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Stochastic Model Predictive Control for Optimal Energy Management
of District Heating Power Plants

Francesca Verrilli1, Alessandra Parisio2, Luigi Glielmo1

Abstract— In this paper a control strategy for the optimal
energy management of a district heating power plant is pro-
posed using a stochastic formulation. The main goal of the
control strategy is to reduce the production and maintenance
costs by optimally managing the boilers, the thermal energy
storage and the flexible loads while satisfying a time-varying
request and operation constraints. The optimization model
includes a detailed modeling of boilers operating constraints,
energy thermal energy exchange and the operating modes of
the power plant layout. Furthermore, the uncertainty in power
demand and renewable power output, as well as in weather
conditions, is handled by formulating a two-stage stochastic
problem and incorporating it into a model predictive control
framework. A simulation evaluation based on the real data
and the layout of a Finnish power plant is conducted to assess
the performance of our proposed framework. The cost analysis
shows the advantages of using the predictive control strategy.

I. INTRODUCTION

Over the past decades, district heating network (DHN) has
gained increased importance in countries with a demand for
building heating, such as the Nordic countries. This is due to
the centralized heat generation, which increases the possibil-
ity of controlling generation and reducing generation costs.
In particular, an energy management framework coordinating
in an optimal way flexible loads with Combined Heat and
Power (CHP) unit, thermal energy storage and Renewable
Energy Sources (RES) (e.g. solar thermal power) is then
known to be highly beneficial under operational and envi-
ronmental perspectives [1], [2]. However, this coordinated
management can introduce further challenges, particularly
due to several sources of uncertainty, e.g., RES power
output, energy demand. In this paper, a systematic stochastic
framework including all the aforementioned features is de-
signed and evaluated based on the real data and layout of
a Finnish power plant. In addition, a feedback mechanism
is incorporated through the receding horizon philosophy to
better compensate for uncertainty effect.

Several mixed integer linear programming (MILP) models
for determining the optimal capacity and operation of CHP
plants coupled with district heating and cooling networks to
meet the demands of local users have been proposed in the
literature [3]–[7], most of which include solar plant and an
energy storage device. The results show how an optimized
cogeneration coupled with renewables and district heating
system allows to reduce significantly both the energy supply
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cost and the primary energy consumption and to maximize
the economic and energy saving benefits of these systems.

Model predictive control (MPC) has drawn increasing
attention in the power system community due to the ability
of easily integrating predictions, system constraints and
a feedback mechanism into the decision making process,
which is attractive for systems greatly dependent on demand
and renewable energy generation forecasts and uncertainty
MPC-based energy management systems has been proposed
for several energy systems, such as microgrids (e.g. [8], [9]).
Further, for properly handling the various uncertainty sources
in energy systems, stochastic programming is considered a
promising approach (e.g., [10]–[12]).

Planning frameworks, integrating CHPs and thermal stor-
age techniques, have been proposed in the literature taking
the price and demand uncertainties into account [13], [14].
In [15] an optimization model with heat storage is proposed
to minimize the production cost. The authors attempt to
account for price and demand uncertainty through a two-
stage process: first the operative plan is optimized over
multiple days, then only the first day plan is implemented
based on ‘actual’ values, which however are historical data.
The uncertainty is then not incorporated into the planning
strategy.

In [16] a model for optimal and dynamic control of
CHP-thermal storage in the presence of uncertain market
prices is developed. The proposed model is formulated as
a stochastic control problem and numerically solved through
Least Squares Monte Carlo regression analysis. It is shown
how thermal storage can significantly increase CHP flex-
ibility to respond to real time market signals. In [17] a
two-stage stochastic MILP model is designed to determine
the optimal number and size of CHP system components.
The authors in [18] propose a two-stage stochastic program-
ming framework to optimize the use of a thermal energy
storage in the form of hot water storage and/or storage in
building material. Three outside temperature scenarios and
ten price scenarios are combined into thirty scenarios; then,
occupied/non-occupied scenarios are randomly assigned.

However, it is notable that, in the current literature, a
unified optimization model including modeling of critical,
curtailable and shiftable loads, interactions among DERs,
renewables and energy storage resources, and influence of
uncertain factors, is still to be designed. In addition, the
equipment and flexible loads are often modeled through a
simplified approach, neglecting different demand side poli-
cies and equipment efficiencies and behavior under partial
load.
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Extending our previous results, we propose a stochastic
control strategy for optimal energy management of a district
heating power plant. Special attention is paid also to the mod-
eling of thermal losses and thermal energy storage dynam-
ics [19], [20]. The formulated optimization model includes
all the details mentioned above, along with users’ preferences
and comfort. Further, it is incorporated into a stochastic MPC
framework to account for uncertainty in renewables power
output and energy demand and take advantage of a feedback
mechanism, without suffering of the curse of dimensionality
(as dynamic programming approaches). A Sample Average
Approximation (SAA) approach is adopted for deriving a
minimum number of scenarios in order to obtain a feasible
solution of the original stochastic optimization problem [21]–
[23].

Our high-level control strategy computes power and tem-
perature setpoints to the boilers, the scheduling of the thermal
energy storage and the flexible loads. A SCADA system on
the low-level control architecture is in charge of selecting
the appropriate mass flow to guarantee the energy balance
equation.

The rest of the paper is organized as follows. In section
II, the mathematical formulation of both system dynamics
and constraints are provided. The formulation of the overall
stochastic MPC problem is shown in section III. In section
IV, we test our strategy, in simulation, against the model
of an actual district heating power plant located in Finland,
providing simulation results and an analysis of the saving
costs with respect to the historical data.

A. Nomenclature

In tables I, II and III are reported, respectively, the pa-
rameters, the forecasts and the decision and logical variables
used in the mathematical formulation.

II. SYSTEM MODELING AND CONSTRAINTS

For the sake of brevity, in this section we will often refer
to [8], [9] from where many inequalities can be taken.

A. Generator operating constraints

The thermal power is generated by the power plant using
CHP, grate boiler or oil boiler. In our formulation the i-th
boiler is modeled denoting by Pi(k) the power it generates
at time k, by Ti(k) the temperature of the water produced
at time k and by δi(k) its state, i.e. if the boiler i is ON
δi(k) = 1 or zero otherwise. The constraints on the minimum
up/down time, ramp up/down power limits, shut down and
start up, and to introduce the related costs at the right times
can be found in [8], [9]. The generation limits of each boiler
can be found in [9]. The fuel consumption cost for boiler
unit is traditionally assumed to be a quadratic function of
the generated power of the form:

C(P ) = a1P
2 + a2P + a3 (1)

where a1, a2 and a3 are the constant parameters of the
generated power.

TABLE I: Parameters

Parameters Description
Nb number of boilers,

Nl, Nc, Nr number respectively of critical, curtailable,
and reschedulable power loads

C(P ) fuel consumption cost curve of a boiler
a1, a2, a3 cost coefficients of C(P )[e/(MWh)2,e/MWh,e]
OM operating and maintenance cost of a boiler [e/h]
OMs operating and maintenance cost of the power

exchanged with the storage unit [e/h]
Th horizon of the optimization problem

Xs
min, Xs

max minimum, maximum energy level of the storage
unit [MWh]

Ms storage power limit [MW]
Pmin, Pmax minimum, maximum power level of a boiler [MW]
Tmin, Tmax minimum, maximum output water temperature

of a boiler [°C]
ηc, ηd storage charging and discharging efficiencies

ymin, ymax minimum, maximum allowed curtailment
of a curtaible load

Dc power level required from a curtailable load [MW]
El total energy required by a reschedulable load [MW]

[ITl − FTl] time interval set for a reschedulable load [h]
P̄ r,max
l , minimum, maximum power levels of
P̄ r,max
l a reschedulable load [MW]
ρc penalty weight on curtailments
γ penalty weight on water flow temperature
M mass of the water inside the thermal energy

storage [kg]
cp specific heat [J/kgK]

Utank heat transfer coefficient [W/m2K]
Atot total area of the water storage [m2]
q+, q− costs on recourse actions [e/MWh]

TABLE II: Forecasts

Forecasts Description
PRES sum of power production from RES [MW]
D power level required from the critical load [MW]
Tenv environment temperature [°C]

TABLE III: Decision and logical variables

Variables Description
δ off(0)/on(1) state of a boiler
yrl off(0)/on(1) state of a reschedulable load
P power level of a boiler [MW]
T outlet water temperature of a boiler [°C]
δs discharging(0)/charging(1) mode of the storage unit
P s power exchanged (positive for charging) with the

storage unit [MW]
Xs stored energy level [MWh]

SU, SD start-up, shut-down costs of a boiler [e]
yc curtailed percentage on the controllable load
yr on/off status of a reschedulable load
pr power consumption of the reschedulable load [MW]

y+, y− recourse variables associated to the loads [MW]

B. Thermal Energy Storage modeling

The thermal storage is described by

Xs(k + 1) =Xs(k) + ηP s(k)− UtankAtot

× (Tmean(k)− Tenv(k)),
(2)

where Tmean represents the average temperature of the water
inside the tank,

η =

{
ηc, if P (k) > 0 (charging mode)
1/ηd, otherwise (discharging mode)

(3)
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and 0 < ηc, ηd < 1. Since the energy stored is evaluated as

Xs(k) = Mcp(Tmean(k)− Tref(k)) (4)

where Tref(k) is the reference temperature at time k, we
obtain Tmean(k) from the previous equation and thus

Xs(k + 1) =Xs(k) + ηP s(k)− UtankAtot

×
(
Tref(k) +

Xs(k)

Mcp
− Tenv(k)

)
.

(5)

The reference temperature Tref(k) can be chosen equal
to the temperature of the return water from the network.
The charging and discharging efficiencies are taken into
account by using the standard approach described in [24]
which employs an auxiliary variable zs(k) and some related
inequalities so that the model becomes:

Xs(k + 1) = Xs(k) + (ηc − 1/ηd)zs(k) + 1/ηdP s(k)

− UtankAtot

(
Tref(k) +

Xs(k)

Mcp
− Tenv(k)

)
,

s.t. Es
1δ

s(k) + Es
2z

s(k) ≤ Es
3P

s(k) + Es
4

(6)

see [9] for indications. The inequality

Xs
min ≤ Xs(k) ≤ Xs

max. (7)

is customary when modeling storage devices. Our approach
is sufficiently flexible to accomodate other operating con-
straints. For example, following the requests of plant oper-
ators, we added the following inequality to ensure that, in
the case of a failure in the power plant, the energy level
available in the storage system is sufficient to satisfy the
power demand for one hour, i.e.

Xs(k) ≥ D(k). (8)

C. Load demand

The main objective of a control strategy for a dispatch
problem is to guarantee a perfect balance between loads
demand and power generation. Loads can be classified as:
• critical loads, i.e. demand related to essential processes

that must always be met;
• controllable loads, i.e. loads that can be shifted or shed

in supply constraints or emergency situations.
Concerning controllable loads, they can be classified by

priority and type as curtailable loads, that can be reduced
or shed, if necessary, and reschedulable loads having the
characteristic of being able to be allocated across a range of
time.

1) Curtailable Loads: We model this kind of loads intro-
ducing a continuous variable ych(k) representing the curtailed
power percentage on the controllable load h at time k. Hence
the constraints for h = 1, . . . , Nc are

0 ≤ ych(k) ≤ 1 (9a)

ycmin ≤
Th∑
k=1

ych(k) ≤ ycmax (9b)

Equation (9b) constraints the minimum and maximum al-
lowed curtailment of the controllable load h-th over the
optimization horizon.

2) Reschedulable Loads: Reschedulable loads have the
characteristic of being able to be allocated across a range
of time. We consider reschedulable loads with fixed power
and consecutiveness of load status for Ul stages. We indicate
with prl (k) the power consumption of the load l at time k and
with the binary variable yrl (k) the on/off status of the l-th
load in stage k. In the next equations, we show the modelling
for each of these loads l, with l = 1, . . . , Nr:

P̄ r,min
l yrl (k) ≤ prl (k) ≤ P̄ r,max

l yrl (k) (10a)
Th−1∑
k=0

prl (k) = El, (10b)

yrl (k)− yrl (k − 1) ≤ yrl (τon) (10c)
yrl (k) = 0 FTl ≤ t ≤ ITl, (10d)
Th−1∑
k=0

yrl (k) = Ul, (10e)

where τon = k + 1, . . . , k + T on
i − 1, Ul is the number of

time step in which the load has to be on, ITl and FTl (with
ITl ≤ FTl ≤ Th) are respectively the initial time step where
the load l could be turned on and the final time where it has
to be fully supplied. Equations (10a) and (10b) guarantee
that power and energy requirements for the load are met;
(10c) requires the load process be not interruptible; (10d)
and (10e) ensure that the load is not on outside the time
interval set by the user and that the load process duration is
within the prediction horizon.

Given the nature of the receding horizon approach, the
state of the controllable loads has to be included into the
initial conditions for the next optimization problem, that will
be solved using this new information.

D. Power balance

The balance between energy production and consumption
must be reached at each time k; hence the following equality
constraints must hold

Nb∑
i=1

Pi(k)− P s(k) + PRES(k) =

Nl∑
j=1

Dj(k)

+

Nc∑
h=1

(1− ych(k))Dc
h(k) +

Nr∑
l=1

prl (k).

(11)

We can rewrite the power balance equation in a com-
pact form by denoting by u(k) the vector of the decision
variables, and by w(k) the vector containing the random
variables at time k, i.e. RES generation, demand. Hence, at
time k,

u(k) = [P
′
(k) δ

′
(k) T

′
(k) δs(k) P s(k) Xs(k)

yc′(k) pr
′
(k)]

′
∈ R2Nb+Nc+Nr+2 × {0, 1}Nb+1,

w(k) = [PRES(k) D
′
(k) Dc′(k)]′ ∈ R1+Nl+Nc ,
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Fig. 1: Layout of the Power Plant
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Fig. 2: Supply water temperature in function of the environ-
ment temperature

where variables were grouped for compactness, P (k) ∈
RNb , δ(k) ∈ {0, 1}Nb , T (k) ∈ RNb , β ∈ RNc , yc(k) ∈
RNc , pr(k) ∈ RNr , D(k) ∈ RNl , Dc(k) ∈ RNc .

The power balance can be written as:

F (k)u(k) + fw(k) = 0 (13)

where F (k) = [1′ 0′ 0′ 0 − 1 0 Dc(k)′ − 1′], f =
[1 − 1′ − 1′] with compatible dimensions.

As previously mentioned, a microgrid with CHP includes
the ability of supplying both thermal and electric loads; hence
the model can be easily generalized considering two balance
between energy production and consumption at each time k
respectively for the electric and heating components.

E. Power plant layout constraints

Figure 1 reports the typical layout configuration compris-
ing a main energy source and some auxiliary boilers used to
satisfy demand peaks.
The supply temperature is a function of the average daily

temperature according to the empirical relationship shown in
Figure 2.

The supply water Tsupply(k) can either be directly pro-
vided by boiler 1 or, in case it exceed boiler 1 maximum
output water temperature, it has to be produced by at
least one of the auxiliary downstream boilers. This can be
expressed as

if Tsupply(k) > T1,max then
Nb∑
i=2

δi(k) ≥ 1. (14)

The temperature of the outlet water flow coming from each
boiler has to respect the following constraints

T1(k) ≥ Tsupply(k)

(
1−

Nb∑
i=2

δi(k)

)
,

Ti(k) ≥ Tsupply(k)δi(k) i = 2, . . . , Nb.

(15)

In addition we consider the constraints related to the power
plant configuration of the power plant. In particular we
consider the layout shown in Figure 1, which is a standard
layout for DHNs. In Figure 1 we can see that the boiler 1 is
connected in series to the other boilers, whereas the boilers
2, 3 and 4 are connected in parallel. This means that when
one of the boilers 2, 3 and 4 are turned ON, the outlet water
flow rate coming from the boiler 1 becomes the inlet water
flow rate to the auxiliary boilers. In this configurations, the
boiler 1 is used at maximum of its potentiality.
This situation can be described using the tables IV.

TABLE IV: Constraints related to the auxiliary boilers status

Auxiliary boiler ON Auxiliary boiler OFF
T1 = T1,max T1,min ≤ T1 ≤ T1,max

The constraints related to the layout set-up can be mod-
elled using the set of inequalities

T1(k) ≥ T1,maxδi(k) i = 2, . . . , Nb. (16)

III. PROBLEM DESCRIPTION

In this section the stochastic MPC problem for optimal
DHN operation management is formulated as a MILP prob-
lem. In the next sub-sections, we define the cost function
and then pose the stochastic MPC problem after defining the
cost function.

A. Cost function

District heating power plant running costs are modeled as
follows:

Jfs(u
Th) =

Th−1∑
k=0

Nb∑
i=1

[Ci(Pi(k)) +OMiδi(k) + SUi(k)+

SDi(k)] +OMs [2zs(k)− P s(k)] +

γTi(k) + ρc

Nc∑
h=1

ych(k)Dc
h(k)

(17)

where γTi(k) and ρc
∑Nc

h=1 y
c
h(k)Dc

h(k represent, respec-
tively, the penalty on the temperature of the water and the
penalty on users’ discomfort due to curtailments, and uTh =
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[u(0), . . . ,u(Th−1)] is the optimal plan over the prediction
horizon. The cost term γTi(k) penalizes two inefficiency
sources:
• the energy losses due to a higher water temperature,

flowing through the pipes;
• the inefficiency of the boilers, typically lower efficien-

cies are obtained with higher temperature of the outlet
water flow.

The cost function (17) includes also generating and main-
tenance costs of boilers and TES, as well as shut-down and
start-up costs of boilers.
B. Stochastic MPC problem

The uncertainty during the sampling period k is expressed
as w(k) = w̄(k) + w̃(k), where w̄(k) is the forecast value
and w̃(k) represents the forecast error at time k. The forecast
values can be computed by using several approaches, such as
regression analysis, machine learning techniques, persistent
forecasts.

In order to take uncertainty into account, the stochastic
nature of renewables and demand is incorporated in the
MPC problem. We then propose the use of MPC in com-
bination with stochastic programming with recourse, also
known as two-stage stochastic programming [25]. Given the
problem under consideration, two-stage stochastic models are
a reasonable approach to account for stochasticity into the
decision-making process mainly because they are computa-
tionally more affordable than multi-stage stochastic programs
and allow the use the available recourse actions, which would
not be possible if single-stage programs are adopted (e.g.,
chance-constrained). In two-stage stochastic programs, the
decision variables are divided into two groups: the first-stage
variables, which have to be decided before the actual real-
ization of the uncertain parameters becomes available, and
the second stage or recourse variables, which can be decided
once the random events occur. These recourse variables are
also interpreted as correction actions as they are used to
compensate any infeasibility from the first-stage decisions;
thus, violations are accepted, but their costs affect the choice
of the first stage variables. Recourse variables represent then
the needed amount of power to be compensated for in order
to keep the power balance at any point in time. The objective
is to choose the first-stage variables in order to minimize the
sum of first-stage costs and the expected value of the random
second stage or recourse costs.

The two-stage problem for DHN optimal operation man-
agement is stated as follows

min
uTh

Jfs(u
Th) +Q(uTh)

s.t.
Storage dynamic and physical constraints
(6), (7) and (8)
Boilers operating constraints [9]
Controllable loads constraints (9) and (10)
Layout operating mode and heating curve
(14), (15) and (16).

(18)

where Jfs becomes the first-stage cost function and
Q(uTh) = EwTh

[
Q(uTh ,wTh)

]
is the expected recourse,

with wTh = [w(0), . . . ,w(Th − 1)] being the vector of
random variables. The second-stage function, Q(uTh ,wTh)
is defined as follows:

Q(uTh ,wTh) = min
(
q+y+ + q−y−

)
s.to

y+ ≥ F̃ uTh + f̃wTh

y− ≥ −(F̃ uTh + f̃wTh)

y+,y− ≥ 0

where y+ and y− are recourse variables representing thermal
power surplus and shortage respectively, q+ and q− are
penalty costs related to power surplus and shortage respec-
tively, F̃ = diag

(
F (0), . . . ,F (Th−1)) and f̃ = f⊗IT×T ,

with ⊗ denoting the Kronecker product. We remark that the
power balance constraint is a second-stage constraint since
it involves random variables.

To derive a tractable approximation of the stochastic MPC
problem (18), we approximate the actual probability distribu-
tion of the uncertainty as a discrete distribution with a certain
number of outcomes, which are used for generating a finite
number of paths over the prediction horizon, i.e. scenarios. In
particular, we apply a known sampling technique to obtain an
approximate value of the second-stage function, the Sample
Average Approximation (SAA) [22], [26]: we consider a
finite number of randomly selected scenarios and then solve
a deterministic optimization problem.

Suppose that a random sample ŵT
1 , . . . , ŵ

T
S of S realiza-

tions of the random vector wT is generated. The SAA of the
second-stage function is defined as:

Q̂(uTh) :=
1

S

S∑
i=1

Q(uTh ,wTh
i ) (19)

where

Q(uTh ,wTh
i ) = min

(
q+y+

i + q−y−i
)

(20a)
s.to (20b)

y+
i ≥ F̃ u

Th + f̃ ŵTh
i (20c)

y−i ≥ −(F̃ uTh + f̃ ŵTh
i ) (20d)

y+
i ,y

−
i ≥ 0 (20e)

Since the random realizations ŵT
i , for i = 1, . . . , S, have

the same probability distribution, it follows that Q̂(uTh) is
an unbiased estimator of Q(uTh), for any uTh . We used
Latin Hypercube sampling (LHS) to construct the SAA
function, which allows to compute an unbiased estimator
with considerably less variance than the one obtained from
Monte Carlo sampling techniques (see [22] and references
therein for details on the LHS method).

Following the procedure described in [22], we can identify
the sample size required to obtain approximate solutions
of reasonable quality. We calculate estimates of upper and
lower bounds on the optimal value of the original stochastic
problem (18), and of the optimality gap, by solving many
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SAA instances for different sample sizes and using Latin
Hypercube sampling (LHS) as sampling technique. LHS
has been proved to compute an unbiased estimator with
considerably less variance than the one obtained from Monte
Carlo sampling technique (see [22] and references therein
for details on the LHS method). Therefore, LHS produces
improvements in both the optimality gap and the variance of
the upper and lower bound estimates.

In closing, the stochastic MPC optimization problem to be
solved is:

min
uTh

Jfs(u
Th) +

1

S

S∑
i=1

(
q+y+ + q−y−

)
s.t.
Storage dynamic and physical constraints
(6), (7) and (8)
Boilers operating constraints [9]
Power balance constraints (20c), (20d) and (20e)
Controllable loads constraints (9) and (10)
Layout operating mode and heating curve
(14), (15) and (16).

(21)

To further compensate for the difference between predic-
tion and actual states, the described optimization problem is
embedded in an MPC framework. This means that, at the
current point in time, an optimal plan is formulated but only
the first sample of the input sequence is implemented, and
subsequently the horizon Th is shifted. At the next sampling
time, the new state of the system is measured, and a new
optimization problem is solved using this new information.

IV. SIMULATION EVALUATION

The proposed control strategy has been evaluated on a
real case study, the DHN of Ylivieska, a small town in the
north-west of Finland. In this section we describe the DHN
established in Ylivieska and currently in use, and we evaluate
the performance of the stochastic MPC controller described
in the previous sections.

A. Descritpion of the case study

The DHN in Ylivieska has 53km of pipes delivering hot
water to almost 600 customers. The district heating power
plant consists in: a CHP, a grate boiler, two oil boilers
(respectively boiler 1, boiler 2, boiler 3 and 4 in figure 1)
and a thermal energy storage. The electric power generated
by the CHP is not considered since it is used in practice for
specific, localized district operations. There are not flexible
loads and no solar power plants are currently utilized, i.e.
PRES = 0.

The generation costs of each boiler can be represented by
the linear term C(P ) = a2P in (1).

Table V reports the main parameters of each boiler in
the power plant. The additional costs related to the recourse
actions are q+ = q− = 50 [e/MWh].

The power generation costs are discussed in Appendix I.

TABLE V: Table of the boilers parameters

Unit Pmin Pmax Tmin Tmax a2 Rmax

[MW] [MW] °C °C [e/MWh] [MW/h]
CHP 5 20 80 90 14.4 3
Grate 2 12 105 115 23.8 6
K3 1 12 112 112 71.1 12
K2 1 6 120 120 100.7 6
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Fig. 3: Aggregated demand over the simulation horizon
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Fig. 4: Supply water temperature

In order to model uncertainty and generate scenarios,
baseline power demand forecasts have been provided by the
Finnish DHN operator and errors have been computed based
on historical data.

B. Simulation results

We consider a sampling period of 1h, an optimization
horizon of 12h and a simulation horizon of 15 days.

The power demand 3 and the environment temperature
used for the simulation study are real measurements retrieved
from the Ylivieska Database system (from 9 of January 2015
to 23 of January 2015).

The supply water temperature in 4 has been computed
using the relationship in Figure 2 and measurements of the
environment temperature.

Utilizing the data from Ylivieska Database system, we per-
formed the testing procedure described in [26] to determine
lower and upper bound estimates on the optimal value of
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Fig. 5: Boilers’ power level over the simulation horizon

Fig. 6: Boilers’ outlet water temperature over the simulation
horizon

the original stochastic problem and identify the appropriate
number of scenarios. We solved 50 instances of the SAA
problem (21) with a sample size, Ns, varying from 10 to
1000 and compared the obtained bounds. A sample size
of Ns = 100 scenarios is required to obtain solutions of
reasonable quality (with a variance of the upper and lower
bound estimates of 0.01).

Considering an initial storage energy level of Xs(0) =
30MW and δ1(0) = 1, the stochastic MPC controller has
been applied. Figures 5 and 6 show respectively the power
level and the temperature of the outlet water flow rate of
each boiler.

We can notice that CHP is mainly used to meet the power
demand, since it is the cheapest boiler. When Tsupply(k) >
T1,max the Grate boiler is mainly employed. The thermal
energy storage can reduce the usage of the most expensive
oil boiler. The oil boilers is only used when the peak demand

Fig. 7: Storage energy profiles: comparison between S-MPC
and CP

lasts shortly so that it is not convenient to turn on the Grate
boiler, whose minimum up time is 8h.

C. Comparison analysis

We compare the following strategies: i) Stochastic MPC
(S-MPC); ii) Deterministic MPC (D-MPC), which is an MPC
controller that uses only forecasts of random variables and
does not take forecast errors into account (thus it solves (21)
without the second-stage function and with the power bal-
ance constraints (11)); iii) Benchmark MPC (B-MPC), which
is an ideal MPC controller that uses the actual values of the
random variables; iv) Current Practice (CP), based on power,
energy and costs data from Ylivieska Database relating to the
same time period (9-23 January 2015).

The total running costs are reported in table VI. These
costs include the costs of corrective actions required for
compensating for the actual power imbalances; for example,
in case of power shortage, to prevent users’ discomfort, this
deficit is to be either discharged from the energy storage, if
possible, or generated by a running boiler, leading to addi-
tional generation costs. The stochastic MPC controller yields
98% reduction of imbalances compared to the deterministic
MPC (15MWh against 1225MWh over 15 days). Further,
costs obtained by the S-MPC controller are the closest to
the benchmark.

Figure 7 shows the storage energy profiles obtained by
applying the S-MPC control scheme and the CP. The S-MPC
keeps the energy inside the storage as low as possible when
the power demand from the network is low, while it is able
to pre-charge the thermal energy storage to properly meet
upcoming occurring demand peaks.

All the formulations described above have been imple-
mented using MatLab. GLPK has been employed to solve
MILP optimization problems. All computations are per-
formed on an Intel Core i7 CPU, 1.80 GHz; computational
time for each iteration is less than 0.7 seconds on average.
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TABLE VI: Results evaluation

Unit S-MPC [e] D-MPC[e] B-MPC [e] CP [e]
CHP boiler 96015 99378 92874 91378
Grate boiler 21903 21684 20162 33145

Oil boiler K3 579 5602 0 320
Oil boiler K2 0 0 0 0

total costs 123820 126660 118540 124990

TABLE VII: Power generation costs.

Fuel Cost
[e/MWh]

CHP 14.4
Grate (K1) 23.8

Oil boiler (K2) 100.7
Oil boiler (K3) 71.1

V. CONCLUSION

In this paper, we have designed a stochastic predictive
control strategy for optimal operation management of district
heating power plants. The problem is stated as a mixed
integer linear model, since to properly represent system
dynamics both continuous and logical variables are needed.
A stochastic formulation of this model, incorporated into
a model predictive control framework, is proposed to ac-
count for renewable and demand power uncertainty effects.
The stochastic controller is evaluated via simulation on an
existing district heating power plant. Results show that the
proposed strategy can considerably reduce power imbalances
and outperform the deterministic controller and the current
practice in terms of cost savings. Ongoing and future works
consider the application of the stochastic controller to the
Finnish district heating network, the extension to multi-
energy carriers and the design of distributed approaches.

APPENDIX I
ENERGY PRODUCTIONS COSTS

The fuels used in the power plant are: light and heavy combustion
oil, peat bricks (used into the Grate boiler), the wood chips and the
granular peat used to feed the steam generator of the CHP.

In table VII the generation costs per unit of thermal power are
provided.
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