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Abstract

Among the many functions a Smart City must support, transportation
dominates in terms of resource consumption, strain on the environment,
and frustration of its citizens. We study transportation networks under
two different routing policies, the commonly assumed selfish user-centric
routing policy and a socially-optimal system-centric one. We consider
a performance metric of efficiency – the Price of Anarchy (PoA) – de-
fined as the ratio of the total travel latency cost under selfish routing
over the corresponding quantity under socially-optimal routing. We de-
velop a data-driven approach to estimate the PoA, which we subsequently
use to conduct a case study using extensive actual traffic data from the
Eastern Massachusetts road network. To estimate the PoA, our approach
learns from data a complete model of the transportation network, in-
cluding origin-destination demand and user preferences. We leverage this
model to propose possible strategies to reduce the PoA and increase effi-
ciency.

1 Introduction

As of 2014, 54% of the earth’s population resides in urban areas, a percentage
expected to reach 66% by 2050. This increase would amount to 2.5 billion people
added to urban populations [1]. At the same time, there are now 28 mega-cities
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(with population ≥ 10 million) worldwide, accounting for 22% of the world’s
urban dwellers, and projections indicate more than 41 mega-cities by 2030. It
stands to reason that the management and sustainability of urban areas has
become one of the most critical challenges our societies face today, leading to a
quest for “smart” cities.

Among the many functions a city supports, transportation dominates in
terms of resource consumption, strain on the environment, and frustration of
its citizens. Commuter delays have risen by 260% over the past 25 years and
28% of U.S. primary energy is now used in transportation [2]. It is estimated
that the cumulative cost of traffic congestion by 2030 will reach $2.8 trillion [3]
– equal roughly to the U.S. annual tax revenue. This estimate accounts for
direct costs to drivers (time, fuel) and indirect costs resulting from businesses
passing these same costs on to consumers, but it does not include the equally
alarming environmental impact due to a large proportion of toxic air pollutants
attributed to mobile sources. At the individual citizen level, traffic congestion
led to $1,740 in average costs per driver during 2014. If unchecked, this number
is expected to grow by more than 60%, to $2,900 annually, by 2030 [3].

A transportation network is a system with non-cooperative agents (drivers)
in which each agent seeks to minimize her own individual cost by choosing the
best route (resources) to reach her destination without taking into account the
overall system performance. In these systems, the cost for each agent depends
on the resources chosen as well as the number of agents choosing the same
resources. This results in a Nash equilibrium, i.e., a point where no agent
can benefit by altering its actions, assuming that the actions of all the other
agents remain fixed [4]. However, it is known that the user optimal policy
leading to a Nash equilibrium is generally inefficient and results in a suboptimal
behavior compared to the socially optimal policy that could be attained through
a centrally controlled system [4]. In order to quantify this inefficiency due to
selfish driving, we define the Price of Anarchy (PoA) as the ratio of the total
travel latency cost under the user optimal (user-centric) routing policy vs. the
socially optimal (system-centric) one. The PoA is, therefore, a measure of the
efficiency achieved by any transportation network as it currently operates.

The first issue addressed in the paper is how to measure the PoA from data.
The user flow equilibrium in a transportation network is known as a Wardrop
equilibrium [5] (an instantiation of the generic Nash equilibrium). It is the
solution of the Traffic Assignment Problem (TAP) [6], which we call the user-
centric forward problem. To solve this TAP, we need to know a priori: (i) the
specific travel latency cost functions involved [7], and (ii) the traffic demand ex-
pressed through an Origin-Destination (OD) demand matrix [6]. Starting from
the equilibrium link flows (assuming they can be inferred or directly observed),
we first estimate an initial OD demand matrix. We note that the OD demand
estimation problem has been widely-studied; see, e.g., [8, 9], and the references
therein. Then, based on inverse optimization techniques recently developed in
[10], we propose a novel user-centric inverse problem formulation. Specifically,
given observed link flow data (Wardrop equilibrium), we estimate the associ-
ated travel latency cost functions. In other words, we seek cost functions which,
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when applied to the TAP, would yield the link flows that are actually observed.
Once this is accomplished, based on a bi-level optimization problem formulation
considered in [11, 12], we develop an algorithmic procedure for iteratively ad-
justing the values of the OD demands so that the observed link flows are as close
as possible to the solution of the user-centric forward problem (i.e., TAP). The
OD demand and the user travel latency cost functions, completely parametrize
a predictive model of the transportation network. We use this model to cal-
culate the total travel latency cost under the user optimal routing policy, thus
obtaining the numerator of the PoA ratio.

Next, using the same predictive model, we formulate a system-centric for-
ward problem [6, 13], a Non-Linear Program (NLP), in which all agents (drivers)
cooperate to optimize the overall system performance. Its solution enables us to
calculate the total travel latency cost under the socially optimal routing policy,
i.e., the denominator of the PoA ratio. Thus, the combination of the inverse and
forward optimization problems results in measuring the PoA for a given trans-
portation network whose equilibrium link flows are observed based on collected
traffic data.

Having an accurate predictive model allows us to go beyond estimation (of
the PoA) and consider specific control actions that could reduce the PoA. To
that end, we analyze the sensitivity of the optimal objective function value of an
optimization problem formulation for the TAP with respect to key parameters,
such as road capacities and free-flow travel times. The results can help prior-
itize road segments for interventions that can mitigate congestion. We derive
sensitivity analysis formulae and propose their finite difference approximations.

As an illustration of our data-driven approach outlined above, we use actual
traffic data from the Eastern Massachusetts (EMA) transportation network, in
the form of spatial average speeds and road segment flow capacities. These data
were provided to us by the Boston Region Metropolitan Planning Organization
(MPO) and include average speeds over 13,000 road segments at every minute
of the year 2012. By using a traffic flow model, we first infer equilibrium flows
on each road segment and then apply our approach to evaluate the PoA for two
highway subnetworks of the EMA network. In addition, we derive sensitivity
analysis results and conduct a meta-analysis comparing the user-centric and
socially optimal routing policies.

As a final step, we propose strategies for reducing the PoA. First, by taking
advantage of the rapid emergence of Connected Automated Vehicles (CAVs)
[14, 15, 16, 17], it has become feasible to automate routing decisions, thus solving
a system-centric forward problem in which all CAVs (bypassing driver decisions)
cooperate to optimize the overall system performance. Second, we propose a
modification to existing GPS navigation algorithms recommending to all drivers
socially optimal routes. Finally, our sensitivity analysis results provide the
means to prioritize road segments for specific interventions that can mitigate
congestion.

The rest of the paper is organized as follows. We review the related literature
in Sec. 2. In Sec. 3, we introduce models and methods we use. In Sec. 4, we
describe the datasets and explain the data processing procedures for a case
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study of the EMA network. Numerical results for the case study are shown in
Sec. 5. In Sec. 6, we propose possible strategies to reduce the PoA. We provide
concluding remarks and point out some directions for future research in Sec. 7.

Notation: All vectors are column vectors. For economy of space, we write
x =

(
x1, . . . , xdim(x)

)
to denote the column vector x, where dim(x) is the di-

mension of x. We use 0 and 1 for the vectors with all entries equal to zero and
one, respectively. We denote by R+ the set of all nonnegative real numbers.
M ≥ 0 (resp., x ≥ 0) indicates that all entries of a matrix M (resp., vector x)
are nonnegative. We use “prime” to denote the transpose of a matrix or vector.
Unless otherwise specified, ‖ · ‖ denotes the `2 norm. We let |D| denote the
cardinality of a set D, and [[D]] the set {1, . . . , |D|}.

2 Related Work

The classical static Traffic Assignment Problem (TAP) [6], i.e., the user-centric
forward problem in our terminology, has been widely studied; see, e.g., [18, 19]
for the single-class (i.e., all vehicles are modeled as belonging to the same class)
transportation networks and [20, 21, 22] for the multi-class (i.e., different types
of vehicles, such as cars or trucks, are modeled as belonging to different classes)
transportation networks. The static TAP has also been generalized to the case
that has a dynamic network equilibrium modeling capability; see, e.g., [23, 24],
among others.

Based on road traffic counts within selected time intervals (i.e., road traffic
flows), the problem of estimating the Origin-Destination (OD) demand matrix of
a given transportation network has been considered in [25, 8, 9], and references
therein. In particular, [26] proposed a Generalized Least Squares (GLS) method
to estimate the OD demand matrices of uncongested networks, and [11, 27, 12]
considered networks that could include congested roads.

Sensitivity analyses of traffic equilibria were conducted in [23, 28, 29], among
others, by evaluating the directions of change that occur in the link flows with
respect to the change of travel costs as parameters in the cost and demand
functions.

Preliminary PoA evaluation results of this paper have been presented in two
conferences, [30] and [31], where results of a case study for a much smaller sub-
network of EMA were reported and no PoA reduction strategies were proposed.
A similar topic was also discussed in [32] and the references therein; in partic-
ular, based on real traffic data from the transportation network of Singapore,
[32] used a different framework from ours to quantify the PoA.

3 Models and Methods

3.1 Model for a single-class transportation network

We begin by reviewing the model of [30]. Denote a road network by (V,A,W),
where (V,A) forms a directed graph with V being the set of nodes and A the set
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of links, and W = {wi : wi = (wsi, wti) , i ∈ [[W]]} indicates the set of all OD
pairs. Note that only nodes of the road network can be origin/destination of
flows; we make this standard modeling assumption to accommodate our graph-
based view of the transportation system. Assume the graph (V,A) is strongly

connected and let N ∈ {0, 1,−1}|V|×|A| be its node-link incidence matrix. De-
note by ea the vector with an entry being 1 corresponding to link a and all the
other entries being 0. For any OD pair w = (ws, wt), denote by dw ≥ 0 the
amount of the flow demand from ws to wt. Let dw ∈ R|V| be the vector which
is all zeros, except for two entries −dw and dw corresponding to nodes ws and
wt respectively.

Denote by Ri the set of simple routes (a route without cycles is called a
“simple route”) for OD pair i. For each a ∈ A, i ∈ [[W]], r ∈ Ri, define the
link-route incidence by

δira =

{
1, if route r ∈ Ri uses link a,

0, otherwise.

Let xa denote the flow on link a ∈ A and x = (xa; a ∈ A) the flow

vector. Denote by ta(x) : R|A|+ → R+ the travel latency cost (i.e., travel time)
function for link a ∈ A. If for all a ∈ A, ta(x) only depends on xa, we say the
cost function t (x) = (ta (xa) ; a ∈ A) is separable [6]. Throughout the paper,
we assume that the travel latency cost functions are separable and take the
following form [10, 7]:

ta (xa) = t0af

(
xa
ma

)
, (1)

where t0a is the free-flow travel time of a ∈ A, f(0) = 1, f(·) is strictly increasing
and continuously differentiable on R+, and ma is the flow capacity of a ∈ A.
Note that the flow capacity is not a “hard” constraint; xa could exceed ma for
various a at the cost of increased travel time.

Define the set of feasible flow vectors F as [10]:

F def
=
{

x : ∃xw ∈ R|A|+ s.t. x =
∑

w∈W
xw,

Nxw = dw, ∀w ∈ W
}
,

where xw indicates the flow vector attributed to OD pair w. In order to for-
mulate appropriate forward and inverse optimization problems arising in trans-
portation networks, we next state the definition of Wardrop equilibrium.

Definition 1 ([6])
A feasible flow x∗ ∈ F is a Wardrop equilibrium if for every OD pair w =
(ws, wt) ∈ W, and any route connecting (ws, wt) with positive flow in x∗, the
cost of traveling along that route is no greater than the cost of traveling along
any other route that connects (ws, wt). Here, the cost of traveling along a route
is the sum of the costs of each of its constituent links.
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3.2 The user-centric forward problem

As in [30], here we refer to the classical static Traffic Assignment Problem (TAP)
as the user-centric forward problem, whose goal is to find the Wardrop equilib-
rium for a given single-class transportation network with a given travel latency
cost function and a given OD demand matrix. It is a well-known fact that, for
network (V,A,W), the TAP can be formulated as the following optimization
problem [18, 6]:

(userOpt) min
x∈F

∑
a∈A

∫ xa

0

ta(s)ds. (2)

As an alternative, we also formulate the TAP as a Variational Inequality (VI)
problem:

Definition 2 ([10])
The VI problem, denoted as VI (t,F), is to find an x∗ ∈ F s.t.

t(x∗)
′
(x− x∗) ≥ 0, ∀x ∈ F . (3)

To proceed, let us first recall the definition of the strong monotonicity for a
cost function: t(·) is strongly monotone [6] on F if there exists a constant η > 0
such that

[t (x)− t (y)]
′
(x− y) ≥ η‖x− y‖2, ∀x,y ∈ F . (4)

It is known that if t(·) is continuously differentiable on F , then (4) is equivalent
to the positive definiteness of the Jacobian of t(·) [6, p. 180]. Note that a strictly
increasing f(·) in (1) would not necessarily ensure the strong monotonicity of

t(·); e.g., f(x)
def
= x3 and t(x)

def
= (x31, x

3
2) would lead to the Jacobian of t(x) as[

3x21 0
0 3x22

]
,

which is not positive definite over R2. We next introduce a key assumption.

Assumption A
t(·) is strongly monotone on F and continuously differentiable on R|A|+ . F is
nonempty and contains an interior point (Slater’s condition [33]).

For the existence and uniqueness of the TAP, the following result is available:

Theorem 3.1 ([6]) Assumption A implies that there exists a Wardrop equi-
librium of the network (V,A,W), which is the unique solution to VI(t,F).
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3.3 The user-centric inverse problem

To solve the user-centric forward problem, we need to know the travel latency
cost function and the OD demand matrix. Assuming that we know the OD
demand matrix and have observed the Wardrop equilibrium link flows, we seek
to formulate the user-centric inverse problem (the inverse VI problem, in par-
ticular), so as to estimate the travel latency cost function. To provide some
insight, given |K| samples of the link flow vector x, one can think of them as
flow observations on |K| different networks/subnetworks which are nevertheless
produced by the exact same cost function. The inverse formulation seeks to
determine the cost function so that each flow observation is as close to an equi-
librium as possible. Given that the inverse problem will rely on measured flows,
we should expect measurement noise which will prevent the flows from being
an exact solution of the forward VI problem VI(t,F). Therefore, we will first
define the notion of an approximate solution.

For a given ε > 0, we define an ε-approximate solution to VI(t,F) by chang-
ing the right-hand side of (3) to −ε:

Definition 3 ([10])
Given ε > 0, x̂ ∈ F is called an ε-approximate solution to VI(t,F) if

t(x̂)′(x− x̂) ≥ −ε, ∀x ∈ F . (5)

Assume now we are given |K| networks (V (k),A(k),W (k)), k ∈ [[K]] (as a
special case, these could be |K| replicas of the same network (V,A,W)), and
the observed link flow data {x(k) = (x(k)

a ; a ∈ A(k)); k ∈ [[K]]}, where k is the
network index and x(k)

a is the flow for link a ∈ A(k) correspondingly. The inverse
VI problem amounts to finding a function t such that x(k) is an εk-approximate
solution to VI(t,F (k)) for each k. Denoting ε = (εk; k ∈ [[K]]), we can formulate
the inverse VI problem as [10]:

min
t,ε

‖ε‖ (6)

s.t. t(x(k))′(x− x(k)) ≥ −εk, ∀x ∈ F (k), k ∈ [[K]],

εk > 0, ∀k ∈ [[K]],

where the optimization is over the selection of function t and the vector ε.
Aiming at recovering a cost function t that has both good data reconciling

and generalization properties (i.e., t should fit “old” data well but should not be
overfitting; it must also have great power to predict “new” data), to make (6)
solvable, we apply an estimation approach which expresses the function f(·) (in
(1)) in a Reproducing Kernel Hilbert Space (RKHS) H [10, 34]. In particular,
by [10, Thm. 2], we reformulate the inverse VI problem (6) as

(invVI-1) min
f,y,ε

‖ε‖+ γ‖f‖2H (7)

s.t. e′aN
′
ky

w ≤ t0af
(
xa
ma

)
, (8)
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∀w ∈ W (k), a ∈ A(k), k ∈ [[K]],∑
a∈A(k)

t0axaf

(
xa
ma

)
−

∑
w∈W(k)

(dw)
′
yw ≤ εk, (9)

∀k ∈ [[K]],

f

(
xa
ma

)
≤ f

(
xã
mã

)
, (10)

∀a, ã ∈
⋃|K|

k=1
A(k) s.t.

xa
ma
≤ xã
mã

,

ε ≥ 0, f ∈ H,
f(0) = 1, (11)

which is a counterpart of [10, (22)]. Note that y = (yw; w ∈ W (k), k ∈ [[K]])
and ε = (εk; k ∈ [[K]]) are decision vectors (yw is a dual variable which can
be interpreted as the “price” of dw, in particular). Note also that γ > 0 is a
regularization parameter – a smaller γ should result in recovering a “tighter”
f(·) in terms of data reconciling; a larger γ, on the other hand, would lead to a
“better” f(·) in terms of generalization properties. Moreover, ‖f‖2H denotes the
squared norm of f(·) in H, (8) is for dual feasibility, (9) is the suboptimality
(primal-dual gap) constraint, (10) enforces f(·) to be non-decreasing, and (11)
is a normalization constraint.

It can be seen that the above formulation is still too abstract for us to
solve, because it is an optimization over functions. To make it tractable, in
the following we will specify H by selecting its reproducing kernel [34] to be a
polynomial φ(x, y) = (c + xy)n for some choice of c ≥ 0 and n ∈ N (for the
specifications of c and n, see [35]). Then, writing

φ (x, y) = (c+ xy)
n

=

n∑
i=0

(
n

i

)
cn−ixiyi,

by [34, (3.2), (3.3), and (3.6)], we instantiate invVI-1 as

(invVI-2) min
β,y,ε

‖ε‖+ γ

n∑
i=0

β2
i(

n
i

)
cn−i

s.t. e′aN
′
ky

w ≤ t0a
n∑
i=0

βi

(
xa
ma

)i
,

∀w ∈ W (k), a ∈ A(k), k ∈ [[K]],∑
a∈Ak

t0axa

n∑
i=0

βi

(
xa
ma

)i
−
∑

w∈Wk

(dw)
′
yw ≤ εk,

∀k ∈ [[K]],
n∑
i=0

βi

(
xa
ma

)i
≤

n∑
i=0

βi

(
xã
mã

)i
,
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∀a, ã ∈
⋃|K|

k=1
A(k) s.t.

xa
ma
≤ xã
mã

,

ε ≥ 0, β0 = 1,

where the function f(·) in invVI-1 is parameterized by β = (βi; i = 0, 1, . . . , n).
Assuming an optimal β∗ = (β∗i ; i = 0, 1, . . . , n) is obtained by solving invVI-2,
then our estimator for f(·) is

f̂ (x) =

n∑
i=0

β∗i x
i = 1 +

n∑
i=1

β∗i x
i. (12)

3.4 OD demand estimation

Given a network (V,A,W), to estimate an initial OD demand matrix, we borrow
the Generalized Least Squares (GLS) method proposed in [26], which assumes
that the transportation network (V,A,W) is uncongested (in other words, for
each OD pair the route choice probabilities are independent of traffic flow),
and that the OD trips (traffic counts) are Poisson distributed. Note that such
assumptions may be strong and we will relax them when finalizing our OD
demand estimator by performing an adjustment procedure.

Denote by {x(k); k ∈ [[K]]} |K| observations of the flow vector. Let x̄ =

(1/|K|)
∑|K|
k=1 x(k) be the sample mean vector and

S =
1

(|K| − 1)

|K|∑
k=1

(
x(k) − x̄

)(
x(k) − x̄

)′
the sample covariance matrix. Let P = [pir] denote the route choice probability
matrix, where pir is the probability that a traveler associated with OD pair i uses
route r. Vectorize the OD demand matrix as g = (gi; i ∈ [[W]]). After finding
feasible routes for each OD pair, thus obtaining the link-route incidence matrix
A, the GLS method amounts to solving the following optimization problem:

(P0) min
P≥0, g≥0

|K|∑
k=1

(
x(k) −AP′g

)′
S−1

(
x(k) −AP′g

)
s.t. pir = 0 ∀(i, r) ∈ {(i, r) : r /∈ Ri},

P1 = 1,

which minimizes a weighted sum of the squared errors in the flow observations.
Directly solving (P0) is cumbersome due to the complicated form of the objective
function, and we in turn decouple (P0) into two subproblems. To that end, we
perform a variable substitution by setting ξ = P′g and we let h(P,g) be an
arbitrarily selected smooth scalar-valued function. Then, we solve sequentially
the following two problems [30]:

(P1) min
ξ≥0

|K|
2

ξ′Qξ − b′ξ, (13)
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where Q = A′S−1A and b =
∑|K|
k=1 A′S−1x(k), and

(P2) min
P≥0, g≥0

h (P,g) (14)

s.t. pir = 0, ∀(i, r) ∈ {(i, r) : r /∈ Ri},
P′g = ξ0,

P1 = 1,

where ξ0 is the optimal solution to (P1). Essentially, (P1) uses the variable
substitution to eliminate the constrains on P and (P2) seeks to find a feasible
P consistent with the optimal solution of (P1) and the relationship ξ = P′g.
We write the feasibility problem (P2) as an optimization problem with some
“dummy” cost function because this allows us to use an optimization solver; in
fact, we can simply set h(P,g) ≡ 0. Specifically, (P1) (resp., (P2)) is a typical
Quadratic Program (QP) (resp., Quadratically Constrained Program (QCP)).
Letting (P0,g0) be an optimal solution to (P2), then g0 is our initial estimate
of the demand vector.

Remark 1
It is seen that each entry of g0 can always be expressed as a sum of certain
entries in ξ0; in other words, given ξ0 ≥ 0, (P2) always has a feasible solution.
Thus, (P0) is actually equivalent to (P1) and (P2), in the sense that if (P0,g0)
is an optimal solution to (P0) (resp., (P2)), then it is also an optimal solution
to (P2) (resp., (P0)). In addition, we note that the GLS method above would
encounter numerical difficulties when the network size is large, because there
would be too many decision variables. Note also that this method is valid under
a “no-congestion” assumption and, to take the congestion on the link flows into
account, we in turn consider a bi-level optimization problem in the following.

Assume now the function f(·) in (1) is available. For any given feasible
g (≥ 0), let x(g) be the optimal solution to the TAP (2). In the following,
denote by x̃ = (x̃a; a ∈ A) the observed flow vector. Assuming an initial
demand vector g0 is given (the g0 obtained by solving (P1) and (P2) is a good
candidate; we will take it as g0 hereafter), we consider the following bi-level
optimization problem [11, 12]:

(BiLev) min
g≥0

F (g)
def
=γ1

∑
i∈[[W]]

(
gi − g0i

)2
+ γ2

∑
a∈A

(xa (g)− x̃a)
2
, (15)

where γ1, γ2 ≥ 0 are two weight parameters. The first term penalizes moving
too far away from the initial demand, and the second term ensures that the
optimal solution to the TAP is close to the flow observation. Note that the
BiLev formulation (15) is more general than the one considered in [31], which
includes the second term only. It is worth pointing out that F (g) has a lower
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bound 0 which guarantees the convergence of the algorithm (see Alg. 1) that
we will apply.

Remark 2
From now on, let us fix γ2 = 1 in (15). Intuitively, the closer the initial g0 to
the ground truth g∗, the larger the γ1 we should set; otherwise the contribution
of the first term to the objective function will be small. In practice, however,
we typically do not have exact information about how far g0 is from g∗; we
therefore have to appropriately tune γ1. One possible criterion is that, fixing
the parameters involved in Alg. 1, a “good” γ1 should lead to a reduction of
the objective function value of the BiLev as much as possible.

To solve the BiLev numerically, thus adjusting the demand vector iteratively,
we leverage a gradient-based algorithm (Alg. 1). In particular, suppose that
the route probabilities are locally constant. For OD pair i ∈ [[W]], we consider
only the fastest route ri(g), where in each iteration, based on the updated link
flows after the previous iteration, we update link travel times and assign them
as current link weights in the graph model introduced in Sec. 3.1. Then, we
have [11]

∂xa (g)

∂gi
≈ δri(g)a =

{
1, if a ∈ ri(g),

0, otherwise.
(16)

(Note that we have assumed the partial derivatives do exist; a comprehensive
discussion on the existence and calculation of ∂xa(g)/∂gi can be found in [29].)
Thus, by (16) we obtain an approximation to the Jacobian matrix[

∂xa (g)

∂gi
; a ∈ A, i ∈ [[W]]

]
. (17)

Let us now compute the gradient of F (g). We have

∇F (g) =

(
∂F (g)

∂gi
; i ∈ [[W]]

)
=

(
2γ1

(
gi − g0i

)
+ 2γ2

∑
a∈A

(xa (g)− x̃a)
∂xa (g)

∂gi
;

i ∈ [[W]]

)
. (18)

Remark 3
There are three reasons why we consider only the fastest routes for the purpose
of calculating the Jacobian: (i) GPS navigation is widely-used by vehicle drivers
so that they tend to always select the fastest routes between their OD pairs.
(ii) There are very efficient algorithms for finding the fastest route for each OD
pair. (iii) If considering more than one route for an OD pair, then the route
flows cannot be uniquely determined by solving the TAP (2), thus leading to
unstable route-choice probabilities, which would undermine the accuracy of the
approximation to the Jacobian matrix in (17).
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We summarize the procedures for adjusting the OD demand matrices as Alg.
1, whose convergence will be proven in the following proposition.

Algorithm 1 Adjusting OD demand matrices

Input: the road network (V,A,W); the function f(·) in (1); the observed flow
vector from given data x̃ = (x̃a; a ∈ A); the initial demand vector g0 =
(g0i ; i ∈ [[W]]); two positive integer parameters ρ, T ; two real parameters
ε1 ≥ 0, ε2 > 0.

1: Step 1: Initialization. Take the demand vector g0 as the input, solve the
TAP (2) (using the Method of Successive Averages (MSA) [36]) to obtain
x0. Set l = 0. If F

(
g0
)

= 0, stop; otherwise, go onto Step 2.

2: Step 2: Computation of a descent direction. Calculate hl = −∇F
(
gl
)

by
(18).

3: Step 3: Calculation of a search direction. For i ∈ [[W]] set

h̄li =

{
hli, if

(
gli > ε1

)
or
(
gli ≤ ε1 and hli > 0

)
,

0, otherwise.

4: Step 4: Armijo-type line search.

4.1: Calculate the maximum possible step-size θlmax =
min

{
−gli

/
h̄li; h̄

l
i < 0, i ∈ [[W]]

}
.

4.2: Determine θl = arg min
θ∈S

F
(
gl + θh̄l

)
, where S def

={
θlmax, θ

l
max

/
ρ, θlmax

/
ρ2, . . . , θlmax

/
ρT , 0

}
.

5: Step 5: Update and termination.

5.1: Set gl+1 = gl + θlh̄l. Using gl+1 as the input, solve the TAP (2)
to obtain xl+1.

5.2: If
F(gl)−F(gl+1)

F (g0) < ε2, stop the iteration; otherwise, go onto Step
5.3.

5.3: Set l = l + 1 and return to Step 2.

Proposition 3.2 Alg. 1 converges.

Proof: If the initial demand vector g0 satisfies F
(
g0
)

= 0, then, by Step 1,

the algorithm stops (trivial case). Otherwise, we have F
(
g0
)
> 0, and it is seen

from (15) that the objective function F (g) has a lower bound 0. In addition,
by the line search and the update steps (Steps 4.2 and 5.1, in particular), we
obtain

F
(
gl+1

)
=F

(
gl + θlh̄l

)
= min
θ∈S

F
(
gl + θh̄l

)
≤ F

(
gl
)
,∀l,

12



where the last inequality holds due to 0 ∈ S, indicating that the nonnegative
objective function in (15) is non-increasing as the number of iterations increases.
Thus, by the well-known monotone convergence theorem, the convergence of the
algorithm can be guaranteed.

Remark 4
Alg. 1 is a variant of the algorithms proposed in [11] and [12]. We use a
different method to calculate the step-sizes (resp., Jacobian matrix ) than that
in [11] (resp., [12]). The optimization problem BiLev is not convex because
of the potential nonlinearity in x(g). Thus, one would not necessarily expect
Alg. 1’s convergence to a global minimum. In addition, due to inaccuracies in
the gradient calculation, one would not expect Alg. 1’s convergence to a local
minimum either. A discussion on the performance of similar heuristics can be
found in [12]. It is worth noting that, in [12], the proposed “descent” algorithm
could possibly not “descend” in some iterations due to computational inaccuracy
of the gradient. We will demonstrate our findings for the performance of Alg. 1
by numerical experiments in Sec. 5.2. We also note that, in terms of decreasing
the objective function value of the BiLev, the performance of Alg. 1 definitely
depends heavily on the initial demand vector g0.

3.5 Price of Anarchy

As discussed in Sec. 1, one of our goals is to measure inefficiency in the network
due to the non-cooperative behavior of drivers. Thus, we compare the network
performance under a user-centric routing policy vs. a system-centric one. As
a metric for this comparison, we conceptually define the PoA as the ratio be-
tween the total travel latency cost, i.e., the total travel time over all drivers,
obtained under Wardrop flows (user-centric routing policy) and that obtained
under socially optimal flows (system-centric routing policy).

Given road network (V,A,W), as in [30], we calculate its total travel latency
cost as

L(x) =
∑
a∈A

xata(xa). (19)

The socially optimal flow vector, denoted by xsocial = (xsociala ; a ∈ A), is the
solution to the following system-centric forward problem, which is a Non-Linear
Program (NLP) [6, 13]:

(socialOpt) min
x∈F

∑
a∈A

xata(xa). (20)

We therefore explicitly define the Price of Anarchy as

PoA
def
=

L(xuser)

L(xsocial)
=

∑
a∈A x

user
a ta(xusera )∑

a∈A x
social
a ta(xsociala )

≥ 1, (21)
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where xuser = (xusera ; a ∈ A) is the Wardrop equilibrium flow vector assumed to
be directly observable or indirectly inferrable. By the definition of xsocial, we
always have PoA ≥ 1; the larger the PoA, the larger the inefficiency induced by
selfish drivers. Thus, PoA quantifies the inefficiency that a societal group has
to deal with due to non-cooperative behavior of its members.

We note that the objective function in (20) is different from its counterpart
in (2); for a detailed explanation, see [18]. However, the two forward problem
formulations have a very tight connection. Let us take a close look at the
following equalities [6]:

ta (xa)
def
=

d

dxa
(xata (xa)) = ta (xa) + xaṫa (xa) , ∀a ∈ A. (22)

By (22) we see that the socialOpt in (20) is equivalent to

(userOpt) min
x∈F

∑
a∈A

∫ xa

0

ta(s)ds.

The remarkable implication of the above is that in order to find the socially
optimal flows xsociala , a ∈ A, instead of directly solving (20), it suffices to solve
(2) with ta(·) replaced by ta(·). As noted in [6], the difference between the social
cost and the user cost is xaṫa (xa), which can be interpreted as the cost a user
(driver) imposes on the other users.

Let t(x)
def
= (ta(xa); a ∈ A). To ensure the existence and uniqueness of the

solution to (20), we need the following assumption:

Assumption B
t(·) is strongly monotone on F and continuously differentiable on R|A|+ . F
satisfies Slater’s condition [33].

We note that if Assump. A holds and, for all a ∈ A, ta(xa) is convex and twice
continuously differentiable on R+ (e.g., ta(xa) = 2x2a + xa + 1), then Assump.
B holds as well.

3.6 Sensitivity analysis

To prioritize road segments for potential congestion reducing interventions by
the local transportation authorities, we investigate the sensitivities of the opti-
mal objective function value of (2) with respect to key parameters, specifically,
free-flow travel time and flow capacity. In particular, we first derive two rig-
orous formulae, and then propose their finite difference approximations as an
alternative.

Write t0
def
=
(
t0a; a ∈ A

)
, m

def
= (ma; a ∈ A), and

V
(
t0,m

) def
= min

x∈F

∑
a∈A

∫ xa

0

t0af

(
s

ma

)
ds. (23)
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Differentiating (23), for each a ∈ A we obtain

∂V
(
t0,m

)
∂t0a

=

∫ xuser
a

0

f

(
s

ma

)
ds, (24)

∂V
(
t0,m

)
∂ma

=

∫ xuser
a

0

t0aḟ

(
s

ma

)(
− s

m2
a

)
ds, (25)

where ḟ(·) denotes the derivative of f(·).
Note that typically we have

∂V (t0,m)
∂t0a

> 0 and
∂V (t0,m)
∂ma

< 0, meaning a slight

decrease (resp., increase) of t0a (resp., ma) would reduce the objective function
value of (2). Based on this observation, for a′ ∈ A we define the following
quantities:

∆V
(
t0,m; ∆t0a′

) def
= min

x∈F

∑
a∈A

∫ xa

0

t0af

(
s

ma

)
ds

−min
x∈F

[ ∑
a∈A,a 6=a′

∫ xa

0

t0af

(
s

ma

)
ds

+

∫ xa′

0

(
t0a′ + ∆t0a′

)
f

(
s

ma′

)
ds

]
, (26)

and

∆V
(
t0,m; ∆ma′

) def
= min

x∈F

∑
a∈A

∫ xa

0

t0af

(
s

ma

)
ds

−min
x∈F

[ ∑
a∈A,a 6=a′

∫ xa

0

t0af

(
s

ma

)
ds

+

∫ xa′

0

t0a′f

(
s

ma′ + ∆ma′

)
ds

]
, (27)

where ∆t0a′
def
= −0.2 × min

{
t0a; a ∈ A

}
and ∆ma′

def
= 0.2 × min {ma; a ∈ A}.

Note that, by construction, for each and every a ∈ A, we approximately have 0 <
∆V

(
t0,m; ∆t0a

)
∝ ∂V

(
t0,m

)
/∂t0a and 0 < ∆V

(
t0,m; ∆ma

)
∝
∣∣∂V (t0,m)/∂ma

∣∣.
4 Dataset Description and Processing

In this section, based on our data-driven approach outlined in Sec. 3, we conduct
a case study using actual traffic data from the Eastern Massachusetts (EMA)
road network [37, 35].
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4.1 Description of the Eastern Massachusetts dataset

We deal with two datasets concerning the EMA road network: (i) The speed
dataset, made available to us by the Boston Region Metropolitan Planning Or-
ganization (MPO), includes the spatial average speeds for more than 13,000
road segments (with an average length of 0.7 miles; see Fig. 1) of EMA, provid-
ing the average speed for every minute of the year 2012. For each road segment,
identified with a unique tmc (traffic message channel) code, the dataset provides
information such as speed data (instantaneous, average and free-flow speed) in
miles per hour (mph), date and time, and traveling time (in minutes) through
that segment. (ii) The flow capacity (in vehicles per hour) dataset, also pro-
vided by the MPO, includes capacity data for more than 100,000 road segments
(with an average length of 0.13 miles) in EMA. For more detailed information
of these two datasets, see [30].

Figure 1: All available road segments in Eastern Massachusetts (from [30]).

4.2 Preprocessing

In [30] and [31] we investigate two relatively small subnetworks (denoted by I1
and I2 and shown in Figs. 2a and 2b, respectively) of the EMA road network.
Here, we further consider a much larger subnetwork (denoted by I3 and shown
in Fig. 3). Performing similar preprocessing procedures as those in [30, 31], we
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(a) (b)

Figure 2: (a) An interstate highway sub-network of EMA (I1) (the blue numbers
indicate node indices); (b) An extended highway sub-network of EMA (I2) (the
red numbers indicate node indices). (See [35] for the correspondences between
nodes and link indices.)

end up with traffic flow data (Wardrop equilibria) and road (link) parameters
(flow capacity and free-flow travel time) for the three subnetworks I1, I2, and
I3, where I1 contains only interstate highways, I2 also contains state highways,
and I3 covers a much wider area of EMA. Note that I1 (resp., I2, I3) consists
of 8 (resp., 22, 74) nodes and 24 (resp., 74, 258) links. Assuming that each node
could be an origin and a destination, then there are 8 × (8 − 1) = 56 (resp.,
22× (22− 1) = 462) OD pairs in I1 (resp., I2). For I3, we simplify the analysis
by grouping nodes within the same area, assigning them the same zone label,
thus obtaining 34 zones (as opposed to 74 nodes). Assuming that each zone
could be an origin and a destination, then there are 34 × (34 − 1) = 1122 OD
pairs in I3. It is worth pointing out that nodes 18, 19, 20, 21, and 22 (resp.,
72, 73, and 74) in I2 (resp., I3) are introduced for ensuring the identifiability
of the OD demand matrices. More specifically, to “recover” uniquely an OD
demand matrix from observed link flow data, the link-route incidence matrix A
is required to satisfy certain structural properties; see [26, Lemma 2].

4.3 Estimating initial OD demand matrices

Operating on I1, we solve the QP (P1) (cf. (13)) and the QCP (P2) (cf. (14))
using data corresponding to five different time periods (AM, MD (middle day),
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Figure 3: A wider EMA highway subnetwork (I3); details on the correspon-
dences between nodes and link indices are in [35]. (“nodes:zone” pairs – {1}:
Seabrook (NH); {2, 4, 5}: NH; {3}: Haverhill; {6, 8}: Lawrence; {7, 9}: George-
town; {10, 11}: Lowell; {12, 15}: Salem; {13, 14}: Peabody; {16, 17, 18, 19}:
Burlington; {20}: Littleton; {21}: Lexington; {22}: Boston; {23, 24, 25, 26, 27,
28}: Waltham; {29}: Quincy; {30, 31, 32, 33, 34}: Marlborough/Framingham;
{35, 71}: Milford; {36}: Franklin; {37, 38, 39, 40, 41}: Westwood/Quincy;
{42}: Dedham; {43, 44, 45, 46, 47}: Foxborough; {48, 74}: Taunton; {49, 73}:
Plymouth; {50, 51}: Cape Cod; {52}: Dartmouth; {53}: Fall River; {54, 68,
70}: RI; {55, 56}: VT; {57}: Westminster; {58}: Leominster; {59, 60, 72}:
Worcester; {61}: Amherst; {62, 63, 64, 65, 66}: CT; {67}: Webster; {69}:
Uxbridge.)
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PM, NT (night), and WD (weekend)) of four months (Jan., Apr., Jul., and Oct.)
in 2012, thus obtaining 20 different OD demand matrices for these scenarios.
Expanding each and every of the 20 OD demand matrices of I1 by setting the
demand for any OD pair that belongs to I2 but does not belong to I1 to zero,
we obtain “rough” initial demand matrices for I2.

On the other hand, for the much larger subnetwork I3, to obtain initial OD
demand matrices corresponding to the same 20 scenarios, we perform a different
simplification procedure. In particular, we only consider the shortest route for
each OD pair of I3, thus leading to a deterministic route choice matrix P and
significantly reducing the number of decision variables in the QCP (P2).

As noted in [30], the GLS method assumes the traffic network to be un-
congested. It follows, that the estimated OD demand matrices for non-peak
periods (MD/NT/WD) are relatively more accurate than those for peak peri-
ods (AM/PM). After obtaining estimates for travel latency cost functions in
Sec. 4.4, based on the observed Wardrop flows and the initial estimates for the
OD demand matrices, we will conduct demand adjustment procedures for I2
and I3 in Sec. 4.5.

4.4 Cost function estimation and sensitivity analysis

First, to validate the effectiveness and efficiency of the cost function estimator
(12), we conduct numerical experiments over the Anaheim benchmark network
[37], whose ground truth cost functions, OD demand matrices, and all necessary
road parameters are available. Next, operating on I1 using the flow data and
the OD demand matrices obtained in Secs. 4.2 and 4.3 respectively, we estimate
the travel latency cost functions, f(·) in particular, for 20 different scenarios, via
the estimator (12), by solving the QP invVI-2 accordingly. As in [30], to make
the estimates reliable, for each scenario, we perform a 3-fold cross-validation.
Note that [30] applied a different estimator, which is numerically not as stable.

We assume that such estimates for f(·), as obtained from I1, can be shared
by all the three subnetworks I1, I2, and I3; this makes sense, because the
function f(·) is common for all links and, when estimating it through I1, we
have already made use of a large amount of data (note that there are 24 links
in I1 and the flow data and the corresponding OD demand matrices that we
use have covered 120 different time instances for each of the 20 scenarios; for
details, see [35]).

To illustrate our method of analyzing sensitivities for the TAP formulation
(2), we again conduct numerical experiments on I1. In particular, we investigate
a scenario corresponding to the AM peak period of April 2012.

4.5 OD demand adjustments

First, we demonstrate the effectiveness of Alg. 1 using the Anaheim benchmark
network. Then, assuming the per-road travel latency cost functions are available
(we take the travel latency cost functions derived from I1 as in Sec. 4.4), we
apply Alg. 1 to I2, which contains I1 as one of its representative subnetworks.
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Note that the main difference between I1 and I2 is the modeling emphasis;
specifically, I1 only takes account of interstate highways, while I2 also encom-
passes state highways, thus containing more details of the real road network
of EMA. We can think of I1 as a “landmark” subnetwork of I2. Based on
the initially estimated demand matrices for I1, we will implement the following
generic demand-adjusting scheme so as to derive the OD demand matrices for
I2.

Given a network (I2 in our case) of any size we can select its “landmark”
subnetworks (I1 in our case) (based on the information of road types, pre-
identified centroids, etc.) with acceptably smaller sizes; say we end up with N
(N = 1 in our case) such subnetworks. Then, for each subnetwork, we estimate
its demand matrix by solving sequentially the QP (P1) and the QCP (P2) (cf.
Sec. 4.3). Setting the demand for any OD pair not belonging to this subnetwork
to zero, we obtain a “rough” initial demand matrix for the entire network (I2 in
our case). Next, we take the average of these initial demand matrices. Finally,
we adjust the average demand matrix based on the flow observations of the
entire network.

Next, taking again the travel latency cost functions derived from I1, we
apply Alg. 1 to I3, based on the initial OD demand matrices estimated from
I3 (see Sec. 4.3) and the Wardrop flows inferred from I3 (see Sec. 4.2).

As noted in Remark 1, the reason for not directly solving (P1) and (P2) for
the larger networks (I2 and I3 in our case) is that there are too many decision
variables in (P2) and this would lead to numerical difficulties.

4.6 PoA evaluation and meta analysis

We calculate the PoA values for I2 and I3 for the PM period of April 2012. For
each day, in (21) we take the average observed link flows over the PM period as
the “user flows,” and obtain the “social flows” by solving the NLP (20) using
the estimated cost functions and demand matrix exclusively for the PM period.
To solve (20), we use the IPOPT solver [38] which implements a primal-dual
interior point method [39].

To better understand the performance of the road network under the user-
centric vs. the system-centric routing policy, we conduct a meta analysis on I3.
In particular, under the two policies, we compare congestion for various zones
of the network, the maximum/minimum link flows, and link-specific congestion.

5 Numerical Results

For economy of space, we will not show the detailed results for the initial esti-
mation of OD demand matrices. However, we report in Tab. 1 the entries of the
route choice probability matrix P derived for I1 for some specific OD pairs (the
complete results can be found in [35]). It is seen from Tab. 1 that we cannot
always expect a higher probability for a shorter/faster route; randomness exists.
However, this is not necessarily counterintuitive, because the selected routes for
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Table 1: Selected route choice analysis results for I1 (corresponding to the PM
peak period of April 2012).

OD pair refined feasible route
route length

(in miles)
free-flow travel time

(in hours)
route choice
probability

(1, 8)
1→ 2→ 3→ 5→ 7→ 8
1→ 3→ 5→ 7→ 8
1→ 2→ 3→ 6→ 7→ 8

74.2072
74.6696
74.8692

1.0235
1.0297
1.0522

0.3265
0.3394
0.3341

(2, 4)
2→ 4
2→ 3→ 5→ 4
2→ 3→ 6→ 5→ 4

37.6346
43.4554
50.7995

0.5123
0.6010
0.7274

0.8274
0.1004
0.0722

(3, 5)
3→ 5
3→ 6→ 5

16.2154
23.5596

0.2262
0.3526

0.8375
0.1625

(8, 3)
8→ 7→ 5→ 3
8→ 7→ 6→ 3
8→ 7→ 5→ 6→ 3

43.3260
43.4313
50.2382

0.6065
0.6310
0.7308

0.4364
0.3022
0.2614

the same OD pair have close lengths/travel times. We note here that when
identifying (and refining) the feasible routes for each OD pair of I1, we consider
at most three shortest routes (ranked #1-#3) and discard all the routes with
a length larger than that of the shortest route (ranked #1) by more than 50%.
Note also that since this initial OD estimation procedure does not involve real-
time updates of traffic conditions, we may use either travel times or lengths as
weights for links in the graph model.

In the following, we will focus on presenting the results for the estimates of
the travel latency cost functions (derived for the Anaheim benchmark network
and I1), the demand adjustment procedure (derived for the Anaheim benchmark
network; note that we will not show the detailed demand adjustment results for
I2 and I3, because we do not have the ground truth for a comparison), the PoA
evaluations (derived for I2 and I3), the sensitivity analysis (derived for I1), and
the meta analysis (derived for I3).

5.1 Results from estimating the cost functions

5.1.1 Results for the Anaheim benchmark network

The Anaheim network contains 38 zones (hence 38× (38−1) = 1406 OD pairs),
416 nodes, and 914 links. The ground truth f (·) is taken as f (z) = 1 +
0.15z4, z ≥ 0. Fig. 4 shows the estimation results for f(z) by solving invVI-
2 corresponding to different parameter settings. In particular, Fig. 4a shows
the curves of the ground truth f(z) and the estimator f̂(z) corresponding to
n taking values from {3, 4, 5, 6} while keeping c and γ fixed to 1.5 and 0.01
respectively; it is seen that except for the case n = 3, all estimation curves are
very close to the ground truth. Note that the ground truth f(z) is a polynomial
function with degree 4, which is greater than 3. This suggests the use of a value
n ≥ 4 in recovering the cost function f(·). The intuition here is that we can
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use a higher order polynomial with appropriate coefficients to approximate a
lower order polynomial, but not vice versa. Fig. 4b shows the curves of the
ground truth f(z) and the estimator f̂(z) corresponding to c taking values from
{0.5, 1.0, 1.5} while keeping n and γ fixed to 6 and 1.0 respectively; it is seen
that except for the case c = 0.5, the estimation curves are very close to the
ground truth. This suggests that setting c reasonably larger should give better
estimation results. Fig. 4c plots the curves of the ground truth f(z) and the

estimator f̂(z) corresponding to γ taking values from {0.01, 0.1, 1.0, 10.0, 100.0}
while keeping n and c fixed to 5 and 1.5 respectively; it is seen that as γ is set
smaller and smaller, the estimation curve gets closer and closer to the ground
truth. This suggests that choosing a smaller regularization parameter γ should
give tighter estimation results in terms of data reconciling.
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Figure 4: Estimations for cost function f(·) by solving invVI-2 corresponding
to different parameter settings (Anaheim).

5.1.2 Results for I1
We show the comparison results of the cost functions in Fig. 5, where in each
sub-figure, we plot the curves of the estimated f(·) corresponding to five different
time periods. For economy of space, we will not list the parameter setting details
of n, c, and γ, which were selected by conducting a 3-fold cross-validation.

We observe from Figs. 5a-5d that the costs for peak periods (AM/PM) are
more sensitive to traffic flows than for non-peak periods (MD/NT/WD). This
can be explained as follows: during rush hour, it is very common for vehicles
to pass through a congested road network while during non-rush hour, drivers
mostly enjoy an uncongested road network.
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In addition, it is seen that, for different months, the cost curves for non-
peak periods differ more significantly than for peak periods. Aside from the
observation and modeling errors, this can also be explained by seasonal traveling
patterns.
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Figure 5: Estimates for f(·) corresponding to different time periods (AM, MD
(middle day), PM, NT (night), WD (weekend)), derived from data over I1 for
2012.

5.2 Results from OD demand adjustment

We now present the OD demand adjustment results from the Anaheim network.
For each OD pair, the initial demand is taken by scaling the ground truth
demand using a random factor with uniform distribution over [0.8, 1.2]. The
ground truth f (·) is taken as f (z) = 1 + 0.15z4, ∀z ≥ 0, and is assumed
directly available. When implementing Alg. 1, we set γ1 = 0, γ2 = 1, ρ = 2,
T = 10, ε1 = 0, and ε2 = 10−20. Fig. 6a shows that, after 7 iterations, the
objective function value of the BiLev (15) has been reduced by more than 50%.
Fig. 6b shows that, the distance between the adjusted demand and the ground
truth demand keeps decreasing with the number of iterations, and the distance
changes very slightly, meaning the adjustment procedure does not alter the
initial demand much. Note that in Fig. 6a, the vertical axis corresponds to
the normalized objective function value of the BiLev, i.e., F (gl)/F (g0) and, in
Fig. 6b, the vertical axis denotes the normalized distance between the adjusted
demand vector and the ground truth, i.e., ‖gl − g∗‖/‖g∗‖, where g∗ is the
ground-truth demand vector.
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Figure 6: Key quantities vs. # of iterations (Anaheim).

5.3 Results for PoA evaluation

After implementing the demand adjusting scheme, we obtain the demand matri-
ces for I2 and I3 on a daily-basis, as opposed to those for I1 on a monthly-basis.
Note that, even for the same period of a day and within the same month, slight
demand variations among different days are possible; thus, our PoA results for
I2 and I3 would be more accurate than those for I1 (shown in [30]).

The PoA values for I2 shown in Fig. 7a have larger variations than those
for I1 in [30] and for I3 shown in Fig. 7b; some are closer to 1 but some go
beyond 2.2, meaning we have larger potential to improve the road network. It is
also seen that, although I2 is extracted from I3, there is no obvious correlation
between the PoA values estimated for I2 and I3. To explain this, one should
notice the fact that I2 is only a small subnetwork of I3, where the latter contains
many more nodes/links/OD pairs (see Figs. 2b and 3). Specifically, in Fig. 3
many more links have been added which significantly alter the feasible routing
patterns relative to Fig. 2b. Thus, even though there may be correlations at the
individual link flow level, once we add links and then aggregate over all links,
any correlation is likely weakened or lost. Moreover, the social optimization
problems solved to obtain the denominator of the PoA ratio in (21) are very
different since the subnetwork topologies are different. However, when taking
the average of the PoA values for all 30 days of Apr. 2012, all I1, I2, and I3
result in an average PoA approximately equal to 1.5, meaning we can gain an
efficiency improvement of about 50%; thus, the results are consistent.
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Figure 7: Daily PoAs for I2 and I3 (PM period for Apr. 2012).
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Figure 8: Sensitivity analysis (finite difference approximation) results for I1;
AM period of Apr. 2012.

5.4 Results from sensitivity analysis

Investigating the AM peak period of Apr. 2012 for I1, instead of directly apply-
ing the formulae (24) and (25), we calculate the two quantities defined in (26)
and (27), and plot the results in Fig. 8, where the blue (resp., red) curve indi-
cates the quantity ∆V

(
t0,m; ∆t0a

)
(resp., ∆V

(
t0,m; ∆ma

)
) for each and every

link of I1. It is seen from Fig. 8 that the largest four values of ∆V
(
t0,m; ∆t0a

)
(resp., ∆V

(
t0,m; ∆ma

)
) correspond to links 10, 19, 9, and 5 (resp., 10, 19,

9, and 1). This suggests that, during the AM peak period of Apr. 2012, the
transportation management department could have most efficiently reduced the
objective function value of the TAP (2), thus mitigating congestion, by taking
actions with priorities on these links (e.g., improving road conditions to reduce
the free-flow travel time for links 10, 19, 9, and 5, and increasing the number of
lanes to enlarge the flow capacity for links 10, 19, 9, and 1).

5.5 Results from meta analysis

We conduct meta analysis for I3, under the user-centric routing policy vs. the
system-centric one. Our analysis includes the zone costs, the maximum/minimum
link flows, and the link-specific congestion.

5.5.1 Meta analysis for zone costs

Let Ai3 denote the set of links related to zone i of I3 (each link in Ai3 has at
least one node contained in zone i). Then, the total users’ travel latency cost
for zone i is defined as

Ci =
∑
a∈Ai

3

xata (xa).

We consider two scenarios, one corresponding to the PM peak period of a
typical weekday (Wednesday, 4/18/2012) and the other the PM period of a typ-
ical weekend (Sunday, 4/15/2012). The zone costs under the user-centric (resp.,
system-centric) routing policy are visualized in Fig. 9a (resp., 9b). Three ob-
servations can be made: (i) Overall, most zone costs would be reduced when
switching from the user-centric routing policy to the system-centric one. (ii) In
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general, the zone costs for weekends are less than their counterparts for week-
days; this is consistent with intuition. (iii) The decrease seems more consistent
for all zones during weekends than during weekdays, suggesting it is easier to
optimize the network during weekends; this is again consistent with intuition.
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Figure 9: Zone costs under user-centric vs. system-centric routing policy (PM
period of Apr. 2012).

5.5.2 Meta analysis for maximum/minimum link flows

The maximum/minimum link flows for the PM peak period of each and every
day of Apr. 2012 are plotted in Fig. 10a, and the corresponding link indices
are shown in Fig. 10b. A major observation, based on Fig. 10a, is that the
maximum link flow values would increase for most of the days when switching
the routing policy from the user-centric one to the system-centric one, which is
desirable. In addition, it is seen that, among the entire month (April 2012), both
the maximum link flows under the two routing policies have a weekly periodic
distribution; this is consistent with intuition.

5.5.3 Meta analysis for link congestion

For any given link a, we define its Congestion Metric (CM) [40] as the ratio of
the travel time to free-flow travel time:

CMa
def
=

ta (xa)

t0a
= f

(
xa
ma

)
, (28)
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Figure 10: Maximum/minimum link flows and the corresponding link indices
under user-centric vs. system-centric routing policy (PM period of Apr. 2012).
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Figure 11: Link congestion under user-centric vs. system-centric routing policy
(PM period of 4/18/2012).

where f(·) is the cost function that we have estimated. By this definition, we
always have CMa ≥ 1.

We first consider a PM peak period scenario for a typical workday (Wednes-
day, 4/18/2012). The CM values of all the 258 links are plotted in Fig. 11
in a logarithmic scale (base 2). It is seen that, for some links (indexed with
79, 92, and 86) the CM value is significantly higher (gap > 1) under the user-
centric routing policy than under the system-centric one. There are some links
for which we have the opposite, but, overall, the CM peak is reduced under the
system-centric policy. We then investigate a PM period scenario for a typical
weekend (Sunday, 4/15/2012), and find that all the CM values for this scenario
are very close to 1, meaning there was almost no congestion for all links; we
have omitted the weekend CM plot for economy of space.

6 Strategies for PoA reduction

After quantifying the PoA, a natural question we must answer is the following:
How can we reduce the PoA for a given transportation network? We propose
three practical strategies for reducing the PoA, especially when PoA� 1.

First, by taking advantage of the rapid emergence of Connected Automated
Vehicles (CAVs), it has become feasible to automate routing decisions, thus
solving a system-centric forward problem (cf. (20)) in which all CAVs (bypassing
driver decisions) cooperate to optimize the overall system performance.

Second, we propose a modification to existing GPS navigation algorithms
recommending to all drivers socially optimal routes, which could be imple-
mented by making use of (22). In particular, we can solve the user-centric
forward problem (2), embedded in a typical GPS navigation application, with
ta(·) replaced by ta(·), whose common cornerstone part, f(·), is estimated us-
ing (12). It is worth pointing out that some existing work simply took f(·)
to be the Bureau of Public Roads (BPR)’s [7] empirical polynomial function
f(z) = 1 + 0.15z4, ∀z ≥ 0, which would not be as accurate.

Finally, our sensitivity analysis results provide the means to prioritize road
segments for specific interventions that can mitigate congestion.
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7 Conclusions and Future Work

In this paper, we assess the efficiency of transportation networks under a self-
ish user-centric routing policy as opposed to a socially-optimal system-centric
routing policy. To that end, we define and quantify the Price of Anarchy (PoA)
and propose possible strategies to reduce it. All the procedures involved are
data-driven, thus having the capability of dynamically optimizing any given
transportation network (by using the data collected in real-time manner), in
terms of reducing the PoA (especially when PoA� 1) such that it gets as close
to 1 as possible.

We must keep in mind that, due to unavoidable inaccuracies in data and
modeling, all the numerical results shown in Sec. 5 are only estimates. In
particular, the speed-to-flow conversion model that we use (Greenshield’s model)
is a macroscopic model with naturally limited accuracy, the GLS method that
we leverage also is based on an approximation, and the MSA subroutine in Alg.
1 is an approximate scheme.

In terms of the computational challenges of our proposed approaches, we
encountered numerical difficulties when solving (13) and (14) to obtain OD
demands for large-sized (say a network like I3) networks. However, we sub-
sequently developed a simplification procedure by considering only the fastest
route for each OD pair, thus successfully resolving this issue. We conducted
case studies on a workstation with 24 GB memory and a 12-core Intel Core i5
CPU, and for the largest network (I3) that we investigated, the total CPU time
(including estimating OD demands, recovering link latency cost functions, ad-
justing OD demands, solving for socially-optimal flows, and finally calculating
PoA values) is about 10 hours. The total CPU times for I1 and I2 are about 30
minutes and 2 hours, respectively. We note that the most time-consuming task
is adjusting OD demands using Alg. 1. However, it is seen that Steps 2-4 of Alg.
1 and the MSA subroutine can easily benefit from parallel computing. Thus,
scalability can be further improved through parallel computation. Moreover,
following an approach of “divide and conquer,” several decomposition methods
could possibly also be leveraged as we move to larger networks; the difficulty lies
in how to reasonably “merge” results derived for subnetworks so as to obtain
the final result for the whole network.

Our ongoing work includes extending the PoA analysis and reduction frame-
work from single-class to multi-class transportation networks. We have recently
obtained results for the multi-class user-centric inverse problem [41], which
paves the way for data-driven PoA estimation in these networks. We are also
considering alternative models/methods to improve the accuracy in the PoA
evaluation. In addition, it is of interest to consider jointly estimating/adjusting
the OD demand matrices and recovering the travel latency cost functions.
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