

2
i (t) + (1− x2

i (t)− x1
i (t))

n
∑

j=1

β2
ijx

2
j (t),

(1)

where x1
i (t), x

2
i (t) are the probabilities that agent i has virus 1 or 2, respectively, each virus has its own non-

symmetric infection rates incorporating the nearest-neighbor graph structures β1
ij , β

2
ij , healing rates δ1i , δ

2
i , and

x1
i (0), x

2
i (0), (1 − x1

i (0)− x2
i (0)) ∈ [0, 1], i ∈ [n]. The model can be written in matrix form as

ẋ1(t) = (−D1 +B1 −X1(t)B1 −X2(t)B1)x1(t),

ẋ2(t) = (−D2 +B2 −X2(t)B2 −X1(t)B2)x2(t),
(2)

where xk(t) ∈ [0, 1]n, Bk is the matrix of βk
ij ’s, X

k(t) = diag(xk(t)), and Dk = diag(δk), with k = 1, 2 indicating

virus 1 or 2. Note that if x2(t) = 0, the above model recovers the single virus model,

żi(t) = −δizi(t) + (1− zi(t))

n
∑

j=1

βijzj(t), (3)

where zi(t) is the probability that agent i has the single virus, βij are the infection rates, δi are the healing
rates, and zi(0) ∈ [0, 1], i ∈ [n], or in matrix form

ż(t) = (−D +B − Z(t)B) z(t). (4)

If we further factor the βij into βiaij , where βi is the infection rate of agent i and the aij defines the connection
structure between agents, we recover the standard, single SIS model [7]. We impose the following assumptions
on the parameters.



Assumption 1 For all i ∈ [n], we have δ1i , δ
2
i ≥ 0. The matrices B1 and B2 are nonnegative and irreducible.

The nonnegativity assumption on the matrix Bk is equivalent to βk
ij ≥ 0 for all k ∈ [2] and i, j ∈ [n]. The

assumption of an irreducible matrix Bk is equivalent to a strongly connected spreading graph for virus k, k ∈ [2].

Lemma 6 Suppose that Assumption 1 holds. Then, x1
i (t), x

2
i (t), x

1
i (t) + x2

i (t) ∈ [0, 1] for all i ∈ [n] and t ≥ 0.

Proof: Suppose that at some time τ , x1
i (τ), x

2
i (τ), x

1
i (τ) + x2

i (τ) ∈ [0, 1] for all i ∈ [n]. Consider an index
i ∈ [n]. If x1

i (τ) = 0, then from (1) and Assumption 1, ẋ1
i (τ) ≥ 0. The same holds for x2

i (τ) and x1
i (τ) + x2

i (τ).
If x1

i (τ) = 1, then from (1) and Assumption 1, ẋ1
i (τ) ≤ 0. The same holds for x2

i (τ) and x1
i (τ) + x2

i (τ). It
follows that x1

i (t), x
2
i (t), x

1
i (t) + x2

i (t) will be in [0, 1] for all times t ≥ τ . Since the above arguments hold
for all i ∈ [n], x1

i (t), x
2
i (t), x

1
i (t) + x2

i (t) will be in [0, 1] for all i ∈ [n] and t ≥ τ . Since it is assumed that
x1
i (0), x

2
i (0), x

1
i (0) + x2

i (0) ∈ [0, 1] for all i ∈ [n], it follows that x1
i (t), x

2
i (t), x

1
i (t) + x2

i (t) ∈ [0, 1] for all i ∈ [n]
and t ≥ 0.

Lemma 6 implies that the set

D = {(x1, x2)|x1
i ≥ 0, x2

i ≥ 0, x1
i + x2

i ≤ 1 ∀i ∈ [n]}

= {(x1, x2) | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1} (5)

is invariant with respect to the system defined by (2). Since x1
i and x2

i denote the probability of agent i being
infected by virus 1 or 2, respectively, and 1 − x1

i − x2
i denotes the probability of agent i being healthy, it is

natural to assume that their initial values are in [0, 1], since otherwise the values will lack any physical meaning
for the epidemic model considered here. Therefore, in this paper, we will focus on the analysis of (2) only on
the domain D, as defined in (5).

3 Equilibria and Their Stability

It can be seen that x1 = x2 = 0 is an equilibrium of the system (2), which corresponds to the case when no
individual is infected. We call this trivial equilibrium the healthy state. It will be shown that (2) also admits
nonzero equilibria under appropriate assumptions. We call those nonzero equilibria epidemic states. In this
section, we study the stability of the healthy state as well as the epidemic states of (2). To state our results,
we need the following definition.

Definition 1 Consider an autonomous system

ẋ(t) = f(x(t)), (6)

where f : X → IRn is a locally Lipschitz map from a domain X ⊂ IRn into IRn. Let z be an equilibrium of
(6) and E ⊂ X be a domain containing z. When the equilibrium z is asymptotically stable such that for any
x(0) ∈ E we have limt→∞ x(t) = z, then E is said to be a domain of attraction for z.

Proposition 2 Let z be an equilibrium of (6) and E ⊂ X be a domain containing z. Let V : E → IR be a
continuously differentiable function such that V (z) = 0, V (x) > 0 in E \{z}, V̇ (z) = 0, and V̇ (x) < 0 in E \{z}.
If E is an invariant set, then the equilibrium z is asymptotically stable with domain of attraction E.

This proposition is a direct consequence of Lyapunov’s stability theorem (see Theorem 4.1 in [18]) and the
definition of domain of attraction.

Theorem 1 Suppose that Assumption 1 holds. If s(−D1 + B1) ≤ 0 and s(−D2 + B2) ≤ 0, then the healthy
state is the unique equilibrium of (2), which is asymptotically stable with domain of attraction D, as defined in
(5).

To prove the theorem, we need the following result for the single virus model (4).

Proposition 3 Consider the single-virus model (4). Suppose that δi ≥ 0 for all i ∈ [n], and that the matrix
B is nonnegative and irreducible. If s(−D + B) ≤ 0, then 0 is asymptotically stable with domain of attraction
[0, 1]n.



This result has been proved in [17,19] for the case when δi > 0 for all i ∈ [n]. We extend the result by allowing
δi = 0.

Proof: We first consider the case when s(−D+B) < 0. Since (−D+B) is an irreducible Metzler matrix, by
Lemma 4, there exists a positive diagonal matrix P such that (−D + B)′P + P (−D + B) is negative definite.
Consider the Lyapunov function V (x(t)) = x(t)′Px(t). From (4), when x(t) 6= 0,

V̇ (x(t)) = 2x(t)′P (−D +B −X(t)B)x(t)

< −2x(t)′PX(t)Bx(t)

≤ 0.

Thus, in this case, V̇ (x(t)) < 0 if x(t) 6= 0. By Lemma 6 and Proposition 2, x = 0 is asymptotically stable with
domain of attraction [0, 1]n.

Next we consider the case when s(−D + B) = 0. Since (−D + B) is an irreducible Metzler matrix, by
Lemma 5, there exists a positive diagonal matrix P such that (−D + B)′P + P (−D + B) is negative semi-
definite. Consider the Lyapunov function V (x(t)) = x(t)′Px(t). From (4),

V̇ (x(t)) = 2x(t)′P (−D +B −X(t)B)x(t)

= x(t)′ ((−D +B)′P + P (−D +B)) x(t)− 2x(t)′PX(t)Bx(t)

≤ 0.

We claim that V̇ (x(t)) < 0 if x(t) 6= 0. To establish this claim, we first consider the case when x(t) ≫ 0.
Since B is nonnegative and irreducible, Bx(t) ≫ 0. Since P is a positive diagonal matrix, it follows that
x(t)′PX(t)Bx(t) > 0, so V̇ (x(t)) < 0. Next we consider the case when x(t) > 0 and x(t) has at least one
zero entry. Since (−D + B) is an irreducible Metzler matrix and P is a positive diagonal matrix, (−D +
B)′P + P (−D + B) is a symmetric irreducible Metzler matrix. Since (−D + B)′P + P (−D + B) is negative
semi-definite, it follows that s((−D + B)′P + P (−D + B)) = 0. By Lemma 2, 0 is a simple eigenvalue of
(−D+B)′P +P (−D+B) and it has a unique (up to scalar multiple) strictly positive eigenvector corresponding
to the eigenvalue 0. Thus, x(t)′ ((−D +B)′P + P (−D +B)) x(t) < 0 when x(t) > 0 and x(t) has at least one
zero entry. Therefore, V̇ (x(t)) < 0 if x(t) 6= 0. By Lemma 6 and Proposition 2, x = 0 is asymptotically stable
with domain of attraction [0, 1]n.

Now we are in a position to prove Theorem 1.
Proof of Theorem 1: To prove the theorem, it is sufficient to show that both x1

i (t) and x2
i (t) will asymptot-

ically converge to 0 as t → ∞ for any initial condition.
Since x1

i (t) and x2
i (t) are always nonnegative by Lemma 6, from (1),

ẋ1
i (t) ≤ −δ1i x

1
i (t) + (1− x1

i (t))

n
∑

j=1

β1
ijx

1
j (t),

ẋ2
i (t) ≤ −δ2i x

2
i (t) + (1− x2

i (t))

n
∑

j=1

β2
ijx

2
j (t),

which imply that each of the trajectories of x1
i (t) and x2

i (t) is bounded above by a single-virus model. From
Assumption 1 and Proposition 3, both x1

i (t) and x2
i (t) will asymptotically converge to 0 as t → ∞, and thus

the healthy state is the unique equilibrium of (2).
For the healthy state, we can show this condition is also necessary.

Theorem 2 Suppose that Assumption 1 holds. Then, the healthy state is the unique equilibrium of (2) if and
only if s(−D1 +B1) ≤ 0 and s(−D2 +B2) ≤ 0.

This theorem is a consequence of the following result.

Proposition 4 Consider the single-virus model (4). Suppose that δi ≥ 0 for all i ∈ [n], and that the matrix B

is nonnegative and irreducible. If s(−D+B) > 0, then (4) has two equilibria, 0 and x∗ which satisfies x∗ ≫ 0.

This result has been proved in [19] for the case when δi > 0 for all i ∈ [n]. We extend the result by allowing
δi = 0, inspired by the technique used in [19]. To prove Proposition 4, we need the following lemma.



Lemma 7 Consider the single-virus model (4). Suppose that δi ≥ 0 for all i ∈ [n], and that the matrix B is
nonnegative and irreducible. If x∗ is a nonzero equilibrium of (4), then x∗ ≫ 0.

Proof: Suppose that x∗ is a nonzero equilibrium of (4). By Lemma 6, it must be true that x∗ ≥ 0. To prove
x∗ ≫ 0, suppose that, to the contrary, x∗ has at least one zero entry. Without loss of generality, set x∗

1 = 0.
Since x∗ is an equilibrium of (4), from (3),

−δ1x
∗

1 + (1− x∗

1)

n
∑

j=1

β1jx
∗

j =

n
∑

j=1

β1jx
∗

j = 0.

It follows that for any j ∈ [n] such that β1j > 0, x∗

j = 0. By repeating this argument, since B is irreducible, we
have x∗

i = 0 for all i ∈ [n]. But it contradicts the assumption that x∗ is nonzero. Thus, x∗ ≫ 0.
Proof of Proposition 4: It is enough to show that if s(−D + B) > 0, there exists a unique strictly positive

equilibrium. We first show that there exists an x∗ ≫ 0 which is an equilibrium of (4).
Any equilibrium x∗ of (4) must satisfy

(−D +B)x∗ = X∗Bx∗,

or equivalently,
Bx∗ = Dx∗ +X∗Bx∗.

Let c > 0 be any positive constant such that

s(−D +B)− c > 0. (7)

Such a constant c always exists since s(−D +B) > 0. Set

D̄ = D + cI.

Then,
Bx∗ = D̄x∗ +X∗Bx∗ − cx∗.

From Assumption 1, D is a nonnegative diagonal matrix. Thus, D̄ is nonsingular and D̄−1 is also a positive
diagonal matrix. It follows that

D̄−1Bx∗ = x∗ + D̄−1X∗Bx∗ − cD̄−1x∗

= x∗ +X∗D̄−1Bx∗ − cD̄−1x∗

= x∗ + diag(D̄−1Bx∗)x∗ − cD̄−1x∗

= (I − cD̄−1 + diag(D̄−1Bx∗))x∗.

Since D̄ = D+ cI and D is nonnegative, it follows that I − cD̄−1 is a nonnegative diagonal matrix. In the case
when x∗ ≫ 0, since D−1 is a positive diagonal matrix and B is an irreducible nonnegative matrix, it follows
that diag(D̄−1Bx∗) is a positive diagonal matrix. Therefore (I − cD̄−1 + diag(D̄−1Bx∗)) a positive diagonal
matrix and is invertible, which implies

x∗ =
(

I − cD̄−1 + diag(D̄−1Bx∗)
)−1

D̄−1Bx∗.

Consider the above equation and define a map f : (0, 1]n → [0, 1]n given by

f(x) =
(

I − cD̄−1 + diag(D̄−1Bx)
)−1

D̄−1Bx.

Note that the ith entry of f(x), denoted by fi(x), is given by

fi(x) =

(

D̄−1Bx
)

i

1− c
c+δi

+
(

D̄−1Bx
)

i

.

Since D̄−1 and B are both nonnegative, for any y ≥ z in (0, 1]n, fi(y) ≥ fi(z), so f(y) ≥ f(z).



Since D̄−1B is an irreducible nonnegative matrix, from the Perron-Frobenius Theorem, there exists v ≫ 0

such that
D̄−1Bv = rv, (8)

where
r = ρ(D̄−1B).

Since s(−D̄ + B) = s(−D + B) − c, from (7), s(−D̄ + B) > 0. By Proposition 1, it follows that r > 1. Then,
we can always find an ε > 0 such that for each i ∈ [n],

εvi ≤
r − 1

r
. (9)

From this,

1 ≤
r

1 + εrvi
,

and thus,

εvi ≤
εrvi

1 + εrvi
.

From (8),

εvi ≤

(

D̄−1Bεv
)

i

1 +
(

D̄−1Bεv
)

i

≤

(

D̄−1Bεv
)

i

1− c
c+δi

+
(

D̄−1Bεv
)

i

,

which implies that εv ≤ f(εv). It follows from (9) that εv ≪ 1. Since we have shown that for any y ≥ z in
(0, 1]n, f(y) ≥ f(z). It follows that f maps the compact set C = {x | εv ≤ x ≤ 1} to itself. By Brouwer’s
fixed-point theorem, f has a fixed point in C, which must be strictly positive.

To prove the proposition, it remains to be shown that the fixed point is unique. Suppose that x and y are
both nonzero equilibria of (4). From Lemma 7, it follows that x, y ≫ 0. Set

κ = max
i∈[n]

xi

yi
.

Then, x ≤ κy, and there exists a j ∈ [n] for which xj = κyj. We claim that κ ≤ 1. To establish this claim,
suppose that, to the contrary, κ > 1. Since x is a fixed point of f and for any u ≥ v in (0, 1]n, fj(u) ≥ fj(v) for
all j ∈ [n], it follows that

xj =

(

D̄−1Bx
)

j

1− c
c+δi

+
(

D̄−1Bx
)

j

≤

(

D̄−1Bκy
)

j

1− c
c+δi

+
(

D̄−1Bκy
)

j

=
κ
(

D̄−1By
)

j

1− c
c+δi

+ κ
(

D̄−1By
)

j

.

By the assumption κ > 1 we have,

κ
(

D̄−1By
)

j

1− c
c+δi

+ κ
(

D̄−1By
)

j

<
κ
(

D̄−1By
)

j

1− c
c+δi

+
(

D̄−1By
)

j

.

Since y is a fixed point of f ,
(

D̄−1By
)

j

1− c
c+δi

+
(

D̄−1By
)

j

= yj.

Then, it follows that

xj <
κ
(

D̄−1By
)

j

1− c
c+δi

+
(

D̄−1By
)

j

= κyj = xj ,



which is a contradiction. Therefore, κ ≤ 1, which implies that x ≤ y. Using the same arguments, it also can be
shown that y ≤ x. Thus, x = y, which establishes the uniqueness of the positive equilibrium.

Proof of Theorem 2: It has been shown in Theorem 1 that if s(−D1 + B1) ≤ 0 and s(−D2 + B2) ≤ 0, the
healthy state is the unique equilibrium of (2). Thus, to prove the theorem, it is sufficient to show that if either
s(−D1 +B1) > 0 or s(−D2 +B2) > 0, the system (2) admits an epidemic state.

Without loss of generality, suppose that s(−D1 + B1) > 0. Set x2 = 0. Then, the dynamics of x1

simplifies to a single-virus system, which admits an epidemic state by Proposition 4. Therefore, in the case
when s(−D1 +B1) > 0, the system (2) always admits an equilibrium of the form (x̃1,0) with x̃1 ≫ 0.

Now we turn to the analysis of epidemic states.

Theorem 3 Suppose that Assumption 1 holds. If s(−D1 + B1) > 0 and s(−D2 + B2) ≤ 0, then (2) has two
equilibria, the healthy state (0,0), which is asymptotically stable with domain of attraction {(0, x2)|x2 ∈ [0, 1]n},
and a unique epidemic state of the form (x̃1,0) with x̃1 ≫ 0, which is asymptotically stable with domain of
attraction D \ {(0, x2)|x2 ∈ [0, 1]n}, with D defined in (5).

To prove the theorem, we need the following result for the single-virus model (4).

Proposition 5 Consider the single-virus model (4). Suppose that δi ≥ 0 for all i ∈ [n], and that the matrix
B is nonnegative and irreducible. If s(−D + B) > 0, then the epidemic state x∗ is asymptotically stable with
domain of attraction [0, 1]n \ {0}.

This result has been proved in [17,19] for the case when δi > 0 for all i ∈ [n]. We extend the result by allowing
δi = 0. To prove Proposition 5, we need the following lemma.

Lemma 8 Consider the single-virus model (4). Suppose that δi ≥ 0 for all i ∈ [n], and that the matrix B is
nonnegative and irreducible. If x(0) 6= 0, then there exists a τ ≥ 0 such that x(τ) ≫ 0.

Proof: If x(0) ≫ 0, then the lemma is true with τ = 0. Suppose that x(0) > 0. Let F(t) be the set of all
those labels i ∈ [n] such that xi(t) = 0. Since x(0) > 0, the set F(0) is nonempty. In other words, xi(t) = 0 for
all i ∈ F(t) and xi(t) > 0 for all i ∈ [n] \ F(t). Since x(0) 6= 0 and the matrix B is irreducible by Assumption
1, there exists at least one label j ∈ F(0) such that j has a nonzero neighbor k, i.e., xj(0) = 0, xk(0) > 0,
and βjk > 0. From (3), it follows that ẋj(0) > 0. Thus, there must exist a τ1 > 0 such that xj(τ1) > 0 and
xi(τ1) > 0 for all i ∈ [n] \ F(0). This implies that F(τ1) is a proper subset of F(0). Note that F(0) is a finite
set. By repeating the above arguments, there exists a τ > 0 such that F(τ) is the empty set, which implies that
xi(τ) > 0 for all i ∈ [n].

Proof of Proposition 5: Let yi(t) = xi(t)− x∗

i for all i ∈ [n]. Set y(t) = x(t)− x∗ and let Y (t) = diag(yi(t))
and X∗ = diag(x∗

i ). Note that
(−D +B −X∗B) x∗ = 0. (10)

Then,

ẏ(t) = (−D +B − (Y (t) +X∗)B) (y(t) + x∗)

= (−D + (I −X∗)B − Y (t)B) y(t)− Y (t)Bx∗

= (−D + (I −X∗)B) y(t)− Y (t)Bx(t)

= (−D + (I −X∗)B − diag(Bx(t))) y(t).

Thus, for all i ∈ [n],

ẏi(t) = −δiyi(t) + (1− x∗

i )

n
∑

j=1

βijyj(t)−





n
∑

j=1

βijxj(t)



 yi(t).

By Lemma 4, we have x∗

i > 0 for all i ∈ [n]. Consider the Lyapunov function

V (y(t)) = max
k∈[n]

|yk(t)|

x∗

k

.



Then, V (y(t)) ≥ 0 with equality if and only if y(t) = 0 (or equivalently, x(t) = x∗). For any time t, without
loss of generality, let m be an index in [n] for which

|ym(t)|

x∗
m

= V (y(t)) = max
k∈[n]

|yk(t)|

x∗

k

.

Then, for all i ∈ [n],
|yi(t)| ≤ V (y(t))x∗

i .

Thus, when |ym(t)| > 0 (or equivalently, V (y(t)) > 0),

V̇ (y(t)) =
1

x∗
m

·
d|ym(t)|

dt

=
1

x∗
m

sgn(ym(t))ẏm(t) (11)

=
1

x∗
m

sgn(ym(t))

(

− δmym(t) + (1− x∗

m)

n
∑

j=1

βmjyj(t)−

(

n
∑

j=1

βmjxj(t)

)

ym(t)

)

=
1

x∗
m

(

− δm|ym(t)|+ (1− x∗

m)

n
∑

j=1

βmjyj(t)sgn(ym(t))−

(

n
∑

j=1

βmjxj(t)

)

|ym(t)|

)

≤
1

x∗
m

(

− δm|ym(t)|+ (1− x∗

m)

n
∑

j=1

βmj |yj(t)|

)

−
1

x∗
m

(

n
∑

j=1

βmjxj(t)

)

|ym(t)|

≤
V (y(t))

x∗
m

(

− δmx∗

m + (1− x∗

m)

n
∑

j=1

βmjx
∗

j

)

−
1

x∗
m

(

n
∑

j=1

βmjxj(t)

)

|ym(t)|

= −
1

x∗
m

(

n
∑

j=1

βmjxj(t)

)

|ym(t)| (12)

≤ 0.

From (11) and the definition of yi(t), it is straightforward to verify that V̇ (y(t)) = 0 in the case when x(t) = 0.
Next we consider the case when x(t) ≫ 0. From (12), since the matrix B is irreducible by Assumption 1 and
x∗ ≫ 0 by Lemma 4, it can be seen that V̇ (y(t)) < 0 if x(t) does not equal x∗.

Recall that by Lemma 8, as long as x(0) 6= 0, there always exists a finite time t0 at which x(t0) ≫ 0. From
Lemma 6 and Proposition 2, to prove the theorem, it remains to be shown that the system (4) is invariant on
a compact subset of (0, 1]n. Without loss of generality, suppose that x(0) ≫ 0. Let ε be a nonnegative real
number such that

ε = max
k∈[n]

|xk(0)− x∗

k|

x∗

k

.

Consider the compact set
B = {x | V (x(t)) ≤ ε} ⊂ [0, 1]n.

Note that

V (x(t)) = max
k∈[n]

|xk(t)− x∗

k|

x∗

k

.

It follows that for any z1 ∈ B and z2 ∈ [0, 1]n\B, V (z1) < V (z2). Since we have shown that V̇ (t) < 0 if x(t) ≫ 0

and x(t) 6= x∗, there cannot exist a trajectory from x(0) to any point in [0, 1]n \ B. Since the above arguments
hold for any x(0) ≫ 0, such a compact set B always exists and the system (4) is invariant on B ⊂ (0, 1]n.

We are now in a position to provide a sketch of the proof for Theorem 3.
Sketched proof of Theorem 3: From the proof of Theorem 1, x2(t) will asymptotically converge to 0 as t → ∞

for all initial values (x1(0), x2(0)) ∈ {(0, x2)|x2 ∈ [0, 1]n}. From (2),

ẋ1(t) = (−D1 +B1 −X1(t)B1)x1(t)−X2(t)B1x1(t).



Thus, we can regard the dynamics of x1(t) as an autonomous system

ẋ1(t) = (−D1 +B1 −X1(t)B1)x1(t), (13)

with a vanishing perturbation −X2(t)B1x1(t), which converges to 0 as t → ∞. From Proposition 5, the
autonomous system (13) will asymptotically converge to a unique epidemic state x̃1 ≫ 0 for any x1(0) ∈
[0, 1]n \ {0}. It can then be shown that (x1(t), x2(t)) will asymptotically converge to the unique epidemic state
(x̃1,0) for any (x1(0), x2(0)) ∈ D \ {(0, x2)|x2 ∈ [0, 1]n}, with D defined in (5).

It is clear from the preceding results that as long as one of s(−Dk +Bk), k ∈ {1, 2}, is less than or equal to
zero, at most one virus will ultimately spread over the network. A natural question is whether the two viruses
can coexist when s(−Dk +Bk), k ∈ {1, 2}, are both larger than zero. In the following, we will partially answer
this question. We begin with a result regarding non-coexisting equilibria.

Let (x̃1, x̃2) be an equilibrium of (2). Here, both x̃1 and x̃2 can be 0. Then, the Jacobian matrix of the
equilibrium, denoted J(x̃1, x̃2) is

J(x̃1, x̃2) =

[

(I − X̃1 − X̃2)B1 −D1 − B̃1 −B̃1

−B̃2 (I − X̃1 − X̃2)B2 −D2 − B̃2

]

, (14)

where B̃i = diag(Bix̃i), i ∈ [2].

Theorem 4 Suppose that Assumption 1 holds. If s(−D1+B1) > 0 and s(−D2+B2) > 0, then (2) has at least
three equilibria, the healthy state (0,0), and two epidemic states of the form (x̃1,0) with x̃1 ≫ 0 and (0, x̃2)
with x̃2 ≫ 0. The healthy state (0,0) is unstable.

Proof: The existence of the two epidemic states is an immediate consequence of Proposition 4. The healthy
state (0,0) is always an equilibrium of (2). Since by (14)

J(0,0) =

[

−D1 +B1 0
0 −D2 +B2

]

,

which is unstable as s(−D1 +B1) > 0 and s(−D2 +B2) > 0, the healthy state (0,0) is unstable.
It turns out that non-coexisting equilibria may not exist even though s(−Dk + Bk), k ∈ {1, 2}, are both

larger than zero, as shown in the following special case.

Assumption 2 Viruses 1 and 2 spread over the same strongly connected directed graph G = ([n], E), with
δ1i = δ1 > 0 and δ2i = δ2 > 0 for all i ∈ [n], and β1

ij = β1 > 0 and β2
ij = β2 > 0 for all (i, j) ∈ E.

Under Assumption 2, it should be clear that D1 = δ1I, D2 = δ2I, B1 = β1A, and B2 = β2A, where A is the
adjacency matrix of G, which is an irreducible Metzler matrix.

Theorem 5 Suppose that Assumption 2 holds. Then, coexisting equilibria may exist only if δ1

β1 = δ2

β2 .

This result has been proved in [10] for the case when G is an undirected graph. We extend the result by allowing
G to be directed. To prove the theorem, we need the following lemma.

Lemma 9 Suppose that Assumption 2 holds. If (x̃1, x̃2) is an equilibrium of (2), then x̃1 + x̃2 ≪ 1.

Proof: To prove the lemma, suppose that, to the contrary, for some time τ ≥ 0, there exists some i ∈ [n]
such that x̃1

i (τ)+ x̃2
i (τ) = 1. Then, from (1), ˙̃x1

i (τ), ˙̃x
2
i (τ) < 0. But this contradicts the hypothesis that (x̃1

i , x̃
2
i )

is an equilibrium. Therefore, x̃1(τ) + x̃2(τ) ≪ 1.
Proof of Theorem 5: To prove the theorem, suppose that, to the contrary, there exists an equilibrium (x̃1, x̃2)

such that x̃1, x̃2 > 0 in the case when δ1

β1 6= δ2

β2 . From (2) and Assumption 2,

(I − X̃1 − X̃2)Ax̃1 =
δ1

β1
x̃1,

(I − X̃1 − X̃2)Ax̃2 =
δ2

β2
x̃2.



From Lemma 9, (I − X̃1 − X̃2) is a positive diagonal matrix, and thus (I − X̃1 − X̃2)A is also an irreducible

Metzler matrix. Since x̃1, x̃2 > 0, from Proposition 3, s((I − X̃1 − X̃2)A) = δ1

β1 = δ2

β2 , which is impossible

because of the hypothesis that δ1

β1 6= δ2

β2 . Therefore, coexisting equilibria may exist only if δ1

β1 = δ2

β2 .

Without loss of generality we assume s(A) > δ1

β1 > δ2

β2 .

Theorem 6 Suppose that Assumption 2 holds and that s(A) > δ1

β1 > δ2

β2 . Then, system (2) has three equilibria,

the healthy state (0,0) which is unstable, (x̃1,0) with x̃1 ≫ 0 which is unstable, and (0, x̃2) with x̃2 ≫ 0 which
is locally exponentially stable.

This result has been proved in [10] for the case when G is an undirected graph. We extend the result by allowing
G to be directed with a proof technique similar to [10].

Proof: From Theorem 5, the system (2) cannot have any equilibria of the form (x̃1, x̃2) with x̃1, x̃2 > 0.
Thus, if (x̃1, x̃2) is an equilibrium of (2), at least one of x̃1 and x̃2 equals 0. It is clear that (0,0) is always an
equilibrium. Suppose that x̃1 = 0 and x̃2 > 0. Then, from Proposition 4, it must be true that x̃2 ≫ 0 and is
unique. Similarly, in the case when x̃1 > 0 and x̃2 = 0, it must be true that x̃1 ≫ 0 and is unique. Thus, the
system (2) has only three equilibria.

Next we turn to the local stability of the three equilibria. Note that from Assumption 2, the hypothesis

s(A) > δ1

β1 > δ2

β2 implies that s(−D1 + B1), s(−D2 + B2) > 0. Then, from Theorem 4, the healthy state (0,0)
is unstable.

From (14), the Jacobian at (x̃1,0) equals

[

β1(I − X̃1)A− δ1I − β1diag(Ax̃1) −β1diag(Ax̃1)

0 β2(I − X̃1)A− δ2I

]

.

From (2) and Assumption 2,

(I − X̃1)Ax̃1 =
δ1

β1
x̃1.

It follows from Lemma 9 that (I − X̃1)A is an irreducible Metzler matrix. Then, from Proposition 3, s((I −

X̃1)A) = δ1

β1 . Since s(A) > δ1

β1 > δ2

β2 , it follows that

s(β2(I − X̃1)A− δ2I) = β2s((I − X̃1)A)− δ2

= β2

(

δ1

β1
−

δ2

β2

)

> 0,

which implies that the Jacobian matrix is unstable. Thus, the equilibrium (x̃1,0) with x̃1 ≫ 0 is unstable.
From (14), the Jacobian at (0, x̃2) equals

[

β1(I − X̃2)A− δ1I 0

−β2diag(Ax̃2) β2(I − X̃2)A− δ2I − β2diag(Ax̃2)

]

.

Using the same arguments as in the previous paragraph, s(β1(I − X̃2)A− δ1I) < 0. From (2) and Assumption
2,

(I − X̃2)Ax̃2 =
δ2

β2
x̃2.

Since x̃2 ≫ 0 and A is irreducible, it must be true that

(

β2(I − X̃2)A− δ2I − β2diag(Ax̃2)
)

x̃2 < 0.

It follows from Lemma 9 that β2(I − X̃2)A − δ2I − β2diag(Ax̃2) is an irreducible Metzler matrix. Then, from
Proposition 3, s(β2(I− X̃2)A−δ2I−β2diag(Ax̃2)) < 0, which implies that the Jacobian matrix is stable. Thus,
the equilibrium (0, x̃2) with x̃2 ≫ 0 is locally exponentially stable.

For possible coexisting equilibria, we have the following interesting result.



Theorem 7 Suppose that Assumption (2) holds and that s(A) > δ1

β1 = δ2

β2 . If (x̃1, x̃2) with x̃1, x̃2 > 0 is an

equilibrium of (2), then x̃1, x̃2 ≫ 0 and x̃1 = αx̃2 for some constant α > 0.

Proof: From the proof of Theorem 5,

(I − X̃1 − X̃2)Ax̃1 =
δ1

β1
x̃1,

(I − X̃1 − X̃2)Ax̃2 =
δ2

β2
x̃2,

(15)

in which (I − X̃1− X̃2)A is an irreducible Metzler matrix. From Lemma 2, it must be true that x̃1, x̃2 ≫ 0 and
x̃1 = αx̃2 for some constant α > 0.

Remark 1 Note, from (14) and (15), it can be verified that

J(x̃1, x̃2)

[

x̃1

−x̃1

]

= 0×

[

x̃1

−x̃1

]

,

i.e., the Jacobian matrix has a zero eigenvalue. Therefore nothing can be said about the local stability of the
coexisting equilibria. Simulations indicate that, depending on the initial condition, the system can arrive at
different equilibria of the form x̃1 = αx̃2 for different constants α > 0.

A similar result can be established for another special case, as specified by the following assumption.

Assumption 3 Viruses 1 and 2 spread over the same strongly connected directed graph G = ([n], E), with
δ1i = δ2i > 0 for all i ∈ [n], and β1

ij = β2
ij for all (i, j) ∈ E.

Under Assumption 3, we have D1 = D2 = D and B1 = B2 = B, where D is a positive diagonal matrix and B

is an irreducible Metzler matrix.

Theorem 8 Suppose that Assumption (3) holds and that s(−D + B) > 0. If (x̃1, x̃2) is an equilibrium of (2)
with x̃1, x̃2 > 0, then x̃1, x̃2 ≫ 0, x̃1 + x̃2 is unique, and x̃1 = αx̃2 for some constant α > 0.

Proof: From (2) and Assumption 3,

ẋ1(t) + ẋ2(t) =
(

−D +B − (X1(t) +X2(t))B
)

(x1(t) + x2(t)).

Thus, the dynamics of x1(t) + x2(t) is equivalent to the single-virus model (4). From Proposition 4, in the case
when s(−D +B) > 0, x1(t) + x2(t) has a unique nonzero equilibrium in [0, 1]n. Thus, x̃1 + x̃2 is unique. From
(2),

ẋ1(t)− ẋ2(t) = −D(x1(t)− x2(t)) + (B − (X1(t) +X2(t))B)(x1(t)− x2(t)).

Then,
(−D +B − (X̃1 + X̃2)B)(x̃1 − x̃2) = 0.

Using the same arguments as those in the proof of Lemma 9, it can be shown that x̃1 + x̃2 ≪ 1. Thus,
−D +B − (X̃1 + X̃2)B is an irreducible Metzler matrix. By Lemma 3, since

(−D +B − (X̃1 + X̃2)B)(x̃1 + x̃2) = 0,

and x1(t) + x2(t) ≫ 0, s(−D +B − (X̃1 + X̃2)B) = 0. From Lemma 2, either x1(t) = x2(t) or x1(t)− x2(t) =
γ(x1(t)+x2(t)) for some constant γ > 0. In both cases, it must be true that x̃1 = αx̃2 for some constant α > 0,
and thus x̃1, x̃2 ≫ 0.



4 Sensitivity

We have shown that in the case when s(−D1 + B1) > 0 and s(−D2 + B2) ≤ 0, the system (2) has a unique
epidemic state of the form (x̃1,0) with x̃1 ≫ 0, which is stable. It can be seen that the value of x̃1 is independent
of the matrices D2 and B2, but depends on the matrices D1 and B1, or equivalently, the parameters δ1i and
β1
ij . A natural question is: how does the equilibrium x̃1 change when the values of δ1i and β1

ij are perturbed?
The aim of this section is to answer this question.

From the proof of Theorem 3, the value of x̃1 equals the unique epidemic state, denoted x∗, of the single-virus
model (4) when s(−D + B) > 0. Thus, to answer the question just raised, it is equivalent to study how the
equilibrium x∗ changes when the values of δi and βij are perturbed.

For our purposes, we assume in this section that δi > 0 for all i ∈ [n]. Then, by Proposition 1, s(−D+B) > 0
if and only if ρ(D−1B) > 1.

Suppose that ρ(D−1B) > 1. By Proposition 4, the epidemic state x∗ is the unique nonzero equilibrium of
(4), which satisfies the equation

(−D +B −X∗B)x∗ = 0.

Define the mapping Φ as follows
Φ(x∗, D,B) := (−D +B −X∗B)x∗.

Then, the equation Φ(x∗, D,B) = 0 defines an implicit function g : IRn×n × IRn×n → IRn given by

x∗ = g(D,B).

For each pair of matrices D and B for which ρ(D−1B) > 1, there must exist a small neighborhood B such
that for any pair of matrices D +∆D and B +∆B in B,

ρ
(

(D +∆D)−1(B +∆B)
)

> 1.

Here ∆D is the n × n diagonal matrix whose ith diagonal entry equals ∆δi, which denotes the perturbation
of δi, and ∆B is the n × n matrix whose ijth entry equals ∆βij , which denotes the perturbation of βij . Let
x∗ +∆x∗ denote the new epidemic state resulting from the perturbations. Then,

(−D −∆D +B +∆B − (X∗ +∆X∗)(B +∆B)) (x∗ +∆x∗) = 0,

where ∆X∗ = diag(∆x∗). By ignoring the higher order ∆ terms, it is straightforward to verify that

(−D +B −X∗B − diag(Bx∗))∆x∗ ≈ X∗∆δ + (X∗ − I)∆Bx∗, (16)

where ∆δ is the vector in IRn whose ith entry equals ∆δi. First note that

(−D +B −X∗B − diag(Bx∗))x∗ = −diag(Bx∗)x∗.

Since B is an irreducible nonnegative matrix and x∗ ≫ 0, it follows that diag(Bx∗) is a positive diagonal
matrix. Let c > 0 be any positive constant such that c is strictly smaller than the minimal diagonal entry of
diag(Bx∗). Then, diag(Bx∗) > cI and thus −diag(Bx∗)x∗ < −cx∗. Since (−D + B − X∗B − diag(Bx∗)) is
an irreducible Metzler matrix, by Lemma 2, s(−D + B − X∗B − diag(Bx∗)) < −c < 0, which implies that
(−D+B−X∗B−diag(Bx∗)) is nonsingular. Thus, by the Implicit Function Theorem (see, e.g., pages 204-206
in [20]), the function x∗ = g(D,B) is differentiable in the neighborhood B. From (16) we have

∆x = (−D +B −X∗B − diag(Bx∗))−1
X∗∆δ + (−D +B −X∗B − diag(Bx∗))−1 (X∗ − I)∆Bx∗.

To proceed, we need the following lemma.

Lemma 10 (Theorem 2.7 in Chapter 6 of [21]) Suppose that M is a nonsingular, irreducible Hurwitz Metzler
matrix. Then, M−1 ≪ 0.

From this lemma and the preceding discussion, it follows immediately that (−D + B −X∗B − diag(Bx∗))−1

is a strictly negative matrix. Since 0 ≪ x∗ ≪ 1, it follows that all x∗

i decreases as any δi increases or any βij

decreases. We have proved the following result.



Proposition 6 Consider the single-virus model (4). Suppose that δi > 0 for all i ∈ [n], and that the matrix
B is nonnegative and irreducible. If s(−D + B) > 0, then each entry of the epidemic state x∗ is a strictly
decreasing function of δi, i ∈ [n], and a strictly increasing function of βij, i, j ∈ [n].

Similarly, we have the following result for the bi-virus system (2).

Theorem 9 Suppose that δ1i > 0, δ2i ≥ 0 for all i ∈ [n], and that matrices B1 and B2 are nonnegative and
irreducible. If s(−D1 + B1) > 0 and s(−D2 + B2) ≤ 0, then each entry of the epidemic state x̃1 is a strictly
decreasing function of δ1i , i ∈ [n], and a strictly increasing function of β1

ij, i, j ∈ [n].

5 Distributed Feedback Control

In this section, we regard each healing rate as a local control input of each agent i. We begin with the single-virus
model (4).

Suppose that the matrix B is fixed. Let δi =
∑n

j=1 βij . Then, the row sums of D−1B all equal 1. By

the Perron-Frobenius Theorem for irreducible nonnegative matrices (see Theorem 2.7 in [15]), ρ(D−1B) = 1,
which is equivalent to s(−D +B) = 0 because of Proposition 1. Thus, by Proposition 3, the healthy state 0 is
asymptotically stable in this case. This observation implies that in the case when local control inputs δi’s are
constant, there always exist sufficiently large δi’s which can stabilize the heathy state.

In the following, we will consider the local control inputs of the form

δi(t) = kixi(t), i ∈ [n], (17)

where ki is a feedback gain. Designing the controller as a function of the infection rate xi(t) is an intuitive
approach since if the virus is eradicated, no control should be necessary. In implementation, this could be
thought of as a treatment plan for individuals via administration of antidote or alternate treatment techniques.
By (3), the system reduces to

ẋi(t) = −ki(xi(t))
2 + (1− xi(t))

n
∑

j=1

βijxj(t), xi(0) ∈ [0, 1], i ∈ [n].

The resulting n state equations can be combined to give

ẋ(t) = (−KX(t) +B −X(t)B)x(t), (18)

where K = diag([k1, . . . , kn]). Similar to the original system (4), we impose the following assumption on the
parameters of the new system (18).

Assumption 4 For all i ∈ [n], we have ki > 0 and the matrix B is nonnegative and irreducible.

Using the same arguments as in the proof of Lemma 6, it is straightforward to verify that the set [0, 1]n is
still invariant in the new system (18). Since both K and X(t) are diagonal matrices, they commute. Then,
from (18),

ẋ(t) = (−X(t)K +B −X(t)B)x(t)

= (B −X(t)(K +B))x(t)

= (−K + (K +B)−X(t)(K +B))x(t).

Thus, the system (18) has the same form as the original system (4), with D and B being replaced by K and
K +B, respectively.

Note that K−1(K + B) = I + K−1B. Since by Assumption 4, K is a positive diagonal matrix and B

is an irreducible nonnegative matrix, K−1 is a positive diagonal matrix and, thus, K−1B is an irreducible
nonnegative matrix. By the Perron-Frobenius Theorem for irreducible nonnegative matrices (see Theorem 2.7
in [15]), ρ(K−1B) > 0 and, thus, ρ(I +K−1B) > 1. This observation implies, by Proposition 5, that the new
system (18) has a unique nonzero x∗ which satisfies 0 ≪ x∗ ≪ 1 and is asymptotically stable with domain of
attraction [0, 1]n \ {0}. We are thus led to the following result.



Proposition 7 Let Assumption 4 hold, and let x(0) > 0. Then, for any local control inputs of the form (17),
the healthy state 0 is not a reachable state of the system (18).

Note that instability of the healthy state can also be shown using the Jacobian. However the above shows
that the origin is not only an unstable equilibrium but is a repeller, that is, a perturbation in any direction will
drive the state to x∗ ≫ 0.

Now we turn to the bi-virus model (2). We consider the local control inputs of the form

δ1i (t) = k1i x
1
i (t), δ2i (t) = k2i x

2
i (t), i ∈ [n], (19)

where k1i and k2i are feedback gains. By (1), the system reduces to

ẋ1
i (t) = −k1i (x

1
i (t))

2 + (1− x1
i (t)− x2

i (t))

n
∑

j=1

β1
ijx

1
j (t),

ẋ2
i (t) = −k2i (x

2
i (t))

2 + (1− x2
i (t)− x1

i (t))
n
∑

j=1

β2
ijx

2
j (t),

The above equations can be combined into matrix form:

ẋ1(t) = (−K1 + (K1 +B1)−X1(t)(K1 +B1))x1(t)−X2(t)B1x1(t),

ẋ2(t) = (−K2 + (K2 +B2)−X2(t)(K2 +B2))x2(t)−X1(t)B2x2(t),
(20)

where K1 and K2 are the n×n diagonal matrices with the i-th diagonal entry equal to k1i and k2i , respectively.
Similar to the original system (2), we impose the following assumption on the parameters of the new system
(20).

Assumption 5 For all i ∈ [n], we have k1i , k
2
i > 0 and the matrices B1 and B2 are nonnegative and irreducible.

From the preceding discussion, we have the following.

Theorem 10 Let Assumption 5 hold. Then, for any local control inputs of the form (19), the healthy state
(0,0) is an unstable equilibrium of the system (18).

6 Conclusion

In this paper we have explored the equilibria of a continuous-time bi-virus model and in so doing, as a by-
product we have improved on the results for the single-virus model. We have provided necessary and sufficient
conditions for convergence to the healthy state of (2). We have also provided results on the epidemic states of
(2), including several sufficient conditions for stability and instability, as well as a sensitivity condition. We have
shown that a distributed proportional controller of the form δi(t) = kixi(t), can never drive the virus model to
the healthy state. For future work, we will study bi-virus models with time–varying graph structure, similar
to [9] for the single virus case. We also will analyze the multi-virus case, i.e., more than two competing viruses,
for the healthy and epidemic states.

7 Acknowledgement

The authors wish to thank Xudong Chen, Daniel Liberzon, and Meiyue Shao (Lawrence Berkeley National
Laboratory) for useful discussions which have contributed to this work.

References

[1] R. M. Anderson and R. M. May. Infectious Diseases of Humans. Oxford University Press, 1991.



[2] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics. Proceed-
ings of the Royal Society A, 115(772):700–721, 1927.

[3] M. Y. Li and J. S. Muldowney. Global stability for the SEIR model in epidemiology. Mathematical
Biosciences, 125(2):155–164, 1995.

[4] A. Lajmanovich and J. A. Yorke. A deterministic model for gonorrhea in a nonhomogeneous population.
Mathematical Biosciences, 1976.

[5] D. Bernoulli. Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de
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