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How well-posedness of hybrid systems can extend beyond Zeno times

Rafal Goebel and Ricardo Sanfelice

Abstract— The extension of a solution to a hybrid system
beyond its Zeno time is a simple exercise in modeling. However,
assuring that the extended system is well-posed in a certain
sense, in particular, that the extension of a solution depends
reasonably on initial, pre-Zeno, conditions, has not been ad-
dressed. In this paper it is shown that these results hold for
hybrid systems that exhibit Zeno behavior when the set of
Zeno equilibria forms a continuum that has certain stability
properties. Several scenarios of going past Zeno are presented.
Dependence of limits of Zeno solutions, of Zeno times, and of
reachable sets on initial conditions is also discussed.

I. INTRODUCTION

Hybrid dynamical systems are dynamical systems that
exhibit features characteristic of continuous-time dynamical
systems and features characteristic of discrete-time systems.
In this paper, hybrid systems are modeled as hybrid inclu-
sions [14]. This framework relies on generalized time do-
mains that go back to [24], allows for multivalued dynamics,
as pioneered in this setting by [3], [4], admits nonunique
solutions, and, despite such generality, allows for a satisfying
robust asymptotic stability theory [14]. What enables much
of the stability and robustness analysis is reasonable depen-
dence of solutions on initial conditions and perturbations,
referred to in [14] as well-posedness, or nominal well-
posedness when perturbations are not considered.

The Zeno phenomenon in a hybrid system is the oc-
currence of infinitely many jumps (or events, or switches,
or discrete transitions) in a finite amount of (ordinary)
time. It may arise from modeling abstractions and provide
challenge to simulations [20]. There exist works on sufficient
conditions for the Zeno behavior [26], [1] and on stability of
isolated Zeno equilibria [22], [23], [15], [16]. Continuation
of solutions beyond Zeno times is not possible in the hybrid
inclusions framework, as the hybrid time domains repre-
senting Zeno behavior are already unbounded. Modeling
frameworks, for example dynamical systems on time scales
[7] or or measure-driven differential equations [8], that allow
for continuation of solutions past (multiple) Zeno behaviors
are not discussed in this paper. Some work on continuation
of solutions past Zeno time has been done by [9], [27], [2].
Usually, it involves formal extension past Zeno and is not
concerned with dependence of past-Zeno solution on pre-
Zeno initial conditions.
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The main goal of this paper is to show a situation where
nominal well-posedness results can be extended to post-Zeno
behaviors. The situation involves a nominally well-posed
hybrid system which has a continuum of Zeno equilibria.
Zeno solutions converge to the equilibria and their post-
Zeno continuations, described by the same or a different
nominally well-posed system, depend on which equilibirum
the solutions converge to. Two properties are required from
the Zeno equilibria: pointwise asymptotic stability, some-
times referred to as semistability, and a small ordinary time
property. These properties ensure that limits and Zeno times
of Zeno solutions depend regularly on the pre-Zeno initial
conditions, which in turn lets one extend the well-posedness
to post-Zeno behaviors.

Pointwise asymptotic stability is a property of a set of
equilibria in a dynamical system, where every equilibrium
is Lyapunov stable and from a neighborhood of it, every
solution converges to possibly another equilibrium. This sta-
bility concept has been analyzed in the setting of differential
equations [5], [6] and differential inclusions [19]. Necessary
and sufficient conditions, for difference inclusions, were
given by [10], [11] in terms of set-valued Lyapunov func-
tions. This approach was generalized to hybrid inclusions in
[13]. Some other results on semistability has appeared for
switching [18] and hybrid systems [17]. The small ordinary
time property of a Zeno equilibrium [22] or of a compact
attractor [15] essentially requires that solutions that start near
the equilibrium or attractor have uniformly small Zeno times.

The contribution of this paper is that if a hybrid system has
a closed pointwise asymptotically stable set, then reasonable
dependence of solutions on initial conditions extends from
finite-time horizons to infinite-time horizons; the sets of lim-
its of solutions depend reasonably on initial conditions; and
under an additional assumption of small ordinary time, Zeno
times depend reasonably on initial conditions too. These new
results are in Section IV. Then, in sections V and VI, the
main results are used to show how well-posedness, and also
some characterizations of asymptotic stability, can be carried
over to scenarios involving continuation of solutions past
their Zeno times by a potentially different hybrid system.
Different scenarios can be considered as well, including for
example partial pointwise asymptotic stability, or repeated
reinitialization of Zeno solutions in one hybrid system [12].
Background on hybrid systems and nominal well-posedness
is in Section II below. The required stability concepts are
presented in III, along with sufficient conditions for them.
Examples in Section VII conclude the paper.



II. HYBRID SYSTEMS AND WELL-POSEDNESS

A. Hybrid inclusions

Hybrid systems are modeled in this paper by hybrid inclu-
sions [14]. Below, C,D ⊂ Rn are sets, called, respectively,
the flow set and the jump set and F,G : Rn ⇒ Rn are set-
valued mappings, called, respectively, the flow map and jump
map. A hybrid inclusion is represented by

x ∈ C ẋ ∈ F (x)

x ∈ D x+ ∈ G (x) .
(1)

A set E ⊂ R2 is a compact hybrid time domain if E =⋃J
j=0 Ij × {j}, where J ∈ {0, 1, 2, . . . } and Ij = [tj , tj+1],

j = 0, 1, . . . , J , for some 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ+1.
A set E is a hybrid time domain if, for each (T, J) ∈ E,
the set {(t, j) ∈ E | t ≤ T, j ≤ J} is a compact hybrid time
domain. Equivalently, a hybrid time domain is a union of
finitely or infinitely many intervals [tj , tj+1] × {j}, where
0 = t1 ≤ t2 ≤ . . . , with the last interval, if it exists, possibly
of the form [tj , tj+1) or [tj ,∞).

A function φ : domφ→ Rn, where domφ represents the
domain of φ, is a solution to the hybrid system (1) if domφ
is a hybrid time domain, φ(0, 0) ∈ C ∪D, and
• if Ij := {t | (t, j) ∈ domφ} has nonempty interior, then
t 7→ φ(t, j) is locally absolutely continuous on Ij and

φ(t, j) ∈ C for all t ∈ int Ij and

d

dt
φ(t, j) ∈ F (φ(t, j)) for almost all t ∈ Ij ;

• if (t, j) ∈ domφ and (t, j + 1) ∈ domφ then

φ(t, j) ∈ D and φ(t, j + 1) ∈ G(φ(t, j)).

A solution φ : domφ → Rn is maximal if it cannot be
extended, and complete if domφ is unbounded.

Definition 2.1: The hybrid system (1) is forward complete
if every maximal solution to (1) is complete. The hybrid
system (1) is pre-forward complete if every solution to (1) is
bounded or complete.

For conditions guaranteeing that maximal solutions are
complete, see [14, Proposition 2.10 and Proposition 6.10].
In what follows, S denotes the set of all maximal solutions
to (1), S(x) denotes the set of maximal solutions to (1) that
start from x, and for a set K ⊂ Rn, S(K) :=

⋃
x∈K S(x).

B. Well-posedness

For standard differential equations, dependence of solu-
tions on initial conditions and on parameters is expressed
in terms of the uniform distance and uniform convergence.
An essential tool for proving results in such setting is the
Arzela-Ascoli lemma about extracting uniformly convergent
subsequences from sequences of uniformly continuous func-
tions. For sequences of solutions to hybrid systems, the right
notion of convergence is graphical convergence. For details,
see [25] or [14]. The following is a consequence of [25,
Theorem 4.18], restated for hybrid arcs in [14, Theorem 6.1].

Theorem 2.2: For every sequence φi ∈ S with conver-
gent initial conditions φi(0, 0) there exists a graphically
convergent subsequence, the graphical limit φ of which
satisfies φ(0, 0) = limi→∞ φi(0, 0).

To ensure that the graphical limit φ above is a solution,
further conditions need to be placed on (1). Systems where
this property holds have been named nominally well-posed
in [14]. The definition of well-posed systems considers
vanishing perturbations, and is not considered here.

Definition 2.3: The hybrid system (1) is nominally well-
posed if for every graphically convergent sequence φi of
solutions with convergent initial conditions φi(0, 0), either

(a) the sequence φi is locally eventually bounded and its
graphical limit φ is a solution to (1) with φ(0, 0) =
limi→∞ φi(0, 0) and with limi→∞ length domφi =
length domφ, or

(b) there exists an unbounded and not complete solution
from limi→∞ φi(0, 0).

Above, length domφ := sup {t+ j | (t, j) ∈ domφ}. Be-
low, lengtht domφ := sup {t | (t, j) ∈ domφ} is also used.

If a nominally well-posed system is pre-forward complete,
then it does not exhibit finite-time blow-up, i.e., there is no
unbounded and not complete solutions to it, and so every
graphically convergent subsequence φi as above is locally
eventually bounded and (a) above holds.

A sufficient condition for nominal well-posedness, in fact
for well-posedness, of (1) is given by [14, Theorem 6.8].
The result says that (1) is well-posed if the data satisfies
some regularity conditions, termed hybrid basic assumptions.
The set-valued analysis terminology below follows [25]: a
set-valued map M : Rn ⇒ Rn is outer semicontinuous if
for every convergent sequence of xi’s and every convergent
sequence of yi ∈ M(xi), lim yi ∈ M(limxi), and locally
bounded if for every compact K ⊂ Rn there exists a compact
K ′ ⊂ Rn such that M(K) ⊂ K ′. When dynamics are single
valued, the conditions on F and G below reduce to F : C →
Rn, G : D → Rn being continuous functions.

Definition 2.4: The hybrid system (1) satisfies the hybrid
basic assumptions if its data, C,F,D,G, satisfies the fol-
lowing conditions: C,D ⊂ Rn are closed; the set-valued
mappings F,G : Rn ⇒ Rn are locally bounded and outer
semicontinuous; for every x ∈ C, F (x) is nonempty, closed,
and convex; for every x ∈ D, G(x) is nonempty and closed.

Select consequences of (1) being well-posed include:

(a) Solutions depend on initial conditions in an outer-
semicontinuous way (roughly, limits of solutions are
solutions) and this can be characterized in terms of
distances between graphs of solutions.

(b) Solutions depend on initial conditions continuously
when uniqueness of solutions can be ensured.

(c) The Krasovskii-LaSalle invariance principle, and other
arguments relying on invariance, can be extended to (1).

(d) For a compact asymptotically stable set in (1), the basin
of attraction is open and from it, the convergence to the
set is uniform and it admits a KL bound.



For details, consult [14]. Further meaning to (a) and (b)
above can be found in [14, Theorem 5.25] which says that
a locally eventually bounded sequence φi of hybrid arcs
graphically converges to a hybrid arc φ if and only if for
every ε > 0, τ > 0, the arcs φi and φ are (τ, ε)-close for all
large enough i. The concept of (τ, ε)-closeness is defined
below, along with other closeness concepts that apply to
solutions under assumptions involving pointwise asymptotic
stability and small ordinary time property.

Definition 2.5: For a given ε > 0, τ > 0, two hybrid arcs
φ, φ′ ∈ S are
(a) (τ, ε)-close if

(i) ∀ (t, j) ∈ domφ with t+ j < τ ∃ (t′, j) ∈ domφ′

with |t− t′| < ε, ‖φ(t, j)− φ′(t′, j)‖ < ε;
(ii) ∀ (t′, j′) ∈ domφ′ with t′ + j′ < τ ∃ (t, j′) ∈

domφ with |t− t′| < ε, ‖φ′(t′, j′)− φ(t, j′)‖ < ε.
(b) ε-close to τ -truncations of one another if

(i) ∀ (t, j) ∈ domφ ∃ (t′, j′) ∈ domφ′, t′ + j′ < τ
with ‖φ(t, j)− φ′(t′, j′)‖ < ε;

(ii) ∀ (t′, j′) ∈ domφ′ ∃ (t, j) ∈ domφ, t + j < τ
with ‖φ′(t′, j′)− φ(t, j)‖ < ε.

(c) ε-close if
(i) ∀ (t, j) ∈ domφ ∃ (t′, j) ∈ domφ′ with |t−t′| < ε

and ‖φ(t, j)− φ′(t′, j)‖ < ε
(ii) ∀ (t′, j′) ∈ domφ′ there exists (t, j′) ∈ domφ with
|t− t′| < ε and ‖φ′(t′, j′)− φ(t, j′)‖ < ε.

III. STABILITY CONCEPTS

This section presents the pointwise asymptotic stability
and small ordinary time stability concepts.

A. Pointwise asymptotic stability

Definition 3.1: A set A ⊂ Rn is pointwise asymptotically
stable (PAS) if:
(a) every a ∈ A is Lyapunov stable, that is, for every a ∈ A

and every ε > 0 there exists δ > 0 such that φ(t, j) ∈
a+ εB for every φ ∈ S(a+ δB), every (t, j) ∈ domφ,
and

(b) there exists a neighborhood U of A such that every
φ ∈ S(U) is bounded, and if it is complete, then
limt+j→∞ φ(t, j) exists and belongs to A.

The basin of pointwise attraction of a pointwise asymptoti-
cally stable set A, denoted B(A), is the set of x ∈ Rn such
that every φ ∈ S(x) is bounded and if it is complete, then
limt+j→∞ φ(t, j) exists, and belongs to A.

Sufficient conditions for pointwise asymptotic stability in
hybrid systems, using strict or weak set-valued Lyapunov
functions or relying on so-called “finite-length Lyapunov
functions” are in [13].

B. Small ordinary time property

Definition 3.2:
(a) A point a ∈ Rn is small ordinary time stable (SOT

stable) if it is Lyapunov stable and for every ε > 0

there exists δ > 0 such that lengtht domφ < ε for
every φ ∈ S(a+ δB).

(b) A set A ⊂ Rn is pointwise small ordinary time asymp-
totically stable (PSOTAS) if it is pointwise asymptoti-
cally stable and every a ∈ A is SOT stable.

Necessary or sufficient conditions for related properties,
either of an equilibrium or of a compact attractor, are in
[21], [23], [15], and [16]. The following sufficient condition
for PSOTAS is motivated by [15, Proposition 3.2].

Proposition 3.3: Suppose that a closed set A ⊂ Rn is
PAS for (1) and there exists a continuously differentiable
V : Rn → R such that
(a) V is positive definite with respect to A;
(b) there exists c > 0 and ρ ∈ [0, 1) such that

∇V (x) · f ≤ −c (V (x))
ρ ∀x ∈ C, f ∈ F (x);

(c) V (g) ≤ V (x) ∀x ∈ D, g ∈ G(x);
and there exist no nontrivial flowing solutions φ satisfying
φ(t, j) ⊂ A for all (t, j) ∈ domφ. Then A is PSOTAS.

IV. NOMINAL WELL-POSEDNESS UNDER PAS AND SOT
The main result of the paper, describing well-posedness

properties in presence of a PAS and PSOTAS closed set, is
below. It provides a tool for establishing properties of the
limit point mappings and of Zeno times, as given in the
corollary.

Theorem 4.1: Suppose that (1) is nominally well-posed
and forward complete. For every sequence of φi ∈ S with
φi(0, 0) convergent, there exists a graphically convergent
subsequence, which is not relabeled, such that
(a) the graphical limit φ of the graphically convergent

subsequence φi is a complete solution to (1).
If, additionally, the closed set A ⊂ Rn is PAS and
lim
i→∞

φi(0, 0) ∈ B(A), then

(b) for all large enough i, lim
t+j→∞

φi(t, j) exists and belongs

to A;
(c) lim

i→∞
lim

t+j→∞
φi(t, j) = lim

t+j→∞
φ(t, j);

(d) convergence of φi to φ is uniform in the following sense:
for every ε > 0 there exists τ > 0 such that, for every
large enough i, φi and φ are ε-close to τ -truncations
of one another.

If, additionally, A is PSOTAS, then
(e) φ and φi for all large enough i are Zeno, and

limi→∞ lengtht domφi = lengtht domφ;
(f) convergence of φi to φ is uniform in the following sense:

for every ε > 0 and every large enough i, φi and φ are
ε-close to one another.

Corollary 4.2: Suppose (1) is nominally well-posed and
forward complete and the closed set A ⊂ Rn is PAS. Then:
(a) the basin of pointwise attraction of A, B(A), is an open

neighborhood of A;
(b) the set-valued mapping L : B(A) ⇒ Rn defined by

L(x) =

{
lim

t+j→∞
φ(t, j)

∣∣∣φ ∈ S(x)

}
(2)



is outer semicontinuous and locally bounded.
If, additionally, A is PSOTAS, then:
(d) the function Lengtht : B(A)→ [0,∞] defined by

Length
t

(x) = sup

{
length

t
domφ

∣∣∣φ ∈ S(x)

}
is upper semicontinuous, locally bounded (in particu-
lar, finite-valued), and the sup defining Lengtht(x) is
attained for every x ∈ B(A).

V. SCENARIO 1: PAST ZENO TO A COMPACT ATTRACTOR

The first scenario considers a hybrid system with a PSO-
TAS closed set and a continuation of solutions to it using a
second hybrid system, with initial conditions for the contin-
uations depending on the limits, which are Zeno equilibria,
of the pre-Zeno solutions. The following assumption is in
place throughout the section.

Assumption 5.1:
• (C1, F1, G1, D1) satisfy hybrid basic assumptions and

define a forward complete hybrid system in Rn1 ;
• A1 is a nonempty and closed set that is PSOTAS for

(C1, F1, G1, D1);
• (C2, F2, G2, D2) satisfy hybrid basic assumptions and

define a pre-forward complete hybrid system in Rn2 ;
• Ψ : Rn1 ⇒ Rn2 is an outer semicontinuous and locally

bounded set-valued mapping.

System (C1, F1, G1, D1) models the dynamics of the
hybrid system before Zeno while (C2, F2, D2, G2) models
the post-Zeno dynamics. Let B1(A1) ⊂ Rn1 be the basin of
pointwise attraction of A1 for (C1, F1, G1, D1).

Definition 5.2: A solution to the system above is a pair
(φ, ψ) such that
• φ is a complete solution to (C1, F1, G1, D1);
• φ(0, 0) ∈ B1(A1)

• ψ(T, 0) ∈ Ψ

(
lim

t+j→∞
φ(t, j)

)
, where T =

lengtht domφ;
• ψ is a maximal solution to (C2, F2, G2, D2) defined on

a hybrid time domain from (T, 0).

Above, a hybrid time domain from (T, 0) is a set S such
that S−(T, 0) is a hybrid time domain in the usual sense (in
other words, a hybrid time domain from (0, 0)). Similarly, a
solution to (C2, F2, G2, D2) defined on a hybrid time domain
from (T, 0) is a function ψ such that (t, k) 7→ ψ(t + T, k)
is a solution to (C2, F2, G2, D2) on a hybrid time domain
S − (T, 0). In what follows, S is the set of solutions as
defined above, S1 is the set of solutions to (C1, F1, G1, D1),
and S2 is the set of solutions to (C2, F2, G2, D2). S(x) is
the set of solutions (φ, ψ) as above such that φ(0, 0) = x.

Theorem 5.3: Suppose Assumption 5.1 holds. Let
(φi, ψi) ∈ S(xi) with xi → x ∈ B1(A1). Then, there exists
a graphically convergent subsequence of (φi, ψi), the limit
(φ, ψ) of which is a solution in S(x). Furthermore, for
every ε > 0, τ > 0 and all large enough i, ψi and ψ are
(τ, ε)-close, in the sense of Definition 2.5 (a).

Further results can be shown when the second hybrid
system has a pre-asymptotically stable compact set [14].

Assumption 5.4: A2 is a compact pre-asymptotically sta-
ble set for (C2, F2, G2, D2).

Definition 5.5: Under Assumptions 5.1 and 5.4, the basin
of attraction B1(A2) ⊂ Rn1 is the set of all x ∈ Rn1 such
that every (φ, ψ) ∈ S(x) is bounded and if ψ is complete,
then limt+k→∞ dA2 (ψ(t, k)) = 0.

Above, dA2 is the distance from A2, that is dA2(x) =
infa∈A2 ‖x − a‖. Let B2(A2) ⊂ Rn2 be the basin of pre-
attraction of A2 for (C2, F2, G2, D2), i.e., the set of all
x ∈ Rn2 such that every ψ ∈ S(x) is bounded and
if it is complete, it converges to A2. Directly from the
definitions, one can gather that B1(A2) ⊂ B1(A1) and
Ψ(L1(B1(A2))) ⊂ B2(A2). Here, L1 is the limit mapping
(2) for (C1, F1, G1, D1).

Proposition 5.6: If Assumptions 5.1 and 5.4 hold, then:
(a) The basin of attraction B1(A2) is open.
(b) Convergence from B1(A2) to A2 is uniform, in the sense

that for every compact set K1 ⊂ B1(A2) and every
neighborhood U2 of A2 there exists T > 0 such that,
for every (φ, ψ) ∈ S(K1), every (t, k) ∈ domψ with
t+ k > T , ψ(t, k) ∈ U2.

VI. SCENARIO 2: PARTIAL STATE GOES PAST ZENO

The second scenario builds upon the first scenario, by
considering two hybrid systems evolving pre-Zeno time. One
system is uniformly not Zeno, the other is like in the first
scenario, and these two systems are decoupled. Then, the
continuation of solutions past Zeno time depends on solu-
tions to both pre-Zeno systems. The following assumption is
in place throughout the section.

Assumption 6.1:
• (C0, F0, G0, D0) satisfies hybrid basic assumptions and

defines a forward complete hybrid system in Rn0 ;
• (C0, F0, G0, D0) is locally uniformly non-Zeno;
• (C1, F1, G1, D1) satisfies hybrid basic assumptions and

defines a forward complete hybrid system in Rn1 ;
• A1 is a closed pointwise SOT asymptotically stable set

for (C1, F1, G1, D1);
• (C2, F2, G2, D2) satisfies hybrid basic assumptions and

defines a pre-forward complete hybrid system Rn2 ;
• Ψ : Rn0+n1 ⇒ Rn2 is an outer semicontinuous and

locally bounded set-valued mapping.
The assumption that (C0, F0, G0, D0) be locally uniformly

non-Zeno means: for every compact K0 ⊂ Rn0 there exist
T, J > 0 such that for every solution φ to (C0, F0, G0, D0)
with φ(0, 0) ∈ K, for every (t, j), (t′, j′) ∈ domφ, if |t −
t′| ≤ T then |j − j′| ≤ J . This property is implied by, for
example, dwell-time and average dwell-time conditions.

Definition 6.2: A solution to the system above is a triple
(φ0, φ1, ψ) such that
• φ0 is a complete solution to (C0, F0, G0, D0);
• φ1 is a complete solution to (C1, F1, G1, D1);
• φ1(0, 0) ∈ B1(A1)



• ψ(T, 0) ∈ Ψ

(
φ0(T, j(T )), lim

t+j→∞
φ1(t, j)

)
, where

T = lengtht domφ1 and j(T ) is any natural number
such that (T, j(T )) ∈ domφ0;

• ψ is a maximal solution to (C2, F2, G2, D2) defined on
a hybrid time domain from (T, 0).

The following is a generalization of Theorem 5.3.
Theorem 6.3: Suppose Assumption 6.1 holds. Let

(φ0,i, φ1,i, ψi) ∈ S(x0,i, x1,i) with x0,i → x0 and
x1,i → x1 ∈ B1(A1). Then, there exists a graphically
convergent subsequence of (φ0,i, φ1,i, ψi), the limit
(φ0, φ1, ψ) of which is a solution in S(x0, x1). Furthermore,
without relabeling, for every ε > 0, τ > 0 and all large
enough i, ψi and ψ are (τ, ε)-close, in the sense of
Definition 2.5 (a).

Corollary 6.4: Suppose Assumption 6.1 holds. For every
compact set K ⊂ Rn0 × B1(A1) and every τ > 0, ε >
0, there exist δ > 0 with the following property: for every
(φ0, φ1, ψ) ∈ S(K + δB) there exists (φ′0, φ

′
1, ψ
′) ∈ S(K)

such that ψ and ψ′ are (τ, ε)-close.

VII. EXAMPLES

A. Consensus in Zeno time and beyond
Consider two agents with dynamics given by

żi = ciui zi, ui ∈ Rnz , i ∈ {1, 2} (3)

where c1 and c2 are positive constants. An algorithm for
consensus that requires transmission of information between
the agents at discrete events, reaches consensus with Zeno,
and after that allows z1 and z2 to be controlled by a
well-posed hybrid control algorithm with state of dimension
nc inducing globally asymptotic stability of a compact set
A2 ⊂ Rnz+nz+nc is given next – note that since A2 is
asymptotically stable, every maximal solution to the closed
loop with this controller is complete and approaches A2.

A timer τ triggers the transmission of information between
agents when it reaches zero. In between events, the timer
decreases, τ̇ = −1. A memory state a stores the average
of z1 and z2 at transmission events. When τ reaches 0, τ
updates to min {t1, t2}, where

ti :=

√
|a− zi|
ci

, i = 1, 2

and a is mapped to the average
1

2
(z1 + z2). The inputs are

assigned to ui =
a− zi√
|a− zi|

, i ∈ {1, 2}. This way, the timer

resets when one of the agents reduces its distance from a by
a factor of 4. This algorithm can be modeled as a well-posed
hybrid controller, leading to the closed-loop system:
• (C1, F1, D1, G1), n1 = 3nz+1, state η = (z1, z2, a, τ),

C1 = Rnz × Rnz × Rnz × [0,∞),

F1(η) =


c1

a−z1√
|a−z1|

c2
a−z2√
|a−z2|
0
−1

 ∀η ∈ C1,

D1 = Rnz × Rnz × Rnz × {0},

G1(η) =


z1
z2

1
2 (z1 + z2)
min {t1, t2}

 ∀η ∈ D1.

This system is nominally well-posed and forward complete.
Moreover, the set A1 = {η ∈ C1 | z1 = z2 = a, τ = 0} is
closed and pointwise SOT asymptotically stable with basin
of attraction B1(A1) = Rn1 . In fact,

W (η) = co{z1, z2, a} × [0,max{τ,min {t1, t2}}]

is a weak set-valued Lyapunov function, as defined in [13,
Definition 4.4], and pointwise asymptotic stability can be
concluded by invariance arguments, as in [13, Theorem 4.5].
Indeed,
• W (η) = {η} for each η ∈ A1;
• W is locally bounded and continuous;
• During flows, zi flow to a along the directions a−zi

|a−zi|
and a remains constant, and thus co{z1, z2, a} is not
increasing. Also, τ decreases, ti decrease, and thus
max{τ,min {t1, t2}} decreases. So, every solution t 7→
φ(t) to η̇ = F1(η), η ∈ C1 satisfies

W (φ(t)) ⊂W (φ(0)) ∀t ∈ domφ

• At jumps, zi don’t change, a is updated to ave(z1, z2) ∈
co{z1, z2, a}, and thus co{z1, z2, a} does not increase.
Also, when τ = 0, [0,max{τ,min {t1, t2}}] =
[0,min {t1, t2}], and an update of τ to min {t1, t2} does
not increase the set [0,max{τ,min {t1, t2}}]. Hence,
for each η ∈ D1,

W (G1(η)) ⊂W (η).

Furthermore, suppose there exists a weakly invariant set M1

for (C1, F1, D1, G1) that is not contained in A1 and on which
W is constant. Then, by definition of weak invariance, there
exists a complete solution (t, j) 7→ φ(t, j) that stays in M1

and, for some set W0, W (φ(t, j)) = W0 for each (t, j) ∈
domφ. Since M1 is not contained in A1, there exists (t, j) ∈
domφ such that φ(t, j) 6∈ A1. If (t, j) is not a jump time,
then at least one of the zi components of φ flows towards
a, implying that W (φ(t, j)) does not remain equal to W0. If
(t, j) is a jump time, since φ(t, j) 6∈ A1, the a+ is not equal
to the either z1 or z2 solution components, from where flows
towards a would follow. This also contradicts W staying
equal to W0 along the solution. Then, [13, Theorem 4.5]
implies that A1 is PAS. The SOT property can be certified
using V (η) = 1

2

∑2
i=1 |zi − a|2 in Proposition 3.3.

Due to the continuity of the right-hand side of (3), the
well-posed hybrid control algorithm to be used beyond Zeno
leads to a well-posed hybrid inclusion (C2, F2, D2, G2) with
state χ and a compact set A2 that is pre-asymptotically
stable. The state χ has components that correspond to the
agent states z1 and z2. For these solution components to be
properly continued after Zeno, it suffices to pick Ψ such that
Ψ(η) = (z1, z2) for each η ∈ Rn1 .



The above arguments show that Assumption 5.1 holds.
By Proposition 5.6, convergence from B1(A2) = Rn1 is
uniform. Namely, from compact sets in Rn1 , solutions to
the entire system are such that the χ components reach
neighborhoods of A2 uniformly in hybrid time.

B. Bouncing ball with horizontal velocity

Consider a point-mass model of a ball bouncing on the
ground, at zero height, and moving horizontally without
friction, so that after the impacts with the ground accumulate,
the ball rolls horizontally. A model of this system in the
proposed framework is given by

• (C0, F0, G0, D0) with n0 = 1, state ζ ∈ R,

C0 = R, F0(ζ) = vx ∀ζ ∈ C0

D0 = ∅, G0 arbitrary

where vx ∈ R denotes the horizontal velocity;
• (C1, F1, G1, D1) with n1 = 2, state η = (η1, η2) ∈ R2,

C1 = [0,∞)× R, F1(η) =

[
η2
−γ

]
D1 = {0} × (−∞, 0], G1(η) =

[
η1
−λη2

]
where γ > 0 denotes the gravity constant and λ ∈ [0, 1)
the restitution coefficient;

• A1 = {(0, 0)} ∈ R2;
• (C2, F2, G2, D2), n2 = 3, state χ = (χ1, χ2, χ3) ∈ R3

C2 = {0} × {0} × R, F2(χ) =

 0
0
vx

 ∀χ ∈ C2

D2 = ∅, G2 arbitrary

• Ψ : Rn0+n1 ⇒ Rn2 defined as Ψ(ζ, η) =

ζ0
0

 for each

(ζ, η) ∈ R× R2.

Systems (C0, F0, G0, D0) and (C1, F1, G1, D1) capture the
horizontal and vertically motion of the ball, respectively,
before Zeno, while (C2, F2, G2, D2) models its evolution
after Zeno. For simplicity, the horizontal motion is described
by a first-order system. Assumption 6.1 holds. Moreover,
(C0, F0, G0, D0) has only continuous solutions. Pointwise
SOT asymptotic stability of A1 for (C1, F1, G1, D1) follows
from the fact that the bouncing ball system with only vertical
motion with λ ∈ [0, 1) is Zeno and that A1 is an isolated
globally asymptotically stable point; see, e.g., [14, Example
2.12 and Example 3.19]. A typical solution reaches Zeno
at a point (ζ, η) = (ζ∗, 0) and, after the solution’s Zeno
time, flows away from it. The map Ψ trivially satisfies the
required conditions. Then, by Theorem 6.3 and Corollary 6.4,
solutions to entire system depend upper semicontinuously
with respect to initial conditions. In fact, as the solutions are
unique, the dependence is continuous.
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