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Optimal Remote State Estimation for Self-Propelled Particle

Models

Shinkyu Park and Nuno C. Martins

Abstract

We investigate the design of a remote state estimation system for a self-propelled particle (SPP). Our framework

consists of a sensing unit that accesses the full state of the SPP and an estimator that is remotely located from the

sensing unit. The sensing unit must pay a cost when it chooses to transmit information on the state of the SPP to the

estimator; and the estimator computes the best estimate of the state of the SPP based on received information. In this

paper, we provide methods to design transmission policies and estimation rules for the sensing unit and estimator,

respectively, that are optimal for a given cost functional that combines state estimation distortion and communication

costs. We consider two notions of optimality: joint optimality and person-by-person optimality.1 Our main results

show the existence of a jointly optimal solution and describe an iterative procedure to find a person-by-person optimal

solution. In addition, we explain how the remote estimation scheme can be applied to tracking of animal movements

over a costly communication link. We also provide experimental results to show the effectiveness of the scheme.

I. INTRODUCTION

Consider a self-propelled particle (SPP) moving in a two-dimensional plane whose state xk is represented as

follows:

xk =
(
p1,k p2,k θk

)T
∈ R2 × [0, 2π)

where (p1,k,p2,k) and θk represent the location in the plane and the orientation at time k, respectively. The state

of the SPP evolves according to the following model:
p1,k+1

p2,k+1

θk+1

 =


p1,k + vk cos (θk + φk)

p2,k + vk sin (θk + φk)

θk + φk

 , k ≥ 0 (1)

with the initial condition x0 = x0 =
(
p1,0 p2,0 θ0

)T
. The random processes vk and φk represent the transla-

tional and angular velocities, respectively.

In this paper, we consider a remote estimation system formed by a sensing unit and remotely located estimator:

The sensing unit accesses xk and has the authority to decide whether to transmit it to the estimator. The sequence

Shinkyu Park and Nuno C. Martins are with the Department of Electrical and Computer Engineering, University of Maryland College Park,

College Park, MD 20742-4450, USA. {skpark, nmartins}@umd.edu
1The precise definitions of joint optimality and person-by-person optimality are given in Definition II.2 and Definition II.3, respectively.
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of decisions on whether to transmit is represented by Rk, for which Rk = 1 if the sensing unit decides to transmit

and Rk = 0 otherwise. The cost of each transmission is represented by ck. The estimator computes a state estimate

x̂k =
(
p̂1,k p̂2,k θ̂k

)T
based on received information. The diagram in Fig. 1 depicts the overall framework

adopted here.

A. Outline of Main Results

Let a transmission policy T k and an estimation rule Ek for the sensing unit and estimator at time k, respectively,

be defined as follows:

T k :
(
R2 × [0, 2π)

)k+1 × {0, 1}k−1 → {0, 1}

Ek :
(
R2 × [0, 2π)

)|Ik|+1 × {0, 1}k → R2 × [0, 2π)

where the variable Ik =
{
xj

∣∣∣Rj = 1, 1 ≤ j ≤ k
}

represents information transmitted to the estimator up to time

k.

Our main goal is to obtain methods to design transmission policies (T 1, · · · ,T N ) and estimation rules

(E1, · · · , EN ) that are optimal for the following cost functional:

J (x0, (T 1, · · · ,T N ) , (E1, · · · , EN ))

=

N∑
k=1

E
[
d2 (xk, x̂k) + ck ·Rk

∣∣∣x0 = x0, (T 1, · · · ,T N ) , (E1, · · · , EN )
]

(2)

subject to the SPP model (1) and

Rk = T k ((x0, · · · ,xk) , (R1, · · · ,Rk−1)) (3a)

x̂k = Ek
((
x0, Ik

)
, (R1, · · · ,Rk)

)
(3b)

for each k in {1, · · · , N}, where we use Frobenius norm to define the metric d as follows:

d (xk, x̂k) =

∥∥∥∥∥∥∥∥∥


cos θk − sin θk p1,k

sin θk cos θk p2,k

0 0 1

−


cos θ̂k − sin θ̂k p̂1,k

sin θ̂k cos θ̂k p̂2,k

0 0 1


∥∥∥∥∥∥∥∥∥
F

Our problem is non-trivial because (2) is in general non-convex and searching for a solution that achieves the

minimum over a function space is computationally complex. We adopt a team decision framework in which the

sensing unit and the estimator are viewed as players. The following are our main contributions:

1) First, we show that there is a jointly optimal solution which minimizes the cost functional (2). As joint

optimality implies person-by-person optimality, this result ensures that the set of person-by-person optimal

solutions is non-empty.

2) We propose an iterative procedure, which is inspired by Lloyd’s algorithm [1], to compute a person-by-person

optimal solution. The procedure alternates between finding the best transmission policies for (2) with the

estimation rules fixed, and vice versa; and it generates a sequence of sub-optimal solutions. Our analysis
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SPP S E
{xk}Nk=1 IN

Rk =

1 Transmission

0 No Transmission

{x̂k}Nk=1

Fig. 1. A remote estimation framework comprised of a self-propelled particle (SPP), a sensing unit (S), and an estimator (E), where

IN =
{
xk

∣∣∣Rk = 1, 1 ≤ k ≤ N
}

.

will show that the sequence has a convergent subsequence; and the limit of any convergent subsequence is a

person-by-person optimal solution.

3) We illustrate the performance of the optimal remote estimation scheme in the context of tracking of animal

movements over a costly communication link. Our numerical results use GPS data collected from a monitoring

device mounted on an African buffalo.

B. Paper Organization

In Section II, we describe the problem formulation considered throughout the paper, and briefly describe our

methodology to find a solution. The main strategy is to decompose the problem into sub-problems, which we can

solve sequentially. In Section III, we examine the existence of a jointly optimal solution to each sub-problem.

We also describe an iterative procedure for finding a person-by-person optimal solution. Section IV discusses an

application of our results to tracking of animal movements and also presents experimental results.

II. PROBLEM FORMULATION

A. Notation and Terminology

• For a finite sequence of elements a1, · · · , aN belonging to a set, we adopt the shorthand notation a1:N = (a1, · · · , aN ).

• For a finite sequence of functionsA1, · · · ,AN defined on a set, we adopt the shorthand notationA1:N = (A1, · · · ,AN ).

• For {Rj}k−1
j=1 , we define2

τk = max
{

1 ≤ j ≤ k − 1
∣∣∣Rj = 1

}
We refer to τk as the last transmission time before time k.

2We adopt a convention that τk = 0 if Rj = 0 for all j in {1, · · · , k − 1}.



4

B. Problem Description

We start by assuming that transmission policies and estimation rules have the following structure3: The transmis-

sion policy, which may be randomized4, at time k depends on the last transmission time τk, the information xτk

transmitted to the estimator at time τk, and the current state xk of the SPP. The estimation rule at time k depends

on the last transmission time τk and the information xτk
received from the sensing unit at time τk.

According to (3) and the structural assumptions mentioned above, the variable Rk and estimate x̂k are determined

by a transmission policy T k and an estimation rule Ek as follows:

Rk = T k (τk,xτk
,xk) (4a)

x̂k =

Ek (τk,xτk
) if Rk = 0

xk otherwise
(4b)

We formally state our main problem as follows.

Problem II.1: Find transmission policies T 1:N and estimation rules E1:N that are optimal for the cost functional

(2) subject to the SPP model (1) with the initial condition x0 = x0 and (4).5

We consider the following two notions of optimality for Problem II.1.

Definition II.2: We say that transmission policies T ∗1:N and estimation rules E∗1:N are jointly optimal for (2) if

they achieve the global minimum for every x0 in R2 × [0, 2π).

Definition II.3: We say that transmission policies T ∗1:N and estimation rules E∗1:N are person-by-person optimal

for (2) if the following relations hold for every x0 in R2 × [0, 2π):

J (x0,T ∗1:N , E∗1:N ) = min
T 1:N

J (x0,T 1:N , E∗1:N )

= min
E1:N
J (x0,T ∗1:N , E1:N ) (5)

Equation (5) implies that with the transmission policies T ∗1:N fixed, the estimation rules E∗1:N minimize the cost

functional (2), and vice versa.

We maintain the following assumption throughout the paper.

Assumption II.4: Let B be a Borel σ-algebra on R2 × [0, 2π). We assume that vk and φk in (1) are random

processes for which the following hold for every k in {1, · · · , N}:

1) For every Borel set A in B, the function x 7→ P
(
xk ∈ A

∣∣∣xk−1 = x
)

is well-defined and continuous.

2) For every non-empty open set O, the function x 7→ P
(
xk ∈ O

∣∣∣xk−1 = x
)

is positive for all x in R2× [0, 2π).

3We do not lose any optimality from imposing these structures. This can be verified by similar arguments as in Lemma 1 and Lemma 3 of

[2].
4See Appendix B for a detailed description of randomized transmission policies policies.
5The underlying SPP model and the initial condition x0 = x0 are common knowledge to both the sensing unit and estimator.
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To find a solution to Problem II.1, we decompose the problem into a set of N sub-problems, which we solve

sequentially. We start by describing the so-called Two-Player Optimal Stopping Problem, which we use to decompose

Problem II.1 into sub-problems. We then describe how to obtain a solution to Problem II.1 by solving the sub-

problems.

Problem II.5 (Two-Player Optimal Stopping Problem): Given positive real numbers
{
c′j
}N
j=k

, find policies T <k−1>
k:N

and rules E<k−1>
k:N that are optimal for the following cost functional:

Jk
(
xk−1,T <k−1>

k:N , E<k−1>
k:N

)
= E

 K∑
j=k

d2 (xj , x̂j) + c′K ·RK

∣∣∣∣∣xk−1 = xk−1,T <k−1>
k:N , E<k−1>

k:N

 (6)

subject to (1) with the initial condition xk−1 = xk−1 and

Rj = T <k−1>
j (xk−1,xj) (7a)

x̂j =

E
<k−1>
j (xk−1) if Rj = 0

xj otherwise
(7b)

for each j in {k, · · · , N}, where6

K = min
{
k ≤ j ≤ N

∣∣∣Rj = 1
}

Note that the total expected cost (6) consists of running costs d2 (xj , x̂j) and stopping costs c′j .

Similar to Definitions II.2 and II.3, we adopt two notions of optimality for Problem II.5 as follows.

Definition II.6: We say that policies T ∗<k−1>
k:N and rules E∗<k−1>

k:N are jointly optimal for (6) if they achieve

the global minimum for every xk−1 in R2 × [0, 2π).

Definition II.7: We say that policies T ∗<k−1>
k:N and rules E∗<k−1>

k:N are person-by-person optimal for (6) if the

following relations hold for every xk−1 in R2 × [0, 2π):

Jk
(
xk−1,T ∗<k−1>

k:N , E∗<k−1>
k:N

)
= min

T <k−1>
k:N

Jk
(
xk−1,T <k−1>

k:N , E∗<k−1>
k:N

)
= min
E<k−1>
k:N

Jk
(
xk−1,T ∗<k−1>

k:N , E<k−1>
k:N

)
(8)

To explain how to decompose Problem II.1 into sub-problems, we consider recursive computations of constants{
c′j
}N
j=k

described as follows: Suppose that policies T <j>
j+1:N and rules E<j>j+1:N are given for all j in {k, · · · , N}.

By proceeding backwards from j = N to j = k, for each step j, let us compute

c′j = cj + Jj+1

(
0,T <j>

j+1:N , E
<j>
j+1:N

)
(9)

with c′N = cN , where cj is given in (2) and Jj+1 is defined in (6). In computing Jj+1

(
0,T <j>

j+1:N , E
<j>
j+1:N

)
, we

use the constants {c′l}
N
l=j+1 that are obtained in preceding steps.

6We adopt a convention that K = N if Rj = 0 for all j in {k, · · · , N}.
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We describe the k-th sub-problem of Problem II.1 as follows.

Sub-problem k: Given policies T <j>
j+1:N and rules E<j>j+1:N for all j in {k, · · · , N}, let us compute constants{

c′j
}N
j=k

according to (9). Using
{
c′j
}N
j=k

, find a solution T <k−1>
k:N and E<k−1>

k:N to Problem II.5.

Our main strategy for solving Problem II.1 is as follows: We solve each Sub-problem k backwards in time

from k = N to k = 1, where for each Sub-problem k we use solutions to all preceding sub-problems, i.e., T <j>
j+1:N

and E<j>j+1:N for all j in {k, · · · , N}, to compute the constants
{
c′j
}N
j=k

. Once solutions to all the sub-problems are

found, we determine transmission policies T 1:N and estimation rules E1:N for Problem II.1 in the following way:

T j (k − 1, xk−1, xj) = T <k−1>
j (xk−1, xj) (10a)

Ej (k − 1, xk−1) = E<k−1>
j (xk−1) (10b)

for each j in {k, · · · , N} and k in {1, · · · , N}. It can be verified that the transmission policies and estimation rules

determined by (10) are a solution to Problem II.1.

C. Brief Survey of Related Work

Finite time-horizon problem formulations are considered in [2]–[5]. The authors of [3] found a jointly optimal

solution for a remote estimation problem under first-order linear processes driven by Gaussian noise where it is

shown that transmission policies of jointly optimal solutions are of threshold-type. An iterative procedure for finding

transmission policies and estimation rules was proposed in [2]. The authors performed a convergence analysis on

the proposed procedure in the same problem formulation of [3], which essentially leads to an alternative proof of

the main results of [3]. The work of [4] considered a problem setting in which the sensing unit has an energy

harvesting capability. Preliminary results of our work were presented in [5] under some technical assumptions.7

Infinite time-horizon formulations are considered in [6]–[9]. The authors of [6] studied the structure of optimal

transmission policies for a remote estimation problem under linear processes driven by Gaussian noise, and proposed

a procedure based on the value iteration algorithm to compute an optimal policy. In [7], an algorithm for finding

a sub-optimal solution was proposed. The authors showed that when the underlying process is linear and driven

by Gaussian noise, the proposed algorithm incurs a cost that is within a constant factor of the optimum. While the

question of whether transmission policies of jointly optimal solutions are of threshold-type for the problems under

multi-dimensional linear processes remains unanswered, the authors of [8] analyzed the performance of threshold-

type transmission policies for such problems. In [9], the authors proposed a polynomial approximation-based method

to find sub-optimal transmission policies.

7The analysis and results presented in this work can be readily extended to the problem formulation considered in [5]. Due to the space

constraints, we will focus on SPP models.
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Our problem formulation and methods are distinguished from previous ones found in literature by the following

facts:

1) We adopt a random process model that is nonlinear.

2) We do not impose any structural assumptions on transmission policies and estimation rules that result in the

loss of optimality.

3) We investigate optimization of a given performance criterion over both transmission policies and estimation

rules.

III. TWO-PLAYER OPTIMAL STOPPING PROBLEM

In this section, we investigate Sub-problem k in which, to determine the constants
{
c′j
}N
j=k

, we use solutions

to the preceding sub-problems – Sub-problem N to Sub-problem k + 1. We start by re-writing (6) into a suitable

form using the following definition.

Definition III.1: For each j in {k, · · · , N}, we define a (random) function Pj : R2 × [0, 2π)→ {0, 1} and a

variable x̂j in R2 × [0, 2π) as follows:

Pj (xj) = T <k−1>
j (0, xj) (11a)

x̂j = E<k−1>
j (0) (11b)

We refer to Pj and x̂j as the (randomized) policy and estimate at time j (for the initial condition xk−1 = 0),

respectively.8

Given that xk−1 = 0, we can re-write (6) as follows:9

Exk
[Jk (xk,Pk:N , x̂k:N )] (12)

subject to (1) with the initial condition xk−1 = 0 and

Rj = Pj (xj) (13)

for each j in {k, · · · , N}, where Jk is recursively defined as follows:

Jj (xj ,Pj:N , x̂j:N )

=
(
d2 (xj , x̂j) + Exj+1

[
Jj+1 (xj+1,Pj+1:N , x̂j+1:N )

∣∣∣xj = xj

])
· (1−Rj) + c′j ·Rj

for each j in {k, · · · , N} with JN+1 = 0. Note that Jj satisfies the following for every j in {k, · · · , N}:

Exj

[
Jj (xj ,Pj:N , x̂j:N )

∣∣∣Rk = 0, · · · ,Rj−1 = 0
]

=
(
Exj

[
d2 (xj , x̂j)

∣∣∣Rk = 0, · · · ,Rj = 0
]

+ Exj+1

[
Jj+1 (xj+1,Pj+1:N , x̂j+1:N )

∣∣∣Rk = 0, · · · ,Rj = 0
] )

· P
(
Rj = 0

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

+ c′j · P
(
Rj = 1

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

(14)

8See Appendix B for a detailed description of randomized policies.
9For concise presentation, we will omit the dependence of the cost functional (12) on the initial condition unless it is necessary.
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We will proceed with finding an optimal solution P∗k:N and x̂∗k:N for (12). Remark III.2 given below explains

how we can derive a solution to Sub-problem k from P∗k:N and x̂∗k:N .

Remark III.2: Consider the transformations given below:

M (xk−1, xj) =


cos θk−1 sin θk−1 0

− sin θk−1 cos θk−1 0

0 0 1

 ·

p1,j − p1,k−1

p2,j − p2,k−1

θj − θk−1



M† (xk−1, xj) =


cos θk−1 − sin θk−1 0

sin θk−1 cos θk−1 0

0 0 1

 ·

p1,j

p2,j

θj

+


p1,k−1

p2,k−1

θk−1


Suppose that P∗k:N and x̂∗k:N are optimal policies and estimates for (12), respectively, and that a solution to Sub-

problem k are determined as follows: For each j in {k, · · · , N},

T ∗<k−1>
j (xk−1, xj) = P∗j (M (xk−1, xj)) (15a)

E∗<k−1>
j (xk−1) = M†

(
xk−1, x̂

∗
j

)
(15b)

Based on Definition III.1, it can be verified that the following holds for all xk−1 in R2 × [0, 2π):

Jk
(
xk−1,T ∗<k−1>

k:N , E∗<k−1>
k:N

)
= Exk

[Jk (xk,P∗k:N , x̂
∗
k:N )]

where Jk is defined in (6). This implies that the value of (6) evaluated at an optimal solution does not depend on

the initial condition; and by finding an optimal solution for the sub-problem with the initial condition xk−1 = 0,

we can derive a solution to Sub-problem k using (15). �

A. Definitions and Preliminary Results

We restate Definition II.6 and Definition II.7 as follows.

Definition III.3: We say that policies P∗k:N and estimates x̂∗k:N are jointly optimal for (12) if they achieve the

global minimum.

Definition III.4: We say that policies P∗k:N and estimates x̂∗k:N are person-by-person optimal for (12) if the

following relations hold:

Exk
[Jk (xk,P∗k:N , x̂

∗
k:N )] = min

Pk:N

Exk
[Jk (xk,Pk:N , x̂

∗
k:N )]

= min
x̂k:N

Exk
[Jk (xk,P∗k:N , x̂k:N )]

In what follows, we define best response mappings P and X.

Definition III.5: Given estimates x̂k:N , we define P (x̂k:N ) as the collection of policies Pk:N satisfying

Exk
[Jk (xk,Pk:N , x̂k:N )] = min

P′k:N

Exk

[
Jk
(
xk,P ′k:N , x̂k:N

)]
Definition III.6: Given policies Pk:N , we define X (Pk:N ) as the collection of estimates x̂k:N satisfying

Exk
[Jk (xk,Pk:N , x̂k:N )] = min

x̂′k:N

Exk
[Jk (xk,Pk:N , x̂

′
k:N )]
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Definition III.7: Policies Pk:N are said to be degenerate if there exists j0 in {k, · · · , N} for which it holds that

P
(
Rj0 = 0

∣∣∣Rk = 0, · · · ,Rj0−1 = 0
)

= 0 (16)

Remark III.8: Let Pk:N be degenerate policies such that (16) holds for j0 in {k, · · · , N}. From (14), we can

derive that

Exj0

[
Jj0 (xj0 ,Pj0:N , x̂j0:N )

∣∣∣Rk = 0, · · · ,Rj0−1 = 0
]

= c′j0

from which we can infer that the cost (12) does not depend on the choice of estimates x̂j0:N .

Proposition III.9: Suppose that non-degenerate policies Pk:N and estimates x̂k:N are given. The policies Pk:N

belong to P (x̂k:N ) if and only if the following holds for all j in {k, · · · , N}:

Exj

[
Jj (xj ,Pj:N , x̂j:N )

∣∣∣Rk = 0, · · · ,Rj−1 = 0
]

= Exj

[
J∗j (xj , x̂j:N )

∣∣∣Rk = 0, · · · ,Rj−1 = 0
]

(17)

where for each j in {k, · · · , N},

J∗j (xj , x̂j:N ) = min
{
d2 (xj , x̂j) + Exj+1

[
J∗j+1 (xj+1, x̂j+1:N )

∣∣∣xj = xj

]
, c′j

}
(18)

with J∗N+1 = 0

The proof follows from (14), Definition III.5, and the fact that

min
P′k:N

Exk

[
Jk
(
xk,P ′k:N , x̂k:N

)]
= Exk

[J∗k (xk, x̂k:N )]

We omit the detail for brevity.

Corollary III.10: Given estimates x̂k:N , for each j in {k, · · · , N}, let us define sets Dj and Dj as follows:

Dj =
{
xj ∈ R2 × [0, 2π)

∣∣∣ d2 (xj , x̂j) + Exj+1

[
J∗j+1 (xj+1, x̂j+1:N )

∣∣∣xj = xj

]
≤ c′j

}
(19a)

Dj =
{
xj ∈ R2 × [0, 2π)

∣∣∣ d2 (xj , x̂j) + Exj+1

[
J∗j+1 (xj+1, x̂j+1:N )

∣∣∣xj = xj

]
< c′j

}
(19b)

Consider (deterministic) policies Pk:N defined by

Pj(xj) =

0 if xj ∈ Dj

1 otherwise
(20)

for each j in {k, · · · , N}, where Dj is a measurable set satisfying Dj ⊆ Dj ⊆ Dj . The policies Pk:N belong to

P (x̂k:N ).

Proposition III.11: Consider that non-degenerate policies Pk:N and estimates x̂k:N are given. The estimates

x̂k:N belong to X (Pk:N ) if and only if the following holds for all j in {k, · · · , N}:

Exj

[
d2 (xj , x̂j)

∣∣∣Rk = 0, · · · ,Rj = 0
]

= min
x̂′j∈R2×[0,2π)

Exj

[
d2
(
xj , x̂

′
j

) ∣∣∣Rk = 0, · · · ,Rj = 0
]

The proof follows from (14) and Definition III.6. We omit the detail for brevity.
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Corollary III.12: Given non-degenerate policies Pk:N , for each j in {k, · · · , N}, let us consider an estimate

x̂j =
(
p̂1,j p̂2,j θ̂j

)T
determined as follows:

p̂1,j = E
[
p1,j

∣∣Rk = 0, · · · ,Rj = 0
]

(21a)

p̂2,j = E
[
p2,j

∣∣Rk = 0, · · · ,Rj = 0
]

(21b)

and θ̂j takes a value in [0, 2π) that satisfies

sin θ̂j = α−1 · E
[
sinθj

∣∣Rk = 0, · · · ,Rj = 0
]

(22a)

cos θ̂j = α−1 · E
[
cosθj

∣∣Rk = 0, · · · ,Rj = 0
]

(22b)

provided

α = E2
[
sinθj

∣∣Rk = 0, · · · ,Rj = 0
]

+ E2
[
cosθj

∣∣Rk = 0, · · · ,Rj = 0
]

is non-zero; otherwise θ̂j takes any value in [0, 2π). The estimates x̂k:N belong to X (Pk:N ).

Proposition III.13: Consider functions {Gj}Nj=k defined as follows:10 For each j in {k, · · · , N},

Gj (xj−1, x̂j:N )
def
= Exj

[
J∗j (xj , x̂j:N )

∣∣∣xj−1 = xj−1

]
(23)

where J∗j is given in (18). The functions {Gj}Nj=k are all continuous.

The proof is given in Appendix E.

B. Existence of a Jointly Optimal Solution

Proposition III.14: Let policies P∗k:N and estimates x̂∗k:N are jointly optimal for (12). The policies P∗k:N are

not degenerate in the sense of Definition III.7.

The proof is given in Appendix F.

Theorem III.15: There exist policies P∗k:N and estimates x̂∗k:N that are jointly optimal for (12).

To prove Theorem III.15, we need the following lemma.

Lemma III.16: Let us define

G (x̂k:N )
def
= Exk

[J∗k (xk, x̂k:N )] (24)

with the initial condition xk−1 = 0, where J∗k is defined in (18). There exists a compact set K ⊂
(
R2 × [0, 2π)

)N−k+1

for which the following holds for all x̂k:N in
(
R2 × [0, 2π)

)N−k+1
:

inf
x̂′k:N∈K

G (x̂′k:N ) ≤ G (x̂k:N )

The proof is given in Appendix F.

Proof of Theorem III.15: Recall the definitions of Gk and G given in (23) and (24), respectively. According to

Proposition III.13 and by the fact that G (x̂k:N ) = Gk (0, x̂k:N ), we can see that G is a continuous function. Note

10Note that Gj is a function defined on
(
R2 × [0, 2π)

)N−j+2. See Appendix A for some remarks on the continuity of functions on a product

space.
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that Lemma III.16 implies that, if it exists, a global minimizer of G resides in a compact set. In what regards to

finding a global minimizer, without loss of generality, we may assume that the domain of G is compact. Hence, by

the continuity of G and compactness of its domain, there exist estimates x̂∗k:N that achieve the global minimum of

G.

Next, let us choose policies P∗k:N belonging to P (x̂∗k:N ) using, for instance, Corollary III.10. By the definition

of G given as in (24) and by the fact that x̂∗k:N is a global minimizer of G, we conclude that the policies P∗k:N

and the estimates x∗k:N are jointly optimal for (12).

C. Iterative Procedure for Finding a Person-by-Person Optimal Solution

As numerically illustrated in [2], the function G in (24) may be non-convex; consequently, finding a jointly optimal

solution for (12) would be computationally intractable. Instead, we seek a person-by-person optimal solution based

on Procedure 1 described below. In the procedure, η is a pre-selected non-negative constant that determines a

stopping criterion (Line 17), and the function G is defined in (24).

Procedure 1: Finding a Person-by-Person Optimal Solution

input : η ≥ 0, x̂(0)k:N

output: P(i+1)
k:N , x̂

(i)
k:N

1 begin

2 j ← N

3 while j ≥ k do

4 Choose P(1)
j according to Corollary III.10

using x̂(0)k:N

5 j ← j − 1

6 i← 0

7 repeat

8 i← i+ 1

9 j ← k

10 while j ≤ N do

11 Choose x̂(i)j according to Corollary III.12

using P(i)
k:N

12 j ← j + 1

13 j ← N

14 while j ≥ k do

15 Choose P(i+1)
j according to Corollary III.10

using x̂(i)k:N

16 j ← j − 1

17 until
∣∣∣G (x̂(i)k:N

)
− G

(
x̂
(i−1)
k:N

)∣∣∣ ≤ η
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Let
{(

P(i)
k:N , x̂

(i)
k:N

)}
i∈N

be a sequence of solutions generated through repeated computations of policies and

estimates by Procedure 1 (Line 2 − 16). In the rest of this section, we discuss convergence of the sequence to a

person-by-person optimal solution. We first define convergence of policies and estimates. For notational convenience,

we adopt the following: Let B be a Borel σ-algebra on R2 × [0, 2π). Given
{
P(i)
k:N

}
i∈N

and Pk:N , let us define

the following: For each A in B,

µ
(i)
j|j (A) = P

(
xj ∈ A

∣∣∣R(i)
k = 0, · · · ,R(i)

j = 0
)

(25a)

µj|j (A) = P
(
xj ∈ A

∣∣∣Rk = 0, · · · ,Rj = 0
)

(25b)

subject to

R
(i)
j = P(i)

j (xj) (26a)

Rj = Pj (xj) (26b)

for all i in N and j in {k, · · · , N}.

Definition III.17: Let
{
P(i)
k:N

}
i∈N

be a sequence of policies. We say that the sequence converges to Pk:N if

the following hold for all j in {k, · · · , N}:

µ
(i)
j|j → µj|j (27a)

and

P
(
R

(i)
j = 0

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
)
→ P

(
Rj = 0

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

(27b)

subject to (26).11 We denote the convergence by P(i)
k:N ⇒ Pk:N . In addition, we say that two sets of policies Pk:N

and P ′k:N are equal if the following hold for all j in {k, · · · , N}:

µj|j = µ′j|j (28a)

and

P
(
Rj = 0

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

= P
(
R′j = 0

∣∣∣R′k = 0, · · · ,R′j−1 = 0
)

(28b)

subject to Rj = Pj (xj) and R′j = P ′j (xj) for all j in {k, · · · , N}.

Remark III.18 (Uniqueness of the Limit of Policies): Suppose that a sequence of policies
{
P(i)
k:N

}
i∈N

converges

to both Pk:N and P ′k:N . Then the two sets of the policies Pk:N and P ′k:N are equal. To see this, using the definition

of convergence of probability measures, we can derive that∫
R2×[0,2π)

g dµj|j =

∫
R2×[0,2π)

g dµ′j|j (29)

for every bounded, continuous function g : R2 × [0, 2π)→ R. Based on Lemma 9.3.2 in [10], we can see that (28)

holds for all j in {k, · · · , N}.

11Equation (27a) implies that the sequence of the probability measures
{
µ
(i)
j|j

}
i∈N

converges to the probability measure µj|j . See Chapter

9.3 of [10] for the definition of convergence of probability measures.
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Definition III.19: Let
{
x̂

(i)
k:N

}
i∈N

be a sequence of estimates. We say that the sequence converges to x̂k:N if the

following holds for all j in {k, · · · , N}:

lim
i→∞

d
(
x̂

(i)
j , x̂j

)
= 0 (30)

We denote the convergence by x̂
(i)
k:N ⇒ x̂k:N . In addition, we say that two sets of estimates x̂k:N and x̂′k:N are

equal if the following holds for all j in {k, · · · , N}:

d
(
x̂j , x̂

′
j

)
= 0 (31)

Definition III.20: Let
{
P(i)
k:N

}
i∈N

be a sequence of policies. We say that the policies are strictly non-degenerate

if there exists a positive constant ε for which the following holds for all i in N and j in {k, · · · , N}:

P
(
R

(i)
j = 0

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
)
≥ ε (32)

subject to (26a).

Recall that the sequence of solutions
{(

P(i)
k:N , x̂

(i)
k:N

)}
i∈N

generated by Procedure 1 satisfies the following for

all i in N:

P(i)
k:N ∈P

(
x̂

(i−1)
k:N

)
(33a)

x̂
(i)
k:N ∈ X

(
P(i)
k:N

)
(33b)

The following theorem states convergence of the sequence to a person-by-person optimal solution.

Theorem III.21: Consider a sequence of solutions
{(

P(i)
k:N , x̂

(i)
k:N

)}
i∈N

satisfying (33). Suppose that the policies{
P(i)
k:N

}
i∈N

are strictly non-degenerate. Then, the sequence has a convergent subsequence, and the limit of any

convergent subsequence is a person-by-person optimal solution.

To prove Theorem III.21, we need the following three lemmas.

Lemma III.22: Consider a sequence of solutions
{(

P(i)
k:N , x̂

(i)
k:N

)}
i∈N

satisfying (33). Suppose that the policies{
P(i)
k:N

}
i∈N

are strictly non-degenerate. Then the sequence
{
x̂

(i)
j

}
i∈N

is bounded for all j in {k, · · · , N}.

Lemma III.22 is a special case of Lemma F.15 given in Appendix F.

Lemma III.23: Consider a sequence of solutions
{(

P(i)
k:N , x̂

(i)
k:N

)}
i∈N

satisfying (33). Suppose that for an infinite

subset {il}l∈N of N, the following hold: P(il)
k:N ⇒ Pk:N , x̂(il)

k:N ⇒ x̂k:N , and x̂(il−1)
k:N ⇒ x̂′k:N . Then the estimates

x̂k:N belong to X (Pk:N ).

Lemma III.24: Consider a sequence of solutions
{(

P(i)
k:N , x̂

(i)
k:N

)}
i∈N

satisfying (33). Suppose that the policies{
P(i)
k:N

}
i∈N

are strictly non-degenerate and that for an infinite subset {il}l∈N of N, it holds that x̂(il−1)
k:N ⇒ x̂′k:N .

Then, the sequence
{
P(il)
k:N

}
l∈N

has a convergent subsequence, and the limit Pk:N of any convergent subsequence

belongs to P (x̂′k:N ).

The proofs of Lemmas III.23 and III.24 are given in Appendix G.

Proof of Theorem III.21: We first note that according to Lemma III.22, the sequence
{
x̂

(i)
j

}
i∈N

is contained in a
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compact set for every j in {k, · · · , N}.12 Hence, by the compactness, there exists an infinite subset I of N for which

the subsequences
{
x̂

(i)
k:N

}
i∈I

and
{
x̂

(i−1)
k:N

}
i∈I

are both convergent. Let x̂k:N and x̂′k:N be the respective limits of

the subsequences. Also, according to Lemma III.24, there is an infinite subset I′ of I for which the subsequence{
P(i)
k:N

}
i∈I′

is convergent. Let Pk:N be the limit of this subsequence.

To complete the proof, it remains to show that Pk:N and x̂k:N constitute a person-by-person optimal solution,

i.e., it holds that

Pk:N ∈P (x̂k:N ) (34a)

x̂k:N ∈ X (Pk:N ) (34b)

Equation (34b) is ensured by Lemma III.23, hence it remains to show that (34a) is true.

By contradiction, suppose that the policies Pk:N do not belong to P (x̂k:N ). Note that by Lemma III.24, Pk:N

belong to P (x̂′k:N ). We can see that the following relations hold for any policies P ′k:N belonging to P (x̂k:N ):

G (x̂k:N ) = Exk

[
Jk
(
xk,P ′k:N , x̂k:N

)]
(i)
< Exk

[Jk (xk,Pk:N , x̂k:N )]

(ii)

≤ Exk
[Jk (xk,Pk:N , x̂

′
k:N )] = G (x̂′k:N ) (35)

(i) follows from the hypothesis that Pk:N /∈ P (x̂k:N ); and (ii) is due to (34b). On the other hand, since G is

non-negative and decreasing along the sequence
{
x̂

(i)
k:N

}
i∈N

, i.e., G
(
x̂

(i+1)
k:N

)
≤ G

(
x̂

(i)
k:N

)
holds for all i in N, it

holds that limi→∞ G
(
x̂

(i)
k:N

)
= α for some real number α. In conjunction with the continuity of G (see Proposition

III.13), this implies that G (x̂k:N ) = G (x̂′k:N ) = α which contradicts (35). Therefore we conclude that the policies

Pk:N belong to P (x̂k:N ).

IV. APPLICATION TO TRACKING OF ANIMAL MOVEMENTS

In this section, we apply our results to estimation of animal movements over a costly communication link where

the performance of the optimal scheme are illustrated using GPS data collected from a monitoring device mounted

on an African buffalo.13 Fig. 2 shows the GPS track of the buffalo. To represent the movement of the buffalo, as

described in [11], we adopt the SPP model (1) in which vk and φk are the Weibull and Wrapped Cauchy random

processes, respectively. Note that the probability density functions of vk and φk are given as follows:

fvk
(v) =

av
sv

(
v

sv

)av−1

e−( v
sv

)
av

, for v ≥ 0 (36a)

fφk
(φ) =

1

2π
·

1− a2
φ

1 + a2
φ − 2aφ cos (φ−mφ)

(36b)

12The metric space
(
R2 × [0, 2π), d

)
is proper; hence for any bounded subset of R2 × [0, 2π), we can find a compact set that contains the

subset.
13The development and deployment of animal-borne monitoring devices were performed under a research grant NSF ECCS 1135726. The

GPS data were collected at the Gorongosa National Park, Mozambique.
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Fig. 2. A screenshot of a GPS track (the white trajectory) of an African buffalo in the Google Earth.

Using the collected GPS data, we compute the maximum likelihood estimates of the parameters for (36) as follows:

(av, sv) = (1.35, 4.66) (37a)

(aφ,mφ) = (0.65, 0.00) (37b)

The graphs in Fig. 3 show comparisons between the resulting probability density functions and the histograms

obtained from the GPS data.

We have selected the communication costs ck = 10 for all k in {1, · · · , N} and the length of the time-horizon

N = 100. Using Procedure 1, (10), and (15), we have found the optimal remote estimation scheme where Fig.

4 illustrates the performance of the scheme in terms of the state estimation distortion computed by the metric

d (xk, x̂k). Note that the (red) circles on the time axis (x-axis) represents the time steps at which the sensing unit

transmitted information on the full state xk to the estimator, and the state estimate x̂k was set to x̂k = xk (hence

d (xk, x̂k) = 0). Our experimental results show that the optimal scheme achieved the error of location estimation

less than 5 meters compared to the total traveled distance of 372.53 meters; and the information transmissions

occurred 32 times over 100 time steps.
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Fig. 3. Comparisons between the probability density functions of vk and φk under (37) and the histograms obtained from the GPS data.

Fig. 4. State estimation distortion of the optimal remote estimation scheme

APPENDIX

A. On Product Metric Space

Given a metric space (X, d), we define a metric d on the product space Xk as follows: For x1:k = (x1, · · · , xk)

and y1:k = (y1, · · · , yk) in Xk,

d(x1:k, y1:k) =
[
d2 (x1, y1) + · · ·+ d2 (xk, yk)

]1/2
(38)

Note that
(
Xk, d

)
is a (product) metric space. For (X, d) and

(
Xk, d

)
, the following are true:

(F1) Let {Kj}kj=1 be a collection of compact subsets of X. The product set K1 × · · · ×Kk is a compact subset of
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Xk.

(F2) Consider a sequence
{
x

(i)
1:k

}
i∈N

in Xk. The sequence converges to x1:k in Xk, i.e.,

lim
i→∞

d
(
x

(i)
1:k, x1:k

)
= 0

if and only if
{
x

(i)
j

}
i∈N

converges to xj for all j in {1, · · · , k}, i.e.,

lim
i→∞

d
(
x

(i)
j , xj

)
= 0

holds for all j in {1, · · · , k}.

As a consequence of (F2), a function G : Xk → R is continuous at x1:k ∈ Xk if for any sequence
{
x

(i)
1:k

}
i∈N

for which limi→∞ d
(
x

(i)
j , xj

)
= 0 holds for all j in {1, · · · , k}, it holds that limi→∞

∣∣∣G (x(i)
1:k

)
− G (x1:k)

∣∣∣ = 0.

B. On Randomized Policies

Let (τk,xτk
,xk) 7→ T k (τk,xτk

,xk) be a randomized transmission policy defined in Section II that dictates the

random variable Rk as in (4). Given a realization (τk, xτk , xk) of (τk,xτk
,xk), the variable Rk satisfies

Rk =

0 with probability P
(
T k (τk,xτk

,xk) = 0
∣∣∣ τk = τk,xτk

= xτk ,xk = xk

)
1 with probability P

(
T k (τk,xτk

,xk) = 1
∣∣∣ τk = τk,xτk

= xτk ,xk = xk

)
Let xj 7→ Pj (xj) be a randomized policy defined in Section III that dictates the random variable Rj as in (13).

Given a realization xj of xj , the variable Rj satisfies

Rj =

0 with probability P
(
Pj (xj) = 0

∣∣∣xj = xj

)
1 with probability P

(
Pj (xj) = 1

∣∣∣xj = xj

)
Throughout the work, we restrict our attention to the policies in which

P
(
Pj (xj) = 0

∣∣∣xj = xj

)
is a measurable function of xj on the measurable space

(
R2 × [0, 2π),B

)
where B is a Borel σ-algebra on

R2 × [0, 2π). As a case in point, consider a (deterministic) policy defined by

Pj(xj) =

0 if xj ∈ Dj

1 otherwise

where Dj ∈ B. It can be verified that

P
(
Pj (xj) = 0

∣∣∣xj = xj

)
=

0 if xj ∈ Dj

1 otherwise

is a measurable function of xj .
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C. Preliminary Concepts in Probability Theory

We first review some of key definitions and results from probability theory [10], [12]. Let (X, d) be a complete

separable metric space, and let T and B be a topology and a Borel σ-algebra derived from the metric, respectively.

Definition C.1: Let µ be a probability measure on (X,B). The probability measure is said to be tight if for

every positive constant ε, there exists a compact subset K of (X, T ) for which µ (K) > 1− ε holds.

The following is adopted from Theorem 7.1.4 in [10].

Lemma C.2: Any probability measure µ on (X,B) is tight.

Definition C.3: A probability measure µ defined on (X,B) is said to be closed regular if for every A in B, it

holds that

µ(A) = sup
{
µ(F)

∣∣F ∈ B closed,F ⊂ A
}

(39)

From Theorem 7.1.3 in [10], we can state the following Lemma.

Lemma C.4: Any probability measure µ on (X,B) is closed regular.

Remark C.5: Let µ be a closed regular probability measure defined on (X,B) and let A be a measurable subset

in B. For every positive constant ε, there exists a closed set F for which F ⊂ X \A and µ (X \ A) < µ (F) + ε. Let

us define an open set O = X \ F. We can see that O satisfies O ⊃ A and µ (O) < µ (A) + ε. Hence we conclude

that

µ (A) = inf
{
µ (O)

∣∣O ∈ B open,O ⊃ A
}

(40)

Definition C.6 (Convergence of Probability Measures): Let
{
µ(i)
}
i∈N and µ be a sequence of probability mea-

sures and a probability measure defined on (X,B), respectively, and let Cb (X) be the set of all bounded, continuous,

real-valued functions on X. The sequence is said to converge to µ if it holds that

lim
i→∞

∫
g dµ(i) =

∫
g dµ

for every g in Cb (X). We denote the convergence by µ(i) → µ.

Definition C.7: Let
{
µ(i)
}
i∈N be a sequence of probability measures defined on (X,B). The probability measures

are said to be uniformly tight if for every positive constant ε, there exists a compact subset K of (X, T ) for which

µ(i) (K) > 1− ε holds for all i in N.

A measurable subset A of X is said to be a µ-continuity set if its boundary set has the zero measure with respect

to µ, i.e., µ (bd (A)) = 0. The following is the portmanteau theorem (See Theorem 11.1.1 in [10]).

Theorem C.8: For a sequence
{
µ(i)
}
i∈N of probability measures and a probability measure µ on (X,B), the

following are equivalent:

1) µ(i) → µ

2) lim supi→∞ µ(i) (F) ≤ µ (F) for any closed subset F of X

3) lim infi→∞ µ(i) (O) ≥ µ (O) for any open subset O of X

4) limi→∞ µ(i) (A) = µ (A) for any µ-continuity subset A of X.
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D. Preliminary Results

Lemma D.9: The metric space
(
R2 × [0, 2π), d

)
defined in Section II is complete, separable, and proper.

Lemma D.10: Given estimates x̂k:N , let Pk:N be non-degenerate policies that belong to P (x̂k:N ). The following

are true for all j in {k, · · · , N}:

1) P
(
xj ∈ Dj

∣∣∣Rk = 0, · · · ,Rj = 0
)

= 1

2) P
(
xj ∈ Dj

∣∣∣Rk = 0, · · · ,Rj = 1
)

= 0

subject to Rj = Pj (xj) for each j in {k, · · · , N}, where Dj and Dj are defined in (19).

The proof directly follows from Proposition III.9.

Based on Lemma D.10, we can state the following proposition.

Proposition D.11: Given estimates x̂k:N , let Pk:N be non-degenerate policies that belong to P (x̂k:N ). Consider

compact sets {Kj}Nj=k given by14

Kj =
{
x ∈ R2 × [0, 2π)

∣∣∣ d2 (x, x̂j) ≤ c′j
}

(41)

The following holds for all j in {k, · · · , N}:

P
(
xj ∈ Kj

∣∣∣Rk = 0, · · · ,Rj = 0
)

= 1 (42)

subject to Rj = Pj (xj) for each j in {k, · · · , N}.

The proof follows from the fact that Kj contains the set Dj defined in (19a) and Lemma D.10.

Proposition D.12: Given policies Pk:N , for each j in {k, · · · , N}, let us define

µj|j (A) = P
(
xj ∈ A

∣∣∣Rk = 0, · · · ,Rj = 0
)

(43a)

µj|j−1 (A) = P
(
xj ∈ A

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

(43b)

subject to Rj = Pj (xj) for each j in {k, · · · , N}, where A is a Borel-measurable subset. The probability measures

(43) evolve according to the following update rules:

1) Policy update rule:

µj|j (A) =

∫
A P
(
Pj (xj) = 0

∣∣∣xj = x
)

dµj|j−1

P
(
Rj = 0

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

provided that P
(
Rj = 0

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

is positive.

2) Process update rule:

µj|j−1 (A) =

∫
R2×[0,2π)

P
(
xj ∈ A

∣∣∣xj−1 = x
)

dµj−1|j−1

14Due to the properness of the metric space
(
R2 × [0, 2π), d

)
(see Lemma D.9), every closed ball is a compact set.



20

E. Proof of Proposition III.13

To start with, we note that for each j in {k, · · · , N}, the function Gj can be written as follows:

Gj (xj−1, x̂j:N ) = Exj

[
gj (xj , x̂j:N )

∣∣xj−1 = xj−1

]
(44)

with GN+1 = 0, where gj(xj , x̂j:N ) = min
{
d2 (xj , x̂j) + Gj+1 (xj , x̂j+1:N ) , c′j

}
.

We prove the statement using mathematical induction starting from j = N + 1. Since GN+1 is constant, e.g.,

GN+1 = 0, it is a continuous function. Now suppose that Gj+1 is a continuous function. Note that gj in (44) is a

continuous function. To verify the continuity of Gj , let
{
x

(i)
j−1

}
i∈N

and
{
x̂

(i)
j:N

}
i∈N

be sequences that converge to

xj−1 and x̂j:N , respectively. For each set A in B, let us define

µ
(i)
j (A) = P

(
xj ∈ A

∣∣∣xj−1 = x
(i)
j−1

)
(45)

µj (A) = P
(
xj ∈ A

∣∣∣xj−1 = xj−1

)
(46)

By Assumption II.4 and Theorem C.8, we can see that
{
µ

(i)
j

}
i∈N

converges to µj .

Since
(
R2 × [0, 2π), d

)
is a complete, separable metric space by Lemma D.9, using the Skorokhod representation

theorem [13], we can see that there is a sequence of random variables
{
y

(i)
j

}
i∈N

and a random variable yj all

defined on a common probability space (Ω,F, ν) in which the following three facts are true:

(F1) µ(i)
j is the probability measure of y(i)

j , i.e., ν
({
ω ∈ Ω

∣∣∣y(i)
j (ω) ∈ A

})
= µ

(i)
j (A) for each A in B.

(F2) µj is the probability measure of yj , i.e., ν
({
ω ∈ Ω

∣∣∣yj(ω) ∈ A
})

= µj (A) for each A in B.

(F3)
{
y

(i)
j

}
i∈N

converges to yj almost surely.

From (F1) and (F2), we can derive

Gj
(
x

(i)
j−1, x̂

(i)
j:N

)
− Gj (xj−1, x̂j:N )

= Exj

[
gj

(
xj , x̂

(i)
j:N

) ∣∣∣xj−1 = x
(i)
j−1

]
− Exj

[
gj (xj , x̂j:N )

∣∣∣xj−1 = xj−1

]
=

∫
Ω

gj

(
y

(i)
j (ω), x̂

(i)
j:N

)
dν −

∫
Ω

gj (yj(ω), x̂j:N ) dν (47)

Notice that by the fact that c′j is a fixed constant and g is a non-negative function, it holds that

0 ≤ gj
(
y

(i)
j (ω), x̂

(i)
j:N

)
≤ c′j

for every i in N and every ω ∈ Ω. Hence, the sequence of functions
{
gj

(
y

(i)
j (·), x̂(i)

j:N

)}
i∈N

is uniformly bounded.

Also, by the continuity of gj and (F3), it holds that

lim
i→∞

gj

(
y

(i)
j (ω), x̂

(i)
j:N

)
= gj (yj(ω), x̂j:N )

for almost every ω in Ω. Using the bounded convergence theorem (see Theorem 16.5 in [12]), we have that

lim
i→∞

∣∣∣Gj (x(i)
j−1, x̂

(i)
j:N

)
− Gj (xj−1, x̂j:N )

∣∣∣
= lim
i→∞

∣∣∣∣∫
Ω

gj

(
y

(i)
j (ω), x̂

(i)
j:N

)
dν −

∫
Ω

gj (yj(ω), x̂j:N ) dν

∣∣∣∣ = 0

which proves that the function Gj is continuous.

Finally, by induction, we conclude that the functions {Gj}Nj=k are all continuous.
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F. Proofs of Proposition III.14 and Lemma III.16

Lemma F.13: For each j in {k, · · · , N}, there exist estimates x̂j:N for which the set given by

Dj =
{
xj ∈ R2 × [0, 2π)

∣∣∣ d2 (xj , x̂j) + Exj+1

[
J∗j+1 (xj+1, x̂j+1:N )

∣∣∣xj = xj

]
< c′j

}
(48)

is non-empty, where J∗j+1 is defined in (18).

Proof: Recall how c′j is determined by (9) with the solutions T <j>
j+1:N and E<j>j+1:N to Sub-problem j + 1.

Let us select a fixed point xoj in R2 × [0, 2π). Under the choice of x̂j = xoj and x̂l = E<j>l (xj) for each l in

{j + 1, · · · , N}, by a similar argument as in Remark III.2, we can see that

Exj+1

[
J∗j+1 (xj+1, x̂j+1:N )

∣∣∣xj = xj

]
= Exj+1

[
J∗j+1

(
xj+1, x̂

′
j+1:N

) ∣∣∣xj = 0
]

where x̂′l = E<j>l (0) for each l in {j + 1, · · · , N}. Hence, at xj = xoj , it holds that

d2 (xj , x̂j) + Exj+1

[
J∗j+1 (xj+1, x̂j+1:N )

∣∣∣xj = xj

]
= Exj+1

[
J∗j+1 (xj+1, x̂j+1:N )

∣∣∣xj = xj

]
< cj + Exj+1

[
J∗j+1 (xj+1, x̂j+1:N )

∣∣∣xj = xj

]
= cj + Exj+1

[
J∗j+1

(
xj+1, x̂

′
j+1:N

) ∣∣∣xj = 0
]

= c′j

This proves the Lemma.

Lemma F.14: Given estimates x̂k:N , the sets Dj and Dj defined in (19) are closed and open, respectively, for

all j in {k, · · · , N}.

The proof directly follows from the continuity of the functions {Gj}Nj=k, each defined in (23) (See Proposition III.13).

Proof of Proposition III.14: By contradiction, suppose that the degenerate policies P∗k:N and estimates x̂∗k:N are

jointly optimal for (12). Let j0 ∈ {k, · · · , N} be the smallest integer for which

P
(
R∗j0 = 0

∣∣∣R∗k = 0, · · · ,R∗j0−1 = 0
)

= 0 (49)

holds subject to R∗j = P∗j (xj) for each j in {k, · · · , N}. Since j0 is the smallest such integer, by Proposition D.12,

the probability measure µj0|j0−1 of xj0 is well-defined.

Using Lemma F.13, let us choose x̂◦j0:N ∈
(
R2 × [0, 2π)

)N−j0+1
for which the set given by

D◦j0 =
{
xj0 ∈ R2 × [0, 2π)

∣∣∣ d2
(
xj0 , x̂

◦
j0

)
+ Exj0+1

[
J∗j0+1

(
xj0+1, x̂

◦
j0+1:N

) ∣∣∣xj0 = xj0

]
< c′j0

}
(50)

is non-empty. Note that according to Lemma F.14, the set D◦j0 is open; hence, from Assumption II.4 and Proposi-

tion D.12, we have that

P
(
xj0 ∈ D◦j0

∣∣∣R∗k = 0, · · · ,R∗j0−1 = 0
)
> 0 (51)

For each j in {j0, · · · , N}, let us define a function P◦j : R2 × [0, 2π)→ {0, 1} as follows:

P◦j (xj) =

0 if xj ∈ D◦j

1 otherwise
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where

D◦j =
{
xj ∈ R2 × [0, 2π)

∣∣∣ d2
(
xj , x̂

◦
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

◦
j+1:N

) ∣∣∣xj = xj

]
< c′j

}
Let us select new policies P ′k:N and estimates x̂′k:N as follows: for each j in {k, · · · , N},

P ′j =

P∗j if j ∈ {k, · · · , j0 − 1}

P◦j if j ∈ {j0, · · · , N}
(52a)

x̂′j =

x̂
∗
j if j ∈ {k, · · · , j0 − 1}

x̂◦j if j ∈ {j0, · · · , N}
(52b)

By definition, under the new policies P ′k:N , it holds that

P
(
xj0 ∈ D◦j0

∣∣∣R′k = 0, · · · ,R′j0 = 1
)

= 0 (53)

subject to R′j = P ′j (xj) for each j in {k, · · · , N}. This implies that

P
(
xj0 ∈ D◦j0

∣∣∣R′k = 0, · · · ,R′j0−1 = 0
)

= P
(
xj0 ∈ D◦j0

∣∣∣R′k = 0, · · · ,R′j0 = 0
)
· P
(
R′j0 = 0

∣∣∣R′k = 0, · · · ,R′j0−1 = 0
)

(54)

By (51), (52a), and (54), we can see that

P
(
R′j0 = 0

∣∣∣R′k = 0, · · · ,R′j0−1 = 0
)
> 0 (55)

Due to (49), by Remark III.8, we can see that

Exj0

[
Jj0
(
xj0 ,P

∗
j0:N , x̂

∗
j0:N

) ∣∣∣R∗k = 0, · · · ,R∗j0−1 = 0
]

= c′j0

While, by (14), (52), and (55), we can see that

Exj0

[
Jj0
(
xj0 ,P

′
j0:N , x̂

′
j0:N

) ∣∣∣R′k = 0, · · · ,R′j0−1 = 0
]

= Exj0

[
J∗j0
(
xj0 , x̂

′
j0:N

) ∣∣∣R′k = 0, · · · ,R′j0−1 = 0
]
< c′j0

These relations imply that

Exj0

[
Jj0
(
xj0 ,P

′
j0:N , x̂

′
j0:N

) ∣∣∣R′k = 0, · · · ,R′j0−1 = 0
]

< Exj0

[
Jj0
(
xj0 ,P

∗
j0:N , x̂

∗
j0:N

) ∣∣∣R∗k = 0, · · · ,R∗j0−1 = 0
]

Using the facts that P ′j = P∗j and x̂′j = x̂∗j for each j in {k, · · · , j0 − 1}, and j0 is the smallest integer for which

(49) holds, from (14), we can infer that

Exk

[
Jk
(
xk,P ′k:N , x̂

′
k:N

)]
< Exk

[Jk (xk,P∗k:N , x̂
∗
k:N )]

which violates x̂∗k:N is a global minimizer. Therefore, every global minimizer has to be non-degenerate.
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Lemma F.15: Consider policies
{
P(i)
k:N

}
i∈N

and estimates
{
x̂

(i)
k:N

}
i∈N

satisfying P(i)
k:N ∈P

(
x̂

(i−1)
k:N

)
for all i

in {k, · · · , N}. Suppose that there exists a positive constant ε for which the following holds for all i in N and j

in {k, · · · , j0}:

P
(
R

(i)
j = 0

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
)
≥ ε (56)

subject to R
(i)
j = P(i)

j (xj) for each i in N and j in {k, · · · , j0}. Then the sequence
{
x̂

(i)
j

}
i∈N

is bounded for all

j in {k, · · · , j0}.

Proof: By contradiction, suppose that there exists j′ in {k, · · · , j0} such that for a subsequence
{
x̂

(il−1)
j′

}
l∈N

of
{
x̂

(i)
j′

}
i∈N

, it holds that

d
(

0, x̂
(il−1)
j′

)
l→∞−→ ∞ (57)

For each l in N, let us choose a compact set K(il)
j′ =

{
x ∈ R2 × [0, 2π)

∣∣∣ d2
(
x, x̂

(il−1)
j′

)
≤ c′j

}
. Then, according

to Proposition D.11, the following holds for all l in N:

P
(
xj′ ∈ K(il)

j′

∣∣∣R(il)
k = 0, · · · ,R(il)

j′ = 0
)

= 1 (58)

subject to R
(il)
j = P(il)

j (xj) for each l in N and j in {k, · · · , j′}. Using (56), we can derive the following:

P
(
R

(il)
j′ = 0

∣∣∣R(il)
k = 0, · · · ,R(il)

j′−1 = 0
)

=
P
(
R

(il)
j′ = 0

∣∣∣xj′ ∈ K(il)
j′ ,R

(il)
k = 0, · · · ,R(il)

j′−1 = 0
)

P
(
xj′ ∈ K(il)

j′

∣∣∣R(il)
k = 0, · · · ,R(il)

j′ = 0
) · P

(
xj′ ∈ K(il)

j′

∣∣∣R(il)
k = 0, · · · ,R(il)

j′−1 = 0
)

≤ P
(
xj′ ∈ K(il)

j′

∣∣∣R(il)
k = 0, · · · ,R(il)

j′−1 = 0
)

=
P
(
xj′ ∈ K(il)

j′ ,R
(il)
k = 0, · · · ,R(il)

j′−1 = 0
)

∏j′−1
j=k P

(
R

(il)
j = 0

∣∣∣R(il)
k = 0, · · · ,R(il)

j−1 = 0
)

≤ εk−j
′
· P
(
xj′ ∈ K(il)

j′

)
(59)

holds for all l in N. Hence, by Lemma C.2 and (57), we can see that

lim
l→∞

P
(
xj′ ∈ K(il)

j′

)
= 0 (60)

In conjunction with (59), we conclude that

lim
l→∞

P
(
R

(il)
j′ = 0

∣∣∣R(il)
k = 0, · · · ,R(il)

j′−1 = 0
)

= 0 (61)

This contradicts the fact that (56) holds for all i in N and j in {k, · · · , j0}.

Proof of Lemma III.16: For a positive real r, let us define

Kr
def
=
{
x̂k:N ∈

(
R2 × [0, 2π)

)N−k+1
∣∣∣ d (0, x̂j) ≤ r for all j in {k, · · · , N}

}
(62)

To prove the lemma, it is sufficient to show that there exists r > 0 for which with K = Kr, the statement of

the lemma is true. By contradiction, suppose that there exists a sequence
{
x̂

(i)
k:N

}
i∈N
⊂
(
R2 × [0, 2π)

)N−k+1
that

satisfies the following hypotheses:
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(H1) For each element x̂(i)
k:N of the sequence, it holds that x̂(i)

k:N /∈ Ki.

(H2) For every x̂k:N in Ki, it holds that G (x̂k:N ) > G
(
x̂

(i)
k:N

)
.

We constructively prove that the hypothesis (H2) is violated for sufficiently large i in N. To proceed, let us select

policies
{
P(i)
k:N

}
i∈N

that satisfy P(i)
k:N ∈P

(
x̂

(i−1)
k:N

)
. Let j0 ∈ {k, · · · , N} be the smallest integer for which there

is a subsequence
{
P(il)
k:j0

}
l∈N

of
{
P(i)
k:j0

}
i∈N

satisfying15

lim
l→∞

P
(
R

(il)
j0

= 0
∣∣∣R(il)

k = 0, · · · ,R(il)
j0−1 = 0

)
= 0 (63)

subject to R
(il)
j = P(il)

j (xj) for each l in N and j in {k, · · · , j0}. Note from (14) and (63), we have that

lim
l→∞

Exj0

[
Jj0

(
xj0 ,P

(il)
j0:N , x̂

(il−1)
j0:N

) ∣∣∣R(il)
k = 0, · · · ,R(il)

j0−1 = 0
]

= c′j0 (64)

Also, according to Lemma F.15, the sequence
{
x̂

(i)
j

}
i∈N

is bounded for all j in {k, · · · , j0 − 1}.

Using Lemma F.13, let us choose x̂◦j0:N ∈
(
R2 × [0, 2π)

)N−j0+1
for which the set given by

D◦j0 =
{
xj0 ∈ R2 × [0, 2π)

∣∣∣ d2
(
xj0 , x̂

◦
j0

)
+ Exj0+1

[
J∗j0+1

(
xj0+1, x̂

◦
j0+1:N

) ∣∣∣xj0 = xj0

]
< c′j0

}
(65)

is non-empty, where J∗j0+1 is defined in (18). Note that by Proposition III.13

d2
(
xj0 , x̂

◦
j0

)
+ Exj0+1

[
J∗j0+1

(
xj0+1, x̂

◦
j0+1:N

) ∣∣∣xj0 = xj0

]
is a continuous function of xj0 . Hence, for a positive constant ε, the set defined by

B =
{
xj0 ∈ R2 × [0, 2π)

∣∣∣ d2
(
xj0 , x̂

◦
j0

)
+ Exj0+1

[
J∗j0+1

(
xj0+1, x̂

◦
j0+1:N

) ∣∣∣xj0 = xj0

]
< c′j0 − ε

}
(66)

is non-empty and open.

For each j in {j0, · · · , N}, let us define a function P◦j : R2 × [0, 2π)→ {0, 1} as follows:

P◦j (xj) =

0 if xj ∈ D◦j

1 otherwise

where

D◦j =
{
xj ∈ R2 × [0, 2π)

∣∣∣ d2
(
xj , x̂

◦
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

◦
j+1:N

) ∣∣∣xj = xj

]
< c′j

}
Also, let us select sequences of policies

{
P ′(i)k:N

}
i∈N

and estimates
{
x̂
′(i)
k:N

}
i∈N

as follows: for each i in N and j

in {k, · · · , N},

P ′(i)j =

P(i)
j if j ∈ {k, · · · , j0 − 1}

P◦j if j ∈ {j0, · · · , N}
(67a)

x̂
′(i)
j =

x̂
(i)
j if j ∈ {k, · · · , j0 − 1}

x̂◦j if j ∈ {j0, · · · , N}
(67b)

15Such j0 always exists; otherwise according to Lemma F.15, the sequence
{
x̂
(i)
k:N

}
i∈N

is bounded, which violates (H1).
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We argue that x̂′(i−1)
k:N ∈ Ki−1 and G

(
x̂
′(i−1)
k:N

)
< G

(
x̂

(i−1)
k:N

)
hold for sufficiently large i. This contradicts the

hypothesis (H2); hence it completes the proof of the lemma. In what follows, we show that this argument is

valid. Note that by Lemma F.15, the sequence
{
x̂

(i−1)
j0−1

}
i∈N

is bounded. By Proposition D.11 and by the fact that

P ′(i)j = P(i)
j for all i in N and j in {k, · · · , j0 − 1}, there exists a compact set Kj0−1 for which the following

holds for all i in N:

P
(
xj0−1 ∈ Kj0−1

∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0
)

= P
(
xj0−1 ∈ Kj0−1

∣∣∣R(i)
k = 0, · · · ,R(i)

j0−1 = 0
)

= 1

By Proposition D.12, we can write that

P
(
xj0 ∈ B

∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0
)

=

∫
Kj0−1

P
(
xj0 ∈ B

∣∣∣xj0−1 = x
)

dµ
′(i)
j0−1|j0−1

where the probability measure µ′(i)j0−1|j0−1 is defined as follows: For each A in B,

µ
′(i)
j0−1|j0−1 (A) = P

(
xj0−1 ∈ A

∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0
)

Due to Assumption II.4 and the compactness of Kj0−1, for a positive constant δj0 and for the set B given by (66),

the following holds for all i in N:

P
(
xj0 ∈ B

∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0
)

≥ δj0 · µ
′(i)
j0−1|j0−1 (Kj0−1) = δj0 (68)

Since the sequence
{
x̂

(i−1)
j

}
i∈N

is bounded for all j in {k, · · · , j0− 1}, for sufficiently large i, we can see that

x̂
′(i−1)
k:N ∈ Ki−1. In addition, by (14), (66), (67), and (68), we can see that the following relations hold for all i in

N:

Exj0

[
Jj0

(
xj0 ,P

′(i)
j0:N , x̂

′(i−1)
j0:N

) ∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0
]

=
(
Exj0

[
d2
(
xj0 , x̂

◦
j0

) ∣∣∣R′(i)k = 0, · · · ,R′(i)j0
= 0
]

+ Exj0+1

[
J∗j0+1

(
xj0+1, x̂

◦
j0+1:N

) ∣∣∣R′(i)k = 0, · · · ,R′(i)j0
= 0
] )

· P
(
R
′(i)
j0

= 0
∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0

)
+ c′j0 ·

(
1− P

(
R
′(i)
j0

= 0
∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0

))
(i)

≤
(
Exj0

[
d2
(
xj0 , x̂

◦
j0

) ∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0,xj0 ∈ B
]

+ Exj0+1

[
J∗j0+1

(
xj0+1, x̂

o
j0+1:N

) ∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0,xj0 ∈ B
] )

· P
(
xj0 ∈ B

∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0
)

+ c′j0 ·
(

1− P
(
xj0 ∈ B

∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0
))

(ii)
<
(
c′j0 − ε

)
· P
(
xj0 ∈ B

∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0
)

+ c′j0 ·
(

1− P
(
xj0 ∈ B

∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0
))

(iii)

≤ c′j0 − ε · δj0 (69)
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To obtain (i), we use the fact that

d2
(
xj0 , x̂

◦
j0

)
+ Exj0+1

[
J∗j0+1

(
xj0+1, x̂

◦
j0+1:N

) ∣∣∣xj0] < c′j0

if R
′(i)
j0

= 0 (or equivalently xj0 ∈ D◦j0 ), and B is a subset of D◦j0 ; whereas (ii) and (iii) follow from (66) and

(68), respectively. By a similar argument as in the proof of Proposition III.14, from (64) and (69), we can observe

that for sufficiently large i, there exists x̂(i−1)
k:N in Ki−1 for which it holds that

G
(
x̂
′(i−1)
k:N

)
≤ Exk

[
Jk

(
xk,P ′(i)k:N , x̂

′(i−1)
k:N

)]
< Exk

[
Jk

(
xk,P(i)

k:N , x̂
(i−1)
k:N

)]
= G

(
x̂

(i−1)
k:N

)

G. Proofs of Lemmas III.23 and III.24

Proof of Lemma III.23: To prove the lemma, we first claim that the following hold for all j in {k, · · · , N}:

lim
l→∞

E
[
p1,j

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

= E
[
p1,j

∣∣∣Rk = 0, · · · ,Rj = 0
]

(70a)

lim
l→∞

E
[
p2,j

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

= E
[
p2,j

∣∣∣Rk = 0, · · · ,Rj = 0
]

(70b)

lim
l→∞

E
[
sinθj

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

= E
[
sinθj

∣∣∣Rk = 0, · · · ,Rj = 0
]

(70c)

lim
l→∞

E
[
cosθj

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

= E
[
cosθj

∣∣∣Rk = 0, · · · ,Rj = 0
]

(70d)

subject to R
(il)
j = P(il)

j (xj) and Rj = Pj (xj) for each l in N and j in {k, · · · , N}.

For notational convenient, let us define

α = E2
[
sinθj

∣∣∣Rk = 0, · · · ,Rj = 0
]

+ E2
[
cosθj

∣∣∣Rk = 0, · · · ,Rj = 0
]

If α is non-zero, then by Corollary III.12, x̂(il)
j =

(
p̂

(il)
1,j p̂

(il)
2,j θ̂

(il)
j

)T
and x̂j =

(
p̂1,j p̂2,j θ̂j

)T
satisfy

p
(il)
1,j = E

[
p1,j

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

p
(il)
2,j = E

[
p2,j

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

sin θ̂
(il)
j =

E
[
sinθj

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

E2
[
sinθj

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

+ E2
[
cosθj

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

cos θ̂
(il)
j =

E
[
cosθj

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

E2
[
sinθj

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

+ E2
[
cosθj

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

and

lim
l→∞

d
(
x̂

(il)
j , x̂j

)
= 0 (71)
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For each j in {k, · · · , N}, let us define x̂∗j =
(
p̂∗1,j p̂∗2,j θ̂∗j

)
as

p∗1,j = E
[
p1,j

∣∣∣Rk = 0, · · · ,Rj = 0
]

p∗2,j = E
[
p2,j

∣∣∣Rk = 0, · · · ,Rj = 0
]

sin θ̂∗j = α−1 · E
[
sinθj

∣∣∣Rk = 0, · · · ,Rj = 0
]

cos θ̂∗j = α−1 · E
[
cosθj

∣∣∣Rk = 0, · · · ,Rj = 0
]

Note that by Corollary III.12, it holds that x̂∗k:N ∈ X (Pk:N ). From (70) and (71), we can observe that

d
(
x̂j , x̂

∗
j

)
≤ d

(
x̂

(il)
j , x̂∗j

)
+ d

(
x̂

(il)
j , x̂j

)
l→∞−→ 0

Therefore, we conclude that x̂k:N ∈ X (Pk:N ).

Otherwise, if α is zero then the value of

Exj

[
d2 (xj , x̂j)

∣∣∣Rk = 0, · · · ,Rj = 0
]

does not depend on θ̂j , and by Proposition III.11 and Corollary III.12, we can show that x̂k:N ∈ X (Pk:N ) if the

following hold for all j in {k, · · · , N}:

p1,j = E
[
p1,j

∣∣∣Rk = 0, · · · ,Rj = 0
]

p2,j = E
[
p2,j

∣∣∣Rk = 0, · · · ,Rj = 0
]

This can be verified by similar arguments given above and (70). It remains to prove the claim.

Proof of the Claim: Notice that p1,j ,p2,j , sin θ̂j , cos θ̂j are all continuous functions of xj . Hence to show that

(70) is true, it is sufficient to show that the following holds for any continuous function g : R2 × [0, 2π)→ R:

lim
l→∞

E
[
g (xj)

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

= E
[
g (xj)

∣∣∣Rk = 0, · · · ,Rj = 0
]

(72)

Recall the definitions of µ(il)
j|j and µj|j given in (25). Since

{
P(il)
k:N

}
l∈N

converges to Pk:N , by Definition III.17,

it holds that µ(il)
j|j → µj|j for all j in {k, · · · , N}. Since

(
R2 × [0, 2π), d

)
is a complete, separable metric space, by

the convergence of
{
µ

(il)
j|j

}
i∈N

and the Skorokhod representation theorem [13], there exist a sequence of random

variables
{
y

(il)
j

}
l∈N

and a random variable yj all defined on a common probability space (Ω,F, ν) in which the

following three facts are true:

(F1) µ(il)
j|j is the probability measure of y(il)

j , i.e., ν
({
ω ∈ Ω

∣∣∣y(il)
j (ω) ∈ A

})
= µ

(il)
j|j (A) for each A in B.

(F2) µj|j is the probability measure of yj , i.e., ν
({
ω ∈ Ω

∣∣∣yj(ω) ∈ A
})

= µj|j (A) for each A in B.

(F3)
{
y

(il)
j

}
i∈N

converges to yj almost surely.

Since
{
x̂

(il−1)
j

}
l∈N

is a convergent sequence, according to Proposition D.11, there is a compact set Kj for which

µ
(il)
j|j (Kj) = 1 for all l in N. Hence, by (F1), the following holds for a positive real β:∫{

ω∈Ω

∣∣∣ ∣∣∣g(y(il)

j (ω)
)∣∣∣>β}

∣∣∣g (y(il)
j (ω)

)∣∣∣ dν =

∫
{
x∈R2×[0,2π)

∣∣ |g(x)|>β
} |g (x)| dµ

(il)
j|j = 0 (73)
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for all l in N. In conjunction with (F3), by an application of Theorem 10.3.6 in [10], we have that

lim
l→∞

∫
Ω

g
(
y

(il)
j (ω)

)
dν =

∫
Ω

g (yj(ω)) dν (74)

Therefore, from (F2) and (74), we can see that

lim
l→∞

∫
R2×[0,2π)

g (x) dµ
(il)
j|j = lim

l→∞

∫
Ω

g
(
y

(il)
j (ω)

)
dν

=

∫
Ω

g (yj(ω)) dν

=

∫
R2×[0,2π)

g (x) dµj|j (75)

This proves the claim.

Lemma G.16: Let
{
x̂

(i)
k:N

}
i∈N

be a sequence of estimates that converges to x̂k:N . The following inclusions hold

for all j in {k, · · · , N}:

Dj ⊃
⋂
i∈N

⋃
l≥i

D(l)

j (76a)

Dj ⊂
⋃
i∈N

⋂
l≥i

D(l)
j (76b)

where

Dj =
{
xj ∈ R2 × [0, 2π)

∣∣∣ d2 (xj , x̂j) + Exj+1

[
J∗j+1 (xj+1, x̂j+1:N )

∣∣∣xj = xj

]
≤ c′j

}
Dj =

{
xj ∈ R2 × [0, 2π)

∣∣∣ d2 (xj , x̂j) + Exj+1

[
J∗j+1 (xj+1, x̂j+1:N )

∣∣∣xj = xj

]
< c′j

}
and

D(i)

j =
{
xj ∈ R2 × [0, 2π)

∣∣∣ d2
(
xj , x̂

(i)
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

(i)
j+1:N

) ∣∣∣xj = xj

]
≤ c′j

}
D(i)
j =

{
xj ∈ R2 × [0, 2π)

∣∣∣ d2
(
xj , x̂

(i)
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

(i)
j+1:N

) ∣∣∣xj = xj

]
< c′j

}
where J∗j+1 is defined in (18).

Proof: Let xj be an element of
⋂
i∈N
⋃
l≥i D

(l)

j . By definition, there exists an infinite index set {il}l∈N for

which xj ∈ D(il)

j holds for all l in N. Hence, we can see that

d2
(
xj , x̂

(il)
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

(il)
j+1:N

) ∣∣∣xj = xj

]
≤ c′j (77)

holds for all l in N. Using Proposition III.13 and by the fact that
{
x̂

(i)
k:N

}
i∈N

converges to x̂k:N , we can derive

d2 (xj , x̂j) + Exj+1

[
J∗j+1 (xj+1, x̂j+1:N )

∣∣∣xj = xj

]
≤ c′j (78)

which shows that xj ∈ Dj . This proves (76a).

To show that (76b) is true, we consider

Dcj ⊃
⋂
i∈N

⋃
l≥i

(
D(l)
j

)c
(79)

As the rest of the proof is similar to the above arguments, we omit the detail for brevity.
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Proof of Lemma III.24: For every A in B, let us define

µ
(i)
j|j−1 (A) = P

(
xj ∈ A

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
)

(80a)

µ
(i)
j|j (A) = P

(
xj ∈ A

∣∣∣R(i)
k = 0, · · · ,R(i)

j = 0
)

(80b)

subject to R
(i)
j = P(i)

j (xj) for all i in N and j in {k, · · · , N}. Since
{
x̂

(il−1)
k:N

}
l∈N

is a convergent sequence,

according to Proposition D.11, there exist compact subsets {Kj}Nj=k for which the following holds for all l in N

and j in {k, · · · , N}:

µ
(il)
j|j (Kj) = 1

Hence, for all j in {k, · · · , N}, the probability measures
{
µ

(il)
j|j

}
l∈N

are uniformly tight in the sense of Defini-

tion C.7. By Theorem 11.5.4 in [10], for each j in {k, · · · , N}, there exists a subsequence
{
µ

(i′l)

j|j

}
l∈N

that converges

to a probability measure µj|j defined on
(
R2 × [0, 2π),B

)
. In addition, note that P

(
R

(i)
j = 0

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1

)
takes a value in a compact set [ε, 1] for all i in N and j in {k, · · · , N}. Hence, there is an infinite index set {i′′l }l∈N
of {i′l}l∈N for which the following holds for all j in {k, · · · , N}:

lim
l→∞

P
(
R

(i′′l )
j = 0

∣∣∣R(i′′l )
k = 0, · · · ,R(i′′l )

j−1 = 0
)

= qj

where qj belongs to [ε, 1]. For clear and simple presentation, without loss of generality, we prove the lemma by

imposing the following three assumptions: For each j in {k, · · · , N},

(A1) The estimates
{
x̂

(i−1)
k:N

}
i∈N

converge to x̂′k:N .

(A2) The probability measures
{
µ

(i)
j|j

}
i∈N

converge to µj|j .

(A3) limi→∞ P
(
R

(i)
j = 0

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
)

= qj holds, where qj belongs to [ε, 1]

To complete the proof of the lemma, it is sufficient to show that there exist policies Pk:N for which

(F1) For every A in B, it holds that

µj|j (A) = P
(
xj ∈ A

∣∣∣Rk = 0, · · · ,Rj = 0
)

(81a)

and

qj = P
(
Rj = 0

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

(81b)

subject to Rj = Pj (xj) for all j in {k, · · · , N}.

(F2) The policies Pk:N belong to P (x̂′k:N ), where x̂′k:N is the limit of
{
x̂

(i−1)
k:N

}
i∈N

.

For notational convenience, let us define

Dj =
{
xj ∈ R2 × [0, 2π)

∣∣∣ d2
(
xj , x̂

′
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

′
j+1:N

) ∣∣∣xj = xj

]
≤ c′j

}
(82a)

Dj =
{
xj ∈ R2 × [0, 2π)

∣∣∣ d2
(
xj , x̂

′
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

′
j+1:N

) ∣∣∣xj = xj

]
< c′j

}
(82b)
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and

D(i)

j =
{
xj ∈ R2 × [0, 2π)

∣∣∣ d2
(
xj , x̂

(i−1)
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

(i−1)
j+1:N

) ∣∣∣xj = xj

]
≤ c′j

}
(83a)

D(i)
j =

{
xj ∈ R2 × [0, 2π)

∣∣∣ d2
(
xj , x̂

(i−1)
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

(i−1)
j+1:N

) ∣∣∣xj = xj

]
< c′j

}
(83b)

for each i in N and j in {k, · · · , N}, where J∗j+1 is defined in (18). Note that according to Proposition III.13, the

sets Dj and D(i)

j are closed, and the sets Dj and D(i)
j are open.

We first make the following two claims to show that (F1) is true.

Claim 1: For each A in B, let us define

µj|j−1 (A)
def
=

∫
R2×[0,2π)

P
(
xj ∈ A

∣∣∣xj−1 = x
)

dµj−1|j−1 (84)

Then, µj|j−1 is a probability measure on
(
R2 × [0, 2π),B

)
, and it holds that

lim
i→∞

µ
(i)
j|j−1 (A) = µj|j−1 (A)

for all A in B.

To prove the claim, based on Proposition D.12, we note that

µ
(i)
j|j−1 (A) =

∫
R2×[0,2π)

P
(
xj ∈ A

∣∣∣xj−1 = x
)

dµ
(i)
j−1|j−1 (85)

holds for each A in B. By definition, for fixed x in R2×[0, 2π), the mapping A 7→ P
(
xj ∈ A

∣∣∣xj−1 = x
)

defines a

probability measure on
(
R2 × [0, 2π),B

)
. In conjunction with Assumption II.4, we can see that x 7→ P

(
xj ∈ A

∣∣∣xj−1 = x
)

is a bounded, continuous function. Hence, using (A2), we have that

lim
i→∞

µ
(i)
j|j−1 (A) = lim

i→∞

∫
R2×[0,2π)

P
(
xj ∈ A

∣∣∣xj−1 = x
)

dµ
(i)
j−1|j−1

=

∫
R2×[0,2π)

P
(
xj ∈ A

∣∣∣xj−1 = x
)

dµj−1|j−1 = µj|j−1 (A) (86)

Lastly, the argument that µj|j−1 is a probability measure on
(
R2 × [0, 2π),B

)
follows from (86) and the fact

that A 7→ P
(
xj ∈ A

∣∣∣xj−1 = x
)

is a probability measure on
(
R2 × [0, 2π),B

)
. �

Claim 2: There exists a measurable function fj : R2 × [0, 2π)→ [0, 1] for which

µj|j (A) =

∫
A fj dµj|j−1

qj
(87)

holds for all A in B, where µj|j−1 is defined in (84).

Based on Lemma C.8 and Proposition D.12, for any open set O, we can see that the following relations hold:

µj|j (O) ≤ lim inf
i→∞

µ
(i)
j|j (O)

(i)

≤ lim
i→∞

µ
(i)
j|j−1 (O)

P
(
R

(i)
j = 0

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
)

(ii)
=

µj|j−1 (O)

qj
(88)
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where (i) follows from Proposition D.12, and (ii) follows from Claim 1 and (A3). We argue that the following

holds for any set A in B:

µj|j (A) ≤
µj|j−1 (A)

qj
(89)

To justify the argument, by contradiction, suppose that for a set A in B it holds that

µj|j (A) >
µj|j−1 (A)

qj
(90)

By the closed regularity theorem (see Theorem 7.1.3 in [10]) and Remark C.5, we can choose an open set O

containing A for which the following holds:

µj|j (O) ≥ µj|j (A) >
µj|j−1 (O)

qj

≥
µj|j−1 (A)

qj
(91)

This contradicts (88).

Notice that (89) implies that µj|j is absolutely continuous with respect to µj|j−1. According to the Radon-

Nikodym theorem, there is a measurable function fj : R2 × [0, 2π)→ R+ for which the following holds for all A

in B:

µj|j (A) =

∫
A fj dµj|j−1

qj
(92)

In addition, it can be verified that fj(x) ≤ 1 for almost every x in R2 × [0, 2π); otherwise (89) would be violated.

�

Proof of (F1): Using the function fj obtained in Claim 2, let us define policies Pk:N as follows: For each j in

{k, · · · , N}

Pj(x) =

0 with probability fj(x)

1 with probability 1− fj(x)

(93)

In conjunction with (92), we can verify that under the policies Pk:N , the following holds:

µj|j (A) =

∫
A P
(
Pj(xj) = 0

∣∣∣xj = x
)

dµj|j−1

qj
(94)

Using (94) and Proposition D.12, it can be verified that the following hold for every A in B:

µj|j (A) = P
(
xj ∈ A

∣∣∣Rk = 0, · · · ,Rj = 0
)

and

qj = P
(
Rj = 0

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

subject to Rj = Pj (xj) for all j in {k, · · · , N}. This completes the proof.

Henceforth, we make two additional claims under the policies Pk:N determined as in (93) to show that (F2) is

true.
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Claim 3: For any Borel measurable subset A contained in Dcj , it holds that

P
(
xj ∈ A

∣∣∣Rk = 0, · · · ,Rj = 0
)

= 0

where the set Dj is defined in (82a).

Notice that

P
(
xj ∈ A

∣∣∣Rk = 0, · · · ,Rj = 0
)

=
P
(
xj ∈ A

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

P
(
Rj = 0

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

−
P
(
xj ∈ A

∣∣∣Rk = 0, · · · ,Rj = 1
)
· P
(
Rj = 1

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

P
(
Rj = 0

∣∣∣Rk = 0, · · · ,Rj−1 = 0
) (96)

To prove the claim, let O be an open set contained in Dcj . By Lemma D.10 and Proposition D.12, we can derive

the following:

µ
(i)
j|j (O) = µ

(i)
j|j

(
O ∩ D(i)

j

)
≤

µ
(i)
j|j−1

(
O ∩ D(i)

j

)
P
(
R

(i)
j = 0

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
)

where the set D(i)

j is defined in (83a). By applying Theorem C.8, we can show that the following holds for all i0

in N:

µj|j (O) ≤ lim inf
i→∞

µ
(i)
j|j (O)

≤ lim inf
i→∞

µ
(i)
j|j−1

(
O ∩ D(i)

j

)
P
(
R

(i)
j = 0

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
)

≤ lim inf
i→∞

µ
(i)
j|j−1

(
O ∩

(⋃
l≥iD

(l)

j

))
P
(
R

(i)
j = 0

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
)

(i)

≤
µj|j−1

(
O ∩

(⋃
l≥i0 D

(l)

j

))
P
(
Rj = 0

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

where (i) follows from Claim 1, (F1), and the fact that
{⋃

l≥iD
(l)

j

}
i∈N

is a decreasing sequence of measurable

sets. Hence, from Lemma G.16, we have that

µj|j (O) ≤
µj|j−1

(
O ∩

(⋂
i∈N
⋃
l≥i D

(l)

j

))
P
(
Rj = 0

∣∣∣Rk = 0, · · · ,Rj−1 = 0
) = 0

Since Dcj is an open set, by selecting O = Dcj , we conclude that the following holds for every Borel measurable

subset A of Dcj :

µj|j (A) ≤ µj|j
(
Dcj
)

= 0

�
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Claim 4: Suppose that P
(
Rj = 1

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

is non-zero. Then, for any Borel measurable subset

A contained in the set Dj given in (82b), it holds that

P
(
xj ∈ A

∣∣∣Rk = 0, · · · ,Rj = 1
)

= 0

To prove the claim, let F be a closed set contained in Dj . Notice that, by Lemma D.10, the following holds for

all i in N:

P
(
xj ∈ F ∩ D(i)

j

∣∣∣R(i)
k = 0, · · · ,R(i)

j = 0
)

=
P
(
xj ∈ F ∩ D(i)

j

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
)

P
(
R

(i)
j = 0

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
) (97)

Using (97) and Theorem C.8, we can show that the following holds for all i0 in N:

µj|j (F) ≥ lim sup
i→∞

µ
(i)
j|j (F)

≥ lim sup
i→∞

µ
(i)
j|j

(
F ∩ D(i)

j

)

= lim sup
i→∞

µ
(i)
j|j−1

(
F ∩ D(i)

j

)
P
(
R

(i)
j = 0

∣∣ R(i)
k = 0, · · · ,R(i)

j−1 = 0
)

≥ lim sup
i→∞

µ
(i)
j|j−1

(
F ∩

(⋂
l≥iD

(l)
j

))
P
(
R

(i)
j = 0

∣∣ R(i)
k = 0, · · · ,R(i)

j−1 = 0
)

(i)

≥
µj|j−1

(
F ∩

(⋂
l≥i0 D

(l)
j

))
P
(
Rj = 0

∣∣ Rk = 0, · · · ,Rj−1 = 0
)

where (i) follows from Claim 1, (F1), and the fact that
{⋂

l≥i D
(l)
j

}
i∈N

is an increasing sequence of measurable

sets. Hence, from Lemma G.16, we have that

µj|j (F) ≥
µj|j−1

(
F ∩

(⋃
i∈N
⋂
l≥i D

(l)
j

))
P
(
Rj = 0

∣∣ Rk = 0, · · · ,Rj−1 = 0
)

=
µj|j−1 (F)

P
(
Rj = 0

∣∣ Rk = 0, · · · ,Rj−1 = 0
)

Using this relation, we can see that

µj|j−1 (F)

= P
(
xj ∈ F

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

= P
(
xj ∈ F

∣∣∣Rk = 0, · · · ,Rj = 0
)
· P
(
Rj = 0

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

+ P
(
xj ∈ F

∣∣∣Rk = 0, · · · ,Rj = 1
)
· P
(
Rj = 1

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

≥ µj|j−1 (F)

+ P
(
xj ∈ F

∣∣∣Rk = 0, · · · ,Rj = 1
)
· P
(
Rj = 1

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)
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Using the fact that P
(
Rj = 1

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

is non-zero, we obtain

P
(
xj ∈ F

∣∣∣Rk = 0, · · · ,Rj = 1
)

= 0

Based on the closed regularity theorem (see Theorem 7.1.3 in [10]), we can see that the following holds for any

Borel measurable set A contained in Dj :

P
(
xj ∈ A

∣∣∣Rk = 0, · · · ,Rj = 1
)

= 0

�

Proof of (F2): Recall that Exj

[
Jj
(
xj ,Pj:N , x̂

′
j:N

) ∣∣∣Rk = 0, · · · ,Rj−1 = 0
]

and J∗j are defined in (14) and

(18), respectively, and that Rj = Pj (xj) for all j in {k, · · · , N}. We will use the mathematical induction to show

that the following is true:

Exk
[Jk (xk,Pk:N , x̂

′
k:N )] = min

P′k:N

Exk

[
Jk
(
xk,P ′k:N , x̂

′
k:N

)]
Using Claim 3 and Claim 4, we can derive the following:

ExN

[
d2 (xN , x̂

′
N )
∣∣∣RN = 0

]
= ExN

[
min

{
d2 (xN , x̂

′
N ) , c′N

} ∣∣∣RN = 0
]

= ExN

[
J∗N (xN , x̂

′
N )
∣∣∣RN = 0

]
(98a)

and

c′N = ExN

[
min

{
d2 (xN , x̂

′
N ) , c′N

} ∣∣∣RN = 1
]

= ExN

[
J∗N (xN , x̂

′
N )
∣∣∣RN = 1

]
(98b)

provided that P
(
RN = 1

∣∣∣Rk = 0, · · · ,RN−1 = 0
)

is nonzero. From (14), (18), and (98), we can derive that

ExN

[
JN (xN ,PN , x̂

′
N )
∣∣∣RN−1 = 0

]
= ExN

[
J∗N (xN , x̂

′
N )
∣∣∣RN−1 = 0

]
(99)

Suppose that the following relation holds:

Exj+1

[
Jj+1

(
xj+1,Pj+1:N , x̂

′
j+1:N

) ∣∣∣Rk = 0, · · · ,Rj = 0
]

= Exj+1

[
J∗j+1

(
xj+1, x̂

′
j+1:N

) ∣∣∣Rk = 0, · · · ,Rj = 0
]

(100)

Then, using Claim 3 and Claim 4, we can derive the following:

Exj

[
d2
(
xj , x̂

′
j

)
+ Exj+1

[
Jj+1

(
xj+1,Pj+1:N , x̂

′
j+1:N

) ∣∣∣xj

] ∣∣∣Rk = 0, · · · ,Rj = 0
]

= Exj

[
min

{
d2
(
xj , x̂

′
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

′
j+1:N

) ∣∣∣xj

]
, c′j

} ∣∣∣Rk = 0, · · · ,Rj = 0
]

= Exj

[
J∗j
(
xj , x̂

′
j:N

) ∣∣∣Rk = 0, · · · ,Rj = 0
]

(101a)
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and

c′j = Exj

[
min

{
d2
(
xj , x̂

′
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

′
j+1:N

) ∣∣∣xj

]
, c′j

} ∣∣∣Rk = 0, · · · ,Rj = 1
]

= Exj

[
J∗j
(
xj , x̂

′
j:N

) ∣∣∣Rk = 0, · · · ,Rj = 1
]

(101b)

provided that P
(
Rj = 1

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

is non-zero. From (14), (18), and (101), we can derive that

Exj

[
Jj
(
xj ,Pj:N , x̂

′
j:N

) ∣∣∣Rk = 0, · · · ,Rj−1 = 0
]

= Exj

[
J∗j
(
xj , x̂

′
j:N

) ∣∣∣Rk = 0, · · · ,Rj−1 = 0
]

(102)

By induction, we conclude that (102) holds for all j in {k, · · · , N}. By Definition III.5 and the fact that

min
P′k:N

Exk

[
Jk
(
xk,P ′k:N , x̂

′
k:N

)]
= Exk

[J∗k (xk, x̂
′
k:N )]

we conclude that the policies Pk:N belong to P (x̂′k:N ).
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