arxiv:1609.08733v1l [math.OC] 28 Sep 2016

Growing Controllable Networks
via Whiskering and Submodular Optimization

Mathias Hudoba de Badyn and Mehran Mesbabhi

Abstract— The topology of a network directly influences networked systems is given in [18]. Measures by which
the behaviour and controllability of dynamical processes o gne may gauge network performance and specify network
that network. Therefore, the design of network topologies $ topologies have been suggested in [19], [20].

an important area of research when examining the control Whiskering i f . hs wh t h
of distributed systems. We discuss a method for growing ISKErNg IS a process for growing grapns where at eac

networks known as whiskering, as well as generalizations of iteration, a vertex and edge is connected to every node in
this process, and prove that they preserve controllability We the graph. In this paper, we discuss using this process, and
then use techniques from submodular optimization to analye  generalizations of this process, to construct large gréits
optimization a[gonéhmg for add'ﬂg new n%des t0 a network 10 4a controllable. A process similar in spirit to whiskeriag
optimize certain objectives, such as graph connectivity. the ‘fractal’ networks studied in the control-theoretittiseg

I. INTRODUCTION by Li et al. in [21]

A great amount of effort has recently been focused op, The contributions of this paper are as follows. We extend

: ; e use of submodular optimization in network science to
understanding how the connection structure, or topology, o P

network affects the behaviour or performance of a dynamicglrObIems involving addingodesto the network. We_ present
a graph-growth method that preserves controllability af-co

process on that network [1]. To that end, a natural questian .
. . sensus on the graph, and provide relevant bounds on the
is how one can systematically construct a network topolog|¥

. . . etwork performance. Lastly, we develop a graph-growth al-
such that a certain performance metric defined over th P Y b a graph-g

behaviour is satisfied. A well-known method for construgtin aE)rithm, and formulate convex optimization problems, ahic

: . we then solve for specific test cases.
networks is of preferential attachment, where new nodes are . . -
The paper is outlined as follows: if_Bll, we present the

attached to pre-existing nodes with a probability prooorai terminology of graph theory, consensus dynamics and the

to the degree of those nodes [2]. The advantage of th}glevant background and theorems in submodular optimiza-
method is that it produces networks with power-law degreg 9 P

distributions that resemble networks found in nature [3j- A fon. In f{lﬂ_we discuss the graph whiskering process asm_l it
eneralizations, and prove that they preserve contrditiabi

other method for growing networks uses Kolmogorov-Sinf% o . .
ptimization problems involving these processes are then

entropy as a heuristic parameter for evolving networks [4]Tormulated and discussed. We implement algorithms to solve
An area of recent focus is the study of controlling dis- L " . :
tributed systems [1], [5], [6], [7], [8], [9]. Some researchthe optimization problems ir§IV. The paper is concluded in

) ; gﬂl, where future extensions of the work are discussed.
pertains to how one may systematically construct a net-

work that has favorable characteristics for consensussksho II. MATHEMATICAL PRELIMINARIES
End Boyd devek_)ped an algonthm t_o _selekc]:t connect_lo.ns This section consists of the relevant constructs we use late
etween agents in a network to maximize the connectlvngn for stating and proving our main results.

of the network [10]. Chapman and Mesbahi showed hOW In this paper, we take the basic definitions for undirected

twork d ined thei rollabilit e ﬁraphs and matrices associated with them for granted; our
nlezwo\r( s an IexamdmeE etlrdcton r% E}A\[;Ly propgzrllze Il ; traph theoretic notation is standard and can be found in [1].
[12]. Yazicioglu and Egerstedt, an as angd EQerstedty o, ¢ Zy, and [m] := {1,...,m}. We call a real-

worked on constructing networks for leader-follower se-

. . : “*valued functionf : 2" — R nondecreasing if for sets.J
lection [13], [14]. Liu et al. have discussed constructing < - ; :
graphs for scalable semi-supervised learning [15]. Wh J C [ml, £(J) < f(K). The functionf is submodular if

>
designing a network graph, there are several methodsef%r subsets/, K C [m], we have thaff (k) + f(J) > f(KU

hi ) ¢ h terisi E + f(K N J). Furthermore,f is nonincreasing if —f is
achieve various periormance characteristcs. For examp ondecreasing, anfl is supermodular if —f is submodular.
there has been recent work in using submodular optimizatio

S f]is modular if it is both supermodular and submodular.
for picking input vectors [16], [17]. An excellent summary A matrix H is Hermitian it H — H', where ' denotes

of submodular optimization applications to the control Oihe conjugate-transpose operation. et be a finite interval
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o % it preserves controllability and provides guarantees an th
performance of control exerted on the resulting networle Th
former property is captured in the following theorem.

Theorem 3: Let L' = #;(L). The pairs(L’, [bT,b7]T)
and (L', [bT,07]T) are controllable if and only if the pair
(L, b) is controllable.

6, o Proof: We prove the contrapositive using the Popov-
Belevitch-Hautus (PBH) test [1]. Suppose thdt,b) is
uncontrollable. Then, there exisis such thatw”b = 0 and
w?L = AL. We show by construction that there exists a
left eigenvector ofL’ that is orthogonal to the columns of
[T, 6T]T and of b7, 07]. We claim thatjw®, oT]7 is an

eeigenvector ofZ” with eigenvalueA, where

Q:Lw, A:%(\//\2+4+/\+2).

deleting the rows and columns of corresponding to the 1—A

elements in the s€in] \ K. The Laplacian is symmetric, and so its left eigenvectors
Recent works in submodular optimization have examinegre transposed right eigenvectors. Therefore, a compntati

matrix functions (of sayA), such as the trace or the traceyields

of powers of matrices, in the context of submodularity over

Fig. 1: Whiskering a graph by adding a leaf to every nod

a setK C [n] on the principal submatriced[K] [22], [23]. [ L+1 -1 ] [ w ] — [ (L+ Dw —Ia }
We summarize the main results of these works, as well as -1 1 o Ta—Tw

a more specific result about submodularity of functions over _ [ A+1Dw -« ] . [ Aw ]

principle sub-matrices ofi/-matrices. a oa—w T Ao |

Theorem 1 ([22], [23]): Let f be a real continuous func-
tion on an intervalA  of R. Furthermore, leff’ be operator
monotone on the interior off (Ag). Then, for all A €
H,(Ag), the map from2["] — R given by K — Trf(A[K])
is supermodular.

This is orthogonal to the columns @, 57]7 and[p”', 07]T".

For the reverse direction, assume that, b = b b217)
is uncontrollable. Then by the PBH test, we have an eigen-
vector of L' orthogonal to the columns df:

Theorem 2 ([22]): Let A be anM-matrix of sizen x n. N Lw; + (w1 — wy)
Then, for all subsetd, K C [n] we have that fof) < p < 1: N wg | w2 — w1
T
TrAIK]? + TrAJ)P > TrA[K U JJP + TrA[K N JJP w?, w?] [ n ] _ [ wl ] _ [ } . @
2 02
and forl < p <2 and forp < 0, It follows that
TrA[KP + TrA[J)P < TrA[K U JJP + TrA[K N JJP. 1 1—(1—))2
we = ——wy, Lwy = (7) Wi,
In particular, the mags — TrA[K]~! is supermodular ifA 1=A 1=A
is an M-matrix. and sow, is an eigenvector of. with eigenvalue(l — (1 —

2 —1 it i T —
. GRAPH GROWING A)2)(1=1)"L !tlt is clear that from Equatlor[[Z)yl b1 =0,
. ] ) ] and so(L, by) is uncontrollable. This result also holds when
In this section, we introduce a method of growing graphg2 — 0, and the theorem follows. m
that preserves controllability, by adding a leaf to evergeo theoren{s therefore provides a useful way of ensuring that
of the graph. We then generalize this process to adding mog8arge graph is controllable. Since rank controllabiliggts
complicated structures. _ for very large graphs are often inaccurate due to machine
Graph whiskering is a process for adding nodes to a graphyecision, one can start with a small graph on which a
originally studied for the purpose of looking at monomialyqnroliability test is easily performed and iterate thisgess

ideals [24]. For each whiskering iteration, a single uniqugeyeral times until a sufficiently large network is obtained
node is connected to an already existing node in the graph,a natural question to ask is what other types of growth
for all nodes in the graph. This corresponds to concategatipocesses preserve controllability? For example, one can
the Laplacian in the following form: attach a leaf and a path of length 2 to every node (as shown
[ L+1 —JI } _ in Figurel2). This corresponds to concatenating the Laphaci

L— (1) as follows:

—I I
where we denote the operation &5 = #;(L). Figure[1 L+2I -I -1 0
shows an example of whiskering a graph three times. This I — —1 I 0 0 |_ 158 (3)
process is of great interest because of several properties _()I 8 2II _II

that make it useful for control theoretic analysis, namely



e is a graph Laplacian. Since we are interested in adding the
same cluster to each node, we can wiite= s/, wheres
Fig. 2: Adding a leaf and a path of length 2 to every nodgs the number of edges added to the node when attaching it
to the cluster. We have the following results.
We denotel’ = #5(L). It turns out that this growth process 1) Let b,,w; € R™ andb,,3 € R". Suppose(L’,b =
also preserves controllability. [b1,b,]) is uncontrollable. Then, there exists an eigenvector
Theorem 4: Let L' = #4(L). Then, it follows that the W; # 0 such thatl/W; = Aw, W{'b = 0 where, sayV; =
pairs (L, [bT,bF, bF, bT)T) (whereb; € {b,0}) are control- [w!, 37]". Then(L,b;) is uncontrollable whetiAI — C) is
lable if and only if the paifL, b) is controllable. invertible and whem, is an eigenvector aB(A1—C)~ ' BT.
Proof: We again prove the contrapositive using the 2) Supposé€L,b) is uncontrollable. Then, there exists#
PBH test. Suppose th&L, b) is uncontrollable. Then, there 0 such thatLw = Aw with w?’b = 0. We thus have that
existsw such thatw?b = 0 andw” L = AL. We show by (L’,[b,0]) is uncontrollable if there existd > 0 such that
construction that there exists a left eigenvectorbthat is (AI—C)~!is invertible, andw is an eigenvector oB (Al —
orthogonal to the columns db”, 71" and of [p”,07]. It C)~'B? such thatB(AI — C)"'BTw = f(A), whereA
can be verified in a similar computation as in the proof ofatisfiesA — A — s = f(A).

TheorenB thafw?, o™, 7, ~1] is a left eigenvector of.’ Proof: We prove the two results separately.
with eigenvalueA, where 1) Assuming the notation in Theordm 5-(1), suppose that
1 (L',b = [b1,b,]) is uncontrollable. Then, by the PBH test,
v = ﬁﬁ, B = (ﬁ —A- 2) w, o= ﬁw, there exists an eigenvectdlr; = [w!, 37]T # 0 such that
B B B L'W; = Aw, W{'b = 0 yielding:
and where\ satisfies the equatiok+2 = A(A%-40+2) Note (L + sl)wy + Bg w
= TAP—2AF1 - L'wW, = ! ] =A [ ﬁl } @

that « and 5 are simply scalings ofv, and thereforey is BTw, +Cp
also a scaling ofo. The[[eforea,TB andyTare all o;thogonal Therefore, if(AI — C) is invertible, the lower entry of the
to the columns oft: a'b = B'b = v'b = w'b = 0, \ectorin Equation[4) give$ = (Al — C)~'BTw, and the

and so it is clear thafw”, o™, 57, "][b7, b7, b7, b7 ] = first entry of the vector in Equatiofil(4) gives
0 for b; € {b,0}. It follows that (L', b7, b, b b7 is o
uncontrollable. Lw; = [(A—s)I — B(AI —C)'B" | w;.

For the reverse direction, assume that the paitb = This equation admita; as an eigenvector df if the action

(b, 03,63, b5] ") is uncontrollableirThgn b%/ thTe TPBH test,of B(AI—C)~'BT onw; is to scalew; by a fixed amount.
there exists an eigenvecter = [w;, wy , w3, wy]" of L' |n other words, ifw, is an eigenvector oB(AI —C)~'B7,
orthogonal to the columns df with eigenvalue\ such that thenitis an eigenvector df, and sincev] b; = 0, the result

-7 I 0 0 wy wy 2) Assummg the notation in Theordﬂ_w 5-(2), suppose that
_ _ =A . (L,b) is uncontrollable. Then, there exisis# 0 such that

I 0 21 I w3 w3 . . . X

0 0o I I ws ws Lw = \w with wTb = 0. We seek an admissible solution

. . _ _ for the equation
It follows from a simple computation that, is an eigen-

. . L+Ls B w w
tor of L with I =
vector of L wi elfenva:e 2 [ BT c ] { 3 ] A[ 3 ] (5)
A= A~ O+ AN~ 14)\+4. in terms of the eigenvalud of L', and the lower part of

(A =1) (A =32 +1) the eigenvectorg. If (Al — C) is invertible, we can write
Sincew is orthogonal to the columns df it follows that 3 = (AI — C)~!BTw. From the upper entry of the vector
w¥b; = 0, and the theorem follows. B in Equation [b), we get the relation
As Theoreni ¥ suggests, there are many ways to grow graphs o 1T
such that they remain controllable. In this case, we have (A=A=s)lw=BA-C)" B w.
shown that adding a@luster of nodes, namely a leaf and a Then, ifw is an eigenvector aB(AI—C) "' B”, sayB(AI—
path of length 2, to each node preserves controllability. €)' B”w = f(A)w, then we get an equation fdr:
is natural to examine what types of node clusters in general A—A—s=f(A).
each node can be replaced with to preserve controllability.
The following theorem places some conditions on thesé/e add the stipulation that must beadmissible: A > 0 for

clusters. it to be a Laplacian eigenvalue. Finally, it is clear thatcsin
Theorem 5 (General Graph Growth): Let I be ann x n @’ b= 0, we have thafw”, 57][b",07]" = 0. u
graph Laplacian, and lets ben x n, C ber x r and B be In the next section, we discuss using a similar graph grow-
n x r (Wherer = kn for k € Z,) such that the matrix ing approach to optimize graph performance. We will also
discuss bounds obtained using the submodularity theorems
I = { L+TL5 b } in €I on the performance of graphs generated using the
B c whiskering method.



A. Optimization Algorithms. Adding Leaves edge isu;a] , wherea; € R"! is of the forma; = [e;, —1]7.
In this section, we discuss optimization problems that ar-ghe SDP relaxation is then

related to growing graphs. In particular, we consider effiti maximize s
addition of node clusters to a specific set of nodes in the subject to s (In+1 B (11T)n+1> < L(x)
graph. n+1
Consider a connected gragh and its Laplacian matrix 17z =1
Lg. The second-smallest eigenvalde(Lg) is a measure 0<z<1 7
of how interconnected the graph is. It is also an inverse n
measure of how long it takes for agents connected with graph L(z) = Lg + Y wiaral
G to achieve consensus by convergence to the agreement I 10:1
subspace. A well-known algorithm by Ghosh and Boyd [10] Lg = { O% 0” } , 0, €R™.
adds edges between unconnected node§ 0 maximize "
Xo(Lg). Note thatL[K] is positive-definite. We can also relate the

The algorithm considers a set of candidate edges betweigwerse of this matrix to theontrollability Gramian [19],
unconnected nodes i@, and selects thé candidate edges [25] P, which is a measure of the steady-state covariance of

;hat {T?)}(inlgi/\?éggt %.e I?/%E:tgr ?/veitthogl?zg?g(ggt?itgs egx%%sptthe agent states. The matiiXis the positive-definite solution
= 9 1 l - .

(a;); = 1 and (a;); = —1 when {i,j} is a candidate of the Lyapunov equation
edge. The selection df candidate edges from this set can —PL[2:n]— L[2:n]PT = -1

be encoded with &0, 1}™-vector x, where x; = 1 if ’

the algorithm selects candidate edgend zero otherwise. and is given byP = 1L[2 : n]~!. Certain submodular

The optimization problem is then written in terms of thefunctions of P (with respect to edge-addition) have been

individual Laplaciansya! for each edgé as follows: studied in [17].
m The trace ofP can be interpreted as an average amount
maximize Az (Lg +Zmzazafp> of energy expended to move the agent states around the
. , =1 controllable subspace, and therefore it is of interest talide
subjectto 1"z =k to bound the value of T¢ on the results of our algorithms.
z € {0,1}™. We do this using the supermodularity properties /af-

The standard relaxation of this problem into a semidefinitg'atrices from Theoterlﬁl 2. o _
program (SDP) is of the form Theorem 6: Let L} denote the whiskering process in

Equation [(1) and letl}, denote the whiskering process in

maximize - s Equation [(8), wherel; and L, aren x n, and solL] is

. T
subject to s(I —11" /n) = L(z) 2n x 2n and L}, is 4n x 4n. Let the controllability Gramians
1z =k P/ of L}, and Pj of L/, be the respective solutions to
Osw=l “PIL2:2n] — Li[2:20]PT = —1
L(z) = Lg + > _ maaj . —PyL4[2 : 4n] — LH[2 : 4n]Pf = —1.
e .l:1 . Then,
We present a madification of this algorithm whereby one
wants to addhodes to the graphG in such a way that the TrPl > n+ Cy and TPy > 4n + Cs,

graph grows in order to maximiz®:(G). Supposej hasn .
nodes. We want to choose one of thesaodes to attach Where C1,C> are constants depending diy, L, respec-

leaves to in order to ‘grow’ the graph to maximi2g(g). tively.

Recall thatLg[I] is the principal submatrix of.g obtained Proof: We observe that the solution to
by deleting the rows and columns &f; corresponding to . , T
the elements in the sét\ [m]. Let Ly denote the graph that —P'L'[2:2n] = L'[2: 2n]P" = —1

has every node whiskered, as in Equatidn (1). We can wri}

this problem as § given by P’ = 1L[2 : 2n]~ 1. From Theoreni2, using the

fact thatL’ is an M-matrix, we have that

. S Tr(Py) = Tr(Li[2: 2n]7h)
bjectto Lg € { Liot|[n]U{i}|, i€ {n+1,...,2n
R {_}1} { Vo > THLAR 0] ™) + THEA o + 15 20] )

Lot = { 7 I =Tr([L1[2:n] + 171 + Tr(I) = Cy +n,

This can be solved via exhaustive search over all possithereC; = Tr([L1[2 : n] + I]~') depends only ori.;. The

ble whiskerings; however this becomes computationally insecond result for, follows from an identical calculation,
tractable for larger. We can relax this problem to a modified

maximize A2(Lg/)

Ghosh-Boyd Max\2(G) SDP as follows. Let; denote the noting that
ith standard basis vector IR". Then, we introduce a single I o o 1!
node into the system and create a sehafandidate edges lo o —1 — 2Tr(I) + Tr(2]) = 4n.

potentially connecting the new node to any pre-existingenod

in the graph. The individual Laplacian for each candidate 0 -1 I



T T T T T T T T
. - X Relax.
*  Max.

We can use this result to bound the trace of the controltsbili 'CN X ¥ er
Gramian when adding a single node to the system. A 1
Theorem 7: Consider the task of attaching a single node 3 X

to the system withm x n LaplacianL to maximize \,, as W T s 4 s 6 7 8 9 1

denoted in Probleni]6). Let’ be the subsequent Laplacian, oo Nodes Added
and soP = $L'[2: n+1]~'. Then, TP > C + 1, where I X
C'is a constant depending only dn :N + pen
Proof: Using Theorenl]2 we can compute g ©° [
Tr(P) =Tr(L/[2:n+1]7) R N I
>Tr(L/[2:n] )+ Tr(L'n+1:n+1]"") _  Nodes Added _
= Tr([L[2:n] +eel] ) +1>C+1, Fig. 3: Max-\, algorithm results for adding leaves (top)

and path clusters (bottom), using the convex relaxatio (
where i is the index of the attachment node chosen, an@xhaustive search) and perturbation heuristicH).
C = min;(Tr([L[2 : n] 4+ e;el]71)) is a constant depending
only on L. ] Proof:
In the next section, we will consider adding a cluster, and o .
provide a similar result on the performance IFy. Tr(P) =Tr(L'[2: n+3]7)
>Tr(L2:n] ) +Tr(L[n4+1:n+3]71)
B. Optimization Algorithms: Adding Clusters = Tr([L[2: n] + 2e;eF] 1) +4 > C + 4,
Ir_1 the previous section, we considered the prot_)Iem %herez’ is the index of the attachment node chosen, and
optimally adding leaves to some nodes to optimize th . TT1—1vy s .
; . , : = min, (Tr([L[2 : n]+2e;e; |71)) is a constant depending
algebraic connectivity of the graph. We will nhow consider v on I ¢ -
the problem of adding a cluster of a node and a Iength-%rly '
path, as depicted in Figufé 2. IV. ALGORITHM IMPLEMENTATION
Let 0,, € R™ and defineaz4 = [01,0,1,-1]7, a;1 = ) i L
7, —1,0,0]7 anda; > = [e7,0,—1,0]7. Then, choosing an In this sgctlon, we show exgmples qf the optimization
attachment node to’maximize, can be written as problems discussed in the previous section.
The optimization problem$16) andl (8) were implemented

maximize - A>(Lg:) using cvx [26], [27]. An additional relaxation method used

subject to Lo € {Liot[[n] U {i, i +n,i+2n}], to solve problems[{7) and(8) discussed in [10], known as
ic{n+1,...,2n}} the perturbation heuristic, was also implemented for the
L+2I -T -1 O (8) purpose of comparison. At each iteration of the heuristic
Liot = -1 I 0 0 | algorithm, the node cluster is attached to one node chosen

-1 0o 27 I

0 o -1 I by selecting the node with the largest valug(of— v, 1)?,

wherev satisfiesL'v = X\yv. Here,v, 11 is the entry ofv

We can write the SDP relaxation as: corresponding to the node in the cluster attaching theedust
maximize s to nodei. . .
. (117 )15 If th_ere is more than one_node attaching the clqster to the
subject to s <In+3 - W) =< L(z) node in the graph, then without loss of generality, denote
T’ these (sayi) nodes asi+1,...,n+I. Then, the perturbation
Lr=1 heuristic is to find the nodée [n] maximizing Z;Zl(vi -
0<z<1 © vn4;)? at each iteration.
L(z) = Lg + a3—4a3 .4 The results of running these algorithms for 9 iterations
" " - are shown in FigureEl3]4, aid 5. The seed graphs, and
+l§:wz(ai,1ai,1 + ai2a; ) final graphs after 9 iterations for each of the three tech-
/ ’z O nigues (exhaustive search, convex relaxation and pettarba
Lg = { ngn 0’;:‘3 } heuristic) are shown in Figufé 4 for adding a single leaf, and

in Figure[® for adding the path cluster. For both cases, the
Lastly, we provide a performance bound on the Gramiatonvex relaxations (problenis (7) aifidl (9)) perform reasiynab

analogous to Theorefd 7. well and pick out slightly suboptimal solutions, as seen in
Theorem 8: Consider the task of attaching a single nodé-igure[3.

to the system witm x n LaplacianL to maximize \,, as

denoted in Probleni8). Let’ be the subsequent Laplacian, V. CONCLUSIONS AND FUTURE WORKS

and soP = %L’[2 :n + 3]~ Then, T® > C + 4, where In this paper, we explored methods of constructing graphs

C'is a constant depending only dn by iterating a procedure that preserves controllability. |
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