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Growing Controllable Networks
via Whiskering and Submodular Optimization

Mathias Hudoba de Badyn and Mehran Mesbahi

Abstract— The topology of a network directly influences
the behaviour and controllability of dynamical processes on
that network. Therefore, the design of network topologies is
an important area of research when examining the control
of distributed systems. We discuss a method for growing
networks known as whiskering, as well as generalizations of
this process, and prove that they preserve controllability. We
then use techniques from submodular optimization to analyze
optimization algorithms for adding new nodes to a network to
optimize certain objectives, such as graph connectivity.

I. INTRODUCTION

A great amount of effort has recently been focused on
understanding how the connection structure, or topology, of a
network affects the behaviour or performance of a dynamical
process on that network [1]. To that end, a natural question
is how one can systematically construct a network topology
such that a certain performance metric defined over that
behaviour is satisfied. A well-known method for constructing
networks is of preferential attachment, where new nodes are
attached to pre-existing nodes with a probability proportional
to the degree of those nodes [2]. The advantage of this
method is that it produces networks with power-law degree
distributions that resemble networks found in nature [3]. An-
other method for growing networks uses Kolmogorov-Sinai
entropy as a heuristic parameter for evolving networks [4].

An area of recent focus is the study of controlling dis-
tributed systems [1], [5], [6], [7], [8], [9]. Some research
pertains to how one may systematically construct a net-
work that has favorable characteristics for consensus. Ghosh
and Boyd developed an algorithm to select connections
between agents in a network to maximize the connectivity
of the network [10]. Chapman and Mesbahi showed how
to construct large networks from graph products of atomic
networks and examined their controllability properties [11],
[12]. Yazicioglu and Egerstedt, and Abbas and Egerstedt
worked on constructing networks for leader-follower se-
lection [13], [14]. Liu et al. have discussed constructing
graphs for scalable semi-supervised learning [15]. When
designing a network graph, there are several methods to
achieve various performance characteristics. For example,
there has been recent work in using submodular optimization
for picking input vectors [16], [17]. An excellent summary
of submodular optimization applications to the control of
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networked systems is given in [18]. Measures by which
one may gauge network performance and specify network
topologies have been suggested in [19], [20].

Whiskering is a process for growing graphs where at each
iteration, a vertex and edge is connected to every node in
the graph. In this paper, we discuss using this process, and
generalizations of this process, to construct large graphsthat
are controllable. A process similar in spirit to whiskeringare
the ‘fractal’ networks studied in the control-theoretic setting
by Li et al. in [21]

The contributions of this paper are as follows. We extend
the use of submodular optimization in network science to
problems involving addingnodes to the network. We present
a graph-growth method that preserves controllability of con-
sensus on the graph, and provide relevant bounds on the
network performance. Lastly, we develop a graph-growth al-
gorithm, and formulate convex optimization problems, which
we then solve for specific test cases.

The paper is outlined as follows: in §II, we present the
terminology of graph theory, consensus dynamics and the
relevant background and theorems in submodular optimiza-
tion. In §III, we discuss the graph whiskering process and its
generalizations, and prove that they preserve controllability.
Optimization problems involving these processes are then
formulated and discussed. We implement algorithms to solve
the optimization problems in §IV. The paper is concluded in
§V, where future extensions of the work are discussed.

II. MATHEMATICAL PRELIMINARIES

This section consists of the relevant constructs we use later
on for stating and proving our main results.

In this paper, we take the basic definitions for undirected
graphs and matrices associated with them for granted; our
graph theoretic notation is standard and can be found in [1].

Let m ∈ Z+, and [m] := {1, . . . ,m}. We call a real-
valued functionf : 2[m] → R nondecreasing if for setsJ ⊂
K ⊂ [m], f(J) ≤ f(K). The functionf is submodular if
for subsetsJ,K ⊂ [m], we have thatf(K)+f(J) ≥ f(K∪
J) + f(K ∩ J). Furthermore,f is nonincreasing if −f is
nondecreasing, andf is supermodular if −f is submodular.
f is modular if it is both supermodular and submodular.

A matrix H is Hermitian if H = H†, where ‘†’ denotes
the conjugate-transpose operation. LetΛE be a finite interval
of R, and thereby denote the set ofn×n Hermitian matrices
with eigenvalues contained inΛE asHn(ΛE). We say that
f is operator monotone on H (ΛE) if for all n ≥ 1 and for
all A,B ∈ Hn(ΛE), A � B =⇒ f(A) � f(B). Lastly,
let A[K] denote the principal submatrix ofA obtained by
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Fig. 1: Whiskering a graph by adding a leaf to every node

deleting the rows and columns ofA corresponding to the
elements in the set[m] \K.

Recent works in submodular optimization have examined
matrix functions (of say,A), such as the trace or the trace
of powers of matrices, in the context of submodularity over
a setK ⊆ [n] on the principal submatricesA[K] [22], [23].
We summarize the main results of these works, as well as
a more specific result about submodularity of functions over
principle sub-matrices ofM -matrices.

Theorem 1 ([22], [23]): Let f be a real continuous func-
tion on an intervalΛE of R. Furthermore, letf ′ be operator
monotone on the interior ofH (ΛE). Then, for all A ∈
Hn(ΛE), the map from2[n] → R given byK → Trf(A[K])
is supermodular.

Theorem 2 ([22]): Let A be anM -matrix of sizen× n.
Then, for all subsetsJ,K ⊂ [n] we have that for0 ≤ p ≤ 1:

TrA[K]p + TrA[J ]p ≥ TrA[K ∪ J ]p + TrA[K ∩ J ]p

and for1 ≤ p ≤ 2 and forp < 0,

TrA[K]p + TrA[J ]p ≤ TrA[K ∪ J ]p + TrA[K ∩ J ]p.

In particular, the mapK → TrA[K]−1 is supermodular ifA
is anM -matrix.

III. GRAPH GROWING

In this section, we introduce a method of growing graphs
that preserves controllability, by adding a leaf to every node
of the graph. We then generalize this process to adding more
complicated structures.

Graph whiskering is a process for adding nodes to a graph,
originally studied for the purpose of looking at monomial
ideals [24]. For each whiskering iteration, a single unique
node is connected to an already existing node in the graph,
for all nodes in the graph. This corresponds to concatenating
the Laplacian in the following form:

L −→

[

L+ I −I

−I I

]

= L′, (1)

where we denote the operation asL′ = W1(L). Figure 1
shows an example of whiskering a graph three times. This
process is of great interest because of several properties
that make it useful for control theoretic analysis, namely

it preserves controllability and provides guarantees on the
performance of control exerted on the resulting network. The
former property is captured in the following theorem.

Theorem 3: Let L′ = W1(L). The pairs(L′, [bT , bT ]T )
and (L′, [bT ,0T ]T ) are controllable if and only if the pair
(L, b) is controllable.

Proof: We prove the contrapositive using the Popov-
Belevitch-Hautus (PBH) test [1]. Suppose that(L, b) is
uncontrollable. Then, there existsw such thatwT b = 0 and
wTL = λL. We show by construction that there exists a
left eigenvector ofL′ that is orthogonal to the columns of
[bT , bT ]T and of [bT ,0T ]. We claim that[wT , αT ]T is an
eigenvector ofL′ with eigenvalueΛ, where

α =
1

1− Λ
w, Λ =

1

2

(

√

λ2 + 4 + λ+ 2
)

.

The Laplacian is symmetric, and so its left eigenvectors
are transposed right eigenvectors. Therefore, a computation
yields

[

L+ I −I

−I I

] [

w

α

]

=

[

(L+ I)w − Iα

Iα− Iw

]

=

[

(λ+ 1)w − α

α− w

]

=

[

Λw
Λα

]

.

This is orthogonal to the columns of[bT , bT ]T and[bT ,0T ]T .
For the reverse direction, assume that(L′, b = [bT1 , b

T
2 ]

T )
is uncontrollable. Then by the PBH test, we have an eigen-
vector ofL′ orthogonal to the columns ofb :

L′ = λ

[

w1

w2

]

=

[

Lw1 + (w1 − w2)
w2 − w1

]

[wT
1 , w

T
2 ]

[

b1
b2

]

=

[

wT
1 b1

wT
2 b2

]

=

[

0

0

]

. (2)

It follows that

w2 =
1

1− λ
w1, Lw1 =

(

1− (1− λ)2

1− λ

)

w1,

and sow1 is an eigenvector ofL with eigenvalue(1− (1−
λ)2)(1−λ)−1. It it is clear that from Equation (2),wT

1 b1 = 0,
and so(L, b1) is uncontrollable. This result also holds when
b2 = 0, and the theorem follows.
Theorem 3 therefore provides a useful way of ensuring that
a large graph is controllable. Since rank controllability tests
for very large graphs are often inaccurate due to machine
precision, one can start with a small graph on which a
controllability test is easily performed and iterate this process
several times until a sufficiently large network is obtained.

A natural question to ask is what other types of growth
processes preserve controllability? For example, one can
attach a leaf and a path of length 2 to every node (as shown
in Figure 2). This corresponds to concatenating the Laplacian
as follows:

L −→









L+ 2I −I −I 0

−I I 0 0

−I 0 2I −I

0 0 −I I









= L′. (3)



Fig. 2: Adding a leaf and a path of length 2 to every node

We denoteL′ = W2(L). It turns out that this growth process
also preserves controllability.

Theorem 4: Let L′ = W2(L). Then, it follows that the
pairs (L′, [bT , bTi , b

T
i , b

T
i ]

T ) (wherebi ∈ {b,0}) are control-
lable if and only if the pair(L, b) is controllable.

Proof: We again prove the contrapositive using the
PBH test. Suppose that(L, b) is uncontrollable. Then, there
existsw such thatwT b = 0 andwTL = λL. We show by
construction that there exists a left eigenvector ofL′ that is
orthogonal to the columns of[bT , bT ]T and of [bT ,0T ]. It
can be verified in a similar computation as in the proof of
Theorem 3 that[wT , αT , βT , γT ] is a left eigenvector ofL′

with eigenvalueΛ, where

γ =
1

1− Λ
β, β =

(

1

1− Λ
− Λ− 2

)−1

w, α =
1

1− Λ
w,

and whereΛ satisfies the equationλ+2 =
Λ(Λ3−4Λ+2)
Λ3−2Λ+1 . Note

that α and β are simply scalings ofw, and thereforeγ is
also a scaling ofw. Therefore,α, β andγ are all orthogonal
to the columns ofb: αT b = βT b = γT b = wT b = 0,
and so it is clear that[wT , αT , βT , γT ][bT , bTi , b

T
i , b

T
i ]

T =
0 for bi ∈ {b,0}. It follows that (L′, [bT , bTi , b

T
i , b

T
i ]

T ) is
uncontrollable.

For the reverse direction, assume that the pair(L′, b =
[bT1 , b

T
2 , b

T
3 , b

T
4 ]

T ) is uncontrollable. Then by the PBH test,
there exists an eigenvectorw = [wT

1 , w
T
2 , w

T
3 , w

T
4 ]

T of L′

orthogonal to the columns ofb with eigenvalueλ such that








L+ 2I −I −I 0

−I I 0 0

−I 0 2I −I

0 0 −I I

















w1

w2

w3

w4









= λ









w1

w2

w3

w4









.

It follows from a simple computation thatw1 is an eigen-
vector ofL with eigenvalue

Λ =
λ4 − 6λ3 + 14λ2 − 14λ+ 4

(λ − 1) (λ2 − 3λ+ 1)
.

Sincew is orthogonal to the columns ofb, it follows that
wT

1 b1 = 0, and the theorem follows.
As Theorem 4 suggests, there are many ways to grow graphs
such that they remain controllable. In this case, we have
shown that adding acluster of nodes, namely a leaf and a
path of length 2, to each node preserves controllability. It
is natural to examine what types of node clusters in general
each node can be replaced with to preserve controllability.
The following theorem places some conditions on these
clusters.

Theorem 5 (General Graph Growth): Let L be ann× n

graph Laplacian, and letLδ ben× n, C be r× r andB be
n× r (wherer = kn for k ∈ Z+) such that the matrix

L′ =

[

L+ Lδ B

BT C

]

is a graph Laplacian. Since we are interested in adding the
same cluster to each node, we can writeLδ = sI, wheres
is the number of edges added to the node when attaching it
to the cluster. We have the following results.

1) Let bn, w1 ∈ R
n and br, β ∈ R

r. Suppose(L′, b =
[b1, br]) is uncontrollable. Then, there exists an eigenvector
W1 6= 0 such thatL′W1 = Λw, WT

1 b = 0 where, sayW1 =
[wT

1 , β
T ]T . Then(L, b1) is uncontrollable when(ΛI−C) is

invertible and whenw1 is an eigenvector ofB(ΛI−C)−1BT .
2) Suppose(L, b) is uncontrollable. Then, there existsw 6=

0 such thatLw = λw with wT b = 0. We thus have that
(L′, [b,0]) is uncontrollable if there existsΛ ≥ 0 such that
(ΛI−C)−1 is invertible, andw is an eigenvector ofB(ΛI−
C)−1BT such thatB(ΛI − C)−1BTw = f(Λ), whereΛ
satisfiesΛ− λ− s = f(Λ).

Proof: We prove the two results separately.
1) Assuming the notation in Theorem 5-(1), suppose that

(L′, b = [b1, br]) is uncontrollable. Then, by the PBH test,
there exists an eigenvectorW1 = [wT

1 , β
T ]T 6= 0 such that

L′W1 = Λw, WT
1 b = 0 yielding:

L′W1 =

[

(L + sI)w1 +Bβ

BTw1 + Cβ

]

= Λ

[

w1

β

]

. (4)

Therefore, if(ΛI − C) is invertible, the lower entry of the
vector in Equation (4) givesβ = (ΛI −C)−1BTw1 and the
first entry of the vector in Equation (4) gives

Lw1 =
[

(Λ− s)I −B(ΛI − C)−1BT
]

w1.

This equation admitsw1 as an eigenvector ofL if the action
of B(ΛI−C)−1BT onw1 is to scalew1 by a fixed amount.
In other words, ifw1 is an eigenvector ofB(ΛI−C)−1BT ,
then it is an eigenvector ofL, and sincewT

1 b1 = 0, the result
follows.

2) Assuming the notation in Theorem 5-(2), suppose that
(L, b) is uncontrollable. Then, there existsw 6= 0 such that
Lw = λw with wT b = 0. We seek an admissible solution
for the equation

[

L+ Lδ B

BT C

] [

w

β

]

= Λ

[

w

β

]

(5)

in terms of the eigenvalueΛ of L′, and the lower part of
the eigenvector,β. If (ΛI − C) is invertible, we can write
β = (ΛI − C)−1BTw. From the upper entry of the vector
in Equation (5), we get the relation

(Λ− λ− s)Iw = B(ΛI − C)−1BTw.

Then, ifw is an eigenvector ofB(ΛI−C)−1BT , sayB(ΛI−
C)−1BTw = f(Λ)w, then we get an equation forΛ:

Λ− λ− s = f(Λ).

We add the stipulation thatΛ must beadmissible: Λ ≥ 0 for
it to be a Laplacian eigenvalue. Finally, it is clear that since
wT b = 0, we have that[wT , βT ][bT ,0T ]T = 0.

In the next section, we discuss using a similar graph grow-
ing approach to optimize graph performance. We will also
discuss bounds obtained using the submodularity theorems
in §II on the performance of graphs generated using the
whiskering method.



A. Optimization Algorithms: Adding Leaves

In this section, we discuss optimization problems that are
related to growing graphs. In particular, we consider efficient
addition of node clusters to a specific set of nodes in the
graph.

Consider a connected graphG and its Laplacian matrix
LG . The second-smallest eigenvalueλ2(LG) is a measure
of how interconnected the graph is. It is also an inverse
measure of how long it takes for agents connected with graph
G to achieve consensus by convergence to the agreement
subspace. A well-known algorithm by Ghosh and Boyd [10]
adds edges between unconnected nodes inG to maximize
λ2(LG).

The algorithm considers a set of candidate edges between
unconnected nodes inG, and selects thek candidate edges
that maximizeλ2(LG). For a set ofm candidate edges
l = {i, j}, let al be the vector with all-zero entries except
(al)j = 1 and (al)j = −1 when {i, j} is a candidate
edge. The selection ofk candidate edges from this set can
be encoded with a{0, 1}m-vector x, where xl = 1 if
the algorithm selects candidate edgel, and zero otherwise.
The optimization problem is then written in terms of the
individual LaplaciansalaTl for each edgel as follows:

maximize λ2

(

LG +
m
∑

l=1

xlala
T
l

)

subject to 1
Tx = k

x ∈ {0, 1}m.

The standard relaxation of this problem into a semidefinite
program (SDP) is of the form

maximize s

subject to s(I − 11
T /n) � L(x)

1
Tx = k

0 ≤ x ≤ 1

L(x) = LG +

m
∑

l=1

xlala
T
l .

We present a modification of this algorithm whereby one
wants to addnodes to the graphG in such a way that the
graph grows in order to maximizeλ2(G). SupposeG hasn
nodes. We want to choose one of thesen nodes to attach
leaves to in order to ‘grow’ the graph to maximizeλ2(G).
Recall thatLG [I] is the principal submatrix ofLG obtained
by deleting the rows and columns ofLG corresponding to
the elements in the setI \ [m]. Let Ltot denote the graph that
has every node whiskered, as in Equation (1). We can write
this problem as

maximize λ2(LG′)

subject to LG′ ∈
{

Ltot
[

[n] ∪ {i}
]

, i ∈ {n+ 1, . . . , 2n}
}

Ltot =

[

LG + I −I
−I I

]

.

(6)

This can be solved via exhaustive search over all possi-
ble whiskerings; however this becomes computationally in-
tractable for largen. We can relax this problem to a modified
Ghosh-Boyd Max-λ2(G) SDP as follows. Letei denote the
ith standard basis vector inRn. Then, we introduce a single
node into the system and create a set ofn candidate edges
potentially connecting the new node to any pre-existing node
in the graph. The individual Laplacian for each candidate

edge isaiaTi , whereai ∈ R
n+1 is of the formai = [ei,−1]T .

The SDP relaxation is then
maximize s

subject to s

(

In+1 −
(11T )n+1

n+ 1

)

� L(x)

1
Tx = 1

0 ≤ x ≤ 1

L(x) = L′
G +

n
∑

l=1

xlala
T
l

L′
G =

[

LG 0n

0
T
n 0

]

, 0n ∈ R
n.

(7)

Note thatL[K] is positive-definite. We can also relate the
inverse of this matrix to thecontrollability Gramian [19],
[25] P , which is a measure of the steady-state covariance of
the agent states. The matrixP is the positive-definite solution
of the Lyapunov equation

−PL[2 : n]− L[2 : n]PT = −I,

and is given byP = 1
2L[2 : n]−1. Certain submodular

functions of P (with respect to edge-addition) have been
studied in [17].

The trace ofP can be interpreted as an average amount
of energy expended to move the agent states around the
controllable subspace, and therefore it is of interest to beable
to bound the value of TrP on the results of our algorithms.
We do this using the supermodularity properties ofM -
matrices from Theorem 2.

Theorem 6: Let L′
1 denote the whiskering process in

Equation (1) and letL′
2 denote the whiskering process in

Equation (3), whereL1 and L2 are n × n, and soL′
1 is

2n× 2n andL′
2 is 4n× 4n. Let the controllability Gramians

P ′
1 of L′

1 andP ′
2 of L′

2 be the respective solutions to

−P ′
1L

′
1[2 : 2n]− L′

1[2 : 2n]P ′T
1 = −I

−P ′
2L

′
2[2 : 4n]− L′

2[2 : 4n]PT
2 = −I.

Then,

TrP ′
1 ≥ n+ C1 and TrP ′

2 ≥ 4n+ C2,

where C1, C2 are constants depending onL1, L2 respec-
tively.

Proof: We observe that the solution to

−P ′L′[2 : 2n]− L′[2 : 2n]P ′T = −I

is given byP ′ = 1
2L

′[2 : 2n]−1. From Theorem 2, using the
fact thatL′ is anM -matrix, we have that

Tr(P1) = Tr(L′
1[2 : 2n]−1)

≥ Tr(L′
1[2 : n]−1) + Tr(L′

1[n+ 1 : 2n]−1)

= Tr([L1[2 : n] + I]−1) + Tr(I) = C1 + n,

whereC1 = Tr([L1[2 : n] + I]−1) depends only onL1. The
second result forL2 follows from an identical calculation,
noting that

Tr





I 0 0

0 2I −I

0 −I I





−1

= 2Tr(I) + Tr(2I) = 4n.



We can use this result to bound the trace of the controllability
Gramian when adding a single node to the system.

Theorem 7: Consider the task of attaching a single node
to the system withn × n LaplacianL to maximizeλ2, as
denoted in Problem (6). LetL′ be the subsequent Laplacian,
and soP = 1

2L
′[2 : n + 1]−1. Then, TrP ≥ C + 1, where

C is a constant depending only onL.
Proof: Using Theorem 2 we can compute

Tr(P ) = Tr(L′[2 : n+ 1]−1)

≥ Tr(L′[2 : n]−1) + Tr(L′[n+ 1 : n+ 1]−1)

= Tr([L[2 : n] + eie
T
i ]

−1) + 1 ≥ C + 1,

where i is the index of the attachment node chosen, and
C = mini(Tr([L[2 : n] + eie

T
i ]

−1)) is a constant depending
only onL.

In the next section, we will consider adding a cluster, and
provide a similar result on the performance Tr(P ).

B. Optimization Algorithms: Adding Clusters

In the previous section, we considered the problem of
optimally adding leaves to some nodes to optimize the
algebraic connectivity of the graph. We will now consider
the problem of adding a cluster of a node and a length-2
path, as depicted in Figure 2.

Let 0n ∈ R
n and definea3→4 = [0T

n , 0, 1,−1]T , ai,1 =
[eTi ,−1, 0, 0]T andai,2 = [eTi , 0,−1, 0]T . Then, choosing an
attachment node to maximizeλ2 can be written as

maximize λ2(LG′)

subject to LG′ ∈
{

Ltot
[

[n] ∪ {i, i+ n, i+ 2n}
]

,

i ∈ {n+ 1, . . . , 2n}
}

Ltot =







L+ 2I −I −I 0

−I I 0 0

−I 0 2I −I
0 0 −I I






.

(8)

We can write the SDP relaxation as:

maximize s

subject to s

(

In+3 −
(11T )n+3

n+ 3

)

� L(x)

1
Tx = 1

0 ≤ x ≤ 1

L(x) = L′
G + a3→4a

T
3→4

+

n
∑

l=1

xl(ai,1a
T
i,1 + ai,2a

T
i,2)

L′
G =

[

LG 0n×3

03×n 03×3

]

.

(9)

Lastly, we provide a performance bound on the Gramian
analogous to Theorem 7.

Theorem 8: Consider the task of attaching a single node
to the system withn × n LaplacianL to maximizeλ2, as
denoted in Problem (8). LetL′ be the subsequent Laplacian,
and soP = 1

2L
′[2 : n + 3]−1. Then, TrP ≥ C + 4, where

C is a constant depending only onL.

Nodes Added
1 2 3 4 5 6 7 8 9 10

Lo
g 

λ
2
 n

-1

10 -2

10 -1

10 0

Relax.
Max.
Pert.

Nodes Added
5 10 15 20 25 30 35

Lo
g 

λ
2
 n

-1

10 -2

10 0

Relax.
Max.
Pert.

Fig. 3: Max-λ2 algorithm results for adding leaves (top)
and path clusters (bottom), using the convex relaxation (×),
exhaustive search (* ) and perturbation heuristic (+).

Proof:

Tr(P ) = Tr(L′[2 : n+ 3]−1)

≥ Tr(L′[2 : n]−1) + Tr(L′[n+ 1 : n+ 3]−1)

= Tr([L[2 : n] + 2eie
T
i ]

−1) + 4 ≥ C + 4,

where i is the index of the attachment node chosen, and
C = mini(Tr([L[2 : n]+2eie

T
i ]

−1)) is a constant depending
only onL.

IV. ALGORITHM IMPLEMENTATION

In this section, we show examples of the optimization
problems discussed in the previous section.

The optimization problems (6) and (8) were implemented
usingcvx [26], [27]. An additional relaxation method used
to solve problems (7) and (8) discussed in [10], known as
the perturbation heuristic, was also implemented for the
purpose of comparison. At each iteration of the heuristic
algorithm, the node cluster is attached to one node chosen
by selecting the node with the largest value of(vi− vn+1)

2,
wherev satisfiesL′v = λ2v. Here,vn+1 is the entry ofv
corresponding to the node in the cluster attaching the cluster
to nodei.

If there is more than one node attaching the cluster to the
node in the graph, then without loss of generality, denote
these (say,l) nodes asn+1, . . . , n+l. Then, the perturbation
heuristic is to find the nodei ∈ [n] maximizing

∑l

j=1(vi −

vn+j)
2 at each iteration.

The results of running these algorithms for 9 iterations
are shown in Figures 3, 4, and 5. The seed graphs, and
final graphs after 9 iterations for each of the three tech-
niques (exhaustive search, convex relaxation and perturbation
heuristic) are shown in Figure 4 for adding a single leaf, and
in Figure 5 for adding the path cluster. For both cases, the
convex relaxations (problems (7) and (9)) perform reasonably
well and pick out slightly suboptimal solutions, as seen in
Figure 3.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we explored methods of constructing graphs
by iterating a procedure that preserves controllability. In
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Fig. 4: Seed graph, and final graph after 9 iterations of the
leaf-adding problem using the SDP relaxation (7), exhaustive
search over problem (6) and the perturbation heuristic.

Seed Graph Relax.

Max. Pert.

Fig. 5: Seed graph, and final graph after 9 iterations of the
path-cluster-adding problem using the SDP relaxation (9),
exhaustive search over problem (8) and the perturbation
heuristic.

Theorem 3, we showed that adding a leaf to every node
preserves controllability, and in Theorem 4 we showed that
adding a cluster of two paths (of length 1 and 2) to each
node also preserves controllability. We provided bounds on
the performance of the resulting graph using submodularity.
We obtained general conditions for preserving controllability
under iterative graph growing in Theorem 5.

An interesting area of further work is to classify all graph
clusters that one can attach to all nodes in the network that
preserve controllability; in other words describe the matrix
L′ appearing in Theorem 5 in terms of graph objects. It
would also be worth exploring the combination of the node-
addition algorithms presented in the paper with edge-adding
algorithms, for example maximizingλ2 [10] and adding
edges to make cycles for more robust consensus [28].
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