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Abstract— In this paper, we propose a distance-based forma-
tion control strategy that can enable four mobile agents, which
are modelled by a group of single-integrators, to achieve the
desired formation shape specified by using six consistent inter-
agent distances in a 2-dimensional space. The control law is
closely related to a gradient-based control law formed from a
potential function reflecting the error between the actual inter-
agent distances and the desired inter-agent distances. There
are already control strategies achieving the same objective in a
distance-based control manner in the literature, but the results
do not yet include a global as opposed to local stability analysis.
We propose a control strategy modified from the existing
gradient-based control law so that we can achieve almost global
convergence to the desired formation shape, and the control
law uses known properties for an associated formation shape
control problem involving a four-agent tetrahedron formation
in 3-dimensional space. Simulation results verifying our analysis
are also presented.

I. Introduction

Formation control of mobile agents has attracted a lot of
attention in the field of multi-agent systems recently, and
many approaches to handle the control problem of multi-
agent formation have been proposed. For example, a forma-
tion control strategy using relative position constraints for
single-integrator modeled agents can formulate the formation
control problem as a first-order consensus problem; then,
under certain graph structures1, global asymptotic stability
of desired formation shapes can be guaranteed by virtue
of the convergence results of the consensus algorithms [1],
[2]. Meanwhile, some other control strategies using inter-
agent distance constraints are studied in the literature [3]–
[7]. Since desired formations are characterized by relative
position vectors of the agents in displacement-based control,
the agents need to be equipped with aligned local reference
frames, but in distance-based control, the agents can use fully
independent local reference frames. Unlike displacement-
based control, many publications on distance-based control
of multi-agent formations deal with local stability analysis
only with a few exceptions (e.g., [8]–[11]) handling global
stability issues.
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1For instance, having a rooted directed spanning tree for time-invariant
graph cases and being uniformly connected for time-varying graph cases.

One of the distance-based formation control algorithms
is a gradient-based control law formed from a potential
function reflecting the error between the actual inter-agent
distances and the desired inter-agent distances, where the
local asymptotic stability under the control law is explored
in [4] and [12]. With the same control law used in [4],
the results in [8] and [9] show that, for any four-agent
formation that is represented by the four-vertex complete
graph K4 in the two-dimensional space and thus termed a K4
formation, any rectangular incorrect equilibrium formation2

is unstable. In the case of a general K4 formation in the three-
dimensional space, i.e., the tetrahedral formation, it is shown
that any incorrect equilibrium formation is unstable [10].
Furthermore, [11] shows more generalized results such that,
for the case of formations in an arbitrarily finite dimensional
space with a realizable formation shape, any degenerate3

incorrect equilibrium formation is unstable.
Nevertheless, it is still not known whether the gradient

control law may have a locally attractive incorrect equilib-
rium formation which could be nondegenerate for general
cases, e.g., for a general rather than rectangular K4 formation
in the two-dimensional space. However, numerical simula-
tions show that we can observe the existence of an attractive
incorrect equilibrium formation for general cases under the
gradient control law. For instance, Fig. 1(a) shows conver-
gence to a desired formation shape in the two-dimensional
space with 5-agent system under the gradient control law
proposed in [4], but Fig. 1(b) shows convergence to an
incorrect nondegenerate formation shape from another initial
condition under the same control law.

The example formation used in Fig. 1 is a general for-
mation in two-dimensional space not largely different to a
K4 formation with respect to the number of agents and the
number of edges, and more agents and edges again may
result in a larger number of attractive incorrect equilibrium
formations associated with a single correct equilibrium. On
the other hand a K3 formation, i.e., triangular formation, in
two-dimensional space has only degenerate incorrect equilib-
rium formations, which are unstable from the consequence of
[11]. Consequently a key remaining question in relation is
to establish whether or not there is an attractive incorrect
equilibrium formation for the K4 formation beyond the
results in [8], [9], [13].

2An incorrect equilibrium formation is one where the potential function
has a critical point not corresponding to the correct formation shape.

3By degenerate formation is meant one for which the space spanned by
the vertex positions is of lesser dimension than that of the space in which
the formation is supposed to exist.
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(a) Convergence to a desired formation shape.
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(b) Convergence to an incorrect equilibrium formation.

Fig. 1. The agents are governed by the control law proposed in [4]. The
dotted lines represent the edges, and the square marks denote the final
locations of the agents. The squared inter-agent distances for the desired
formation shape are 10, 4, 5, 10, 41, 5, and 26 for edges {1, 2}, {1, 3}, {1, 4},
{2, 3}, {2, 5}, {3, 4}, and {4, 5}, respectively.

In this paper, rather than dealing with this question we
propose a modified control law to achieve desired formation
shapes for K4 formation in the two-dimensional space. The
proposed control law makes the K4 formation in the two-
dimensional space mimic the tetrahedral formation evolving
in the three-dimensional space, thereby we can use the
characteristics of K4 formation in the three-dimensional
space observed in [10] and [11] so that we can guarantee
almost global convergence to desired formation shapes.

The rest of the paper is organized as follows. In Section II,
we provide background knowledge on K4 formations in
two- and three-dimensional spaces under the conventional
gradient control law. We propose a modified control law in
Section III-A with stability analysis. Simulation results with
the proposed control law are shown in Section IV, and we
summarize the paper in Section V.

II. Background knowledge

In the rest of the paper, we are going to use the following
notation:
• Rn: n-dimensional Euclidean space
• ‖x‖: the Euclidean norm of a vector x
Consider mobile agents that can move on a flat surface

so that their locations can be represented by 2-vectors. We
assume that any two neighboring agents can measure the
relative position between them, but they do not know their
absolute positions. The agents do not need to have the same
coordinate frame. Thus, each agent can measure the relative
positions of its neighbors in its own local coordinate frame.
Under such a description, the agents and the pairs of agents
which are neighbors can be represented by a graph (agents
corresponding to vertices and neighbor pairs corresponding
to edges) which is realized in R2 as a formation. Thus
we introduce relevant notation and terminologies in the
following subsections.

A. Formation graph

Let G denote a graph defined by G = (V , E), where V =

{1, . . . ,N} is the set of all vertices representing the agents,
and E = {. . . , {i, j}, . . .} is the set of all edges representing
some pairs of the vertices. Let pi ∈ R

n denote the position
vector of vertex i. We call p = [p>1 . . . p>N]> ∈ RNn a
realization of G in Rn. A framework is defined by a pair of
graph and its realization, which is denoted by (G, p). Two
realizations p and p′ are said to be congruent if ‖pi − p j‖ =

‖p′i − p′j‖ for all i, j ∈ V .

B. K4 formation in R2

Consider four mobile agents moving on a plane, where
the corresponding formation graph is given by G = (V , E)
with V = {1, 2, 3, 4} and E = {{i, j} | 1 ≤ i < j ≤ 4}. Let pi =

[pix piy]> ∈ R2 denote the position vector of agent i for
all i ∈ V . We call (G, p) a K4 formation in R2 because the
underlying formation graph is the complete graph with four
vertices, and the graph is supposed to be realized in R2.

We assume that the agents are governed by

ṗi = ui, ∀i ∈ V ,

where ui = [uix uiy]> ∈ R2 is the control input for agent i.
Achieving the desired formation shape by distance-based
control means achieving the desired inter-agent distances so
that

‖pi − p j‖ → di j, ∀{i, j} ∈ E .

Also, normally, we need to guarantee that the agents con-
verge to some locations for which the desired inter-agent
distances are satisfied. We assume that the distances di j ∈

R>0, {i, j} ∈ E , are realizable in R2, which means that there
exists a realization p̄ = [p>1 . . . p>4 ]> ∈ R8 such that
‖p̄i − p̄ j‖ = di j for all {i, j} ∈ E .

Note that the realizability of a nondegenerate K4 formation
in R2 with given six distances can be checked by some



triangle inequalities and Cayley-Menger determinant det C,
where

C =


0 d2

12 d2
13 d2

14 1
d2

12 0 d2
23 d2

24 1
d2

13 d2
23 0 d2

34 1
d2

14 d2
24 d2

34 0 1
1 1 1 1 0

 .
Thus, each of the triples (d12, d13, d23), (d12, d14, d24),
(d13, d14, d34), and (d23, d24, d34) has to satisfy the triangle
inequality, and det C must be zero for the realizability of
the K4 formation in R2 [14]. If det C > 0, provided that the
triangle inequalities are satisfied, then the K4 formation is
realizable in R3.

Let v : R8 → R≥0 be a potential function defined by

v(p) =
1
4

∑
{i, j}∈E

(
‖pi − p j‖

2 − d2
i j

)2
, (1)

and consider a control law given by

ṗ = u = −

[
∂v
∂p

]>
, (2)

where u = [u>1 . . . u>4 ]> ∈ R8. Then, we can consider two
equilibrium sets of which the union is the entire equilibrium
set. One is the desired correct equilibrium set Pd defined by

Pd =
{
p ∈ R8

∣∣∣ v(p) = 0
}
,

and the other is the incorrect equilibrium set Pi given by

Pi =

{
p ∈ R8

∣∣∣∣∣ ∂v
∂p

= 0, v(p) , 0
}
.

Thus, Pd and Pi partition the equilibrium set Peq defined by

Peq =

{
p ∈ R8

∣∣∣∣∣ ∂v
∂p

= 0
}
.

The K4 formation in R2 is a particular example of a general
rigid formation in R2. For those general formations, it is
shown in [4] that the negative gradient of a potential function
(which can be extended from (1) for more agents and edges)
guarantees, under a single-integrator model, local asymptotic
stability of the desired formation shape if the desired forma-
tion shape is infinitesimally rigid, and it is further revealed
that such an infinitesimal rigidity condition can be relaxed
to rigidity condition [12]. Thus, we can conclude that Pd is
asymptotically stable under (2).

On the other hand, an example of a K4 formation is
explored in [4] where the desired distances are given by

d12 = 1, d13 =
√

5, d14 = 2, d23 = 2, d24 =
√

5, d34 = 1,

which define a rectangular formation. The paper creates the
impression that there exist incorrect equilibria which may be
attractive under (2), but it is shown in [8] and [9] that actually
this cannot be the case, and the equilibrium in question
is a saddle point. Furthermore, [8] and [9] show that, for
K4 formations in R2, any incorrect equilibrium formation
associated with a rectangular desired formation is unstable
(i.e. is a saddle point or is completely unstable) under (2).

It can be shown that, under (2), p(t) approaches Peq as
t → ∞ from the following argument. Consider v(p) defined
in (1). By taking the derivative of v, we have

v̇ = −

∥∥∥∥∥ ∂v
∂p

∥∥∥∥∥2

≤ 0.

Since v is lower bounded and v̇ is non-positive, v converges to
a constant. Then, from Barbalat’s lemma [15, Lemma 8.2],
we can conclude that v̇ converges to 0 as t → ∞, which
means that p approaches Peq as t → ∞.

From the preceding argument, we can conclude that if Pi
is unstable, then Pd is almost globally attractive in the sense
that, for almost all initial conditions, p(t) approaches Pd as
t → ∞. Moreover, since it is known that p(t) converges to
a point in Pd if p(t) approaches Pd [4], we can conclude
that p(t) almost globally converges to Pd. However, it is
still an open question whether Pi is unstable for general
K4 formations with desired distances corresponding to non-
rectangular formations so the almost global convergence of
p(t) to Pd is still questionable.

Instead of trying to show the instability of incorrect
equilibrium formations of (2), in this paper, we are going to
propose a modified control law to guarantee the almost global
attractiveness of the desired formations by taking advantage
of the properties of K4 formations in R3.

C. K4 formation in R3

Instead of K4 formations in R2, let us temporarily consider
a K4 formation in R3. Some properties of K4 formations in
R3 are going to be used in Section III-B.

Let Pi = [Pix Piy Piz]> ∈ R3. P = [P>1 . . . P>4 ]> ∈ R12.
Analogously to the 2-D K4 formation in Section II-B, we
assume that the agents are governed by

Ṗi = Ui, ∀i ∈ V ,

where Ui = [Uix Uiy Uiz]> ∈ R3 is the control input for
agent i. Let Di j ∈ R>0, {i, j} ∈ E , be the distances induced
from the desired 3-D K4 formation. Let V : R12 → R≥0 be a
potential function defined by

V(P) =
1
4

∑
1≤i< j≤4

(
‖Pi − P j‖

2 − D2
i j

)2
.

Then, consider the following systems:

Ṗ = U = −

[
∂V
∂P

]>
, (3)

where U = [U>1 . . . U>4 ]> ∈ R12.
Lemma 1 ([10], [11]): Let HV (P) denote the Hessian ma-

trix of V(P). For any incorrect equilibrium point P∗ of (3),
HV (P∗) has a negative eigenvalue.

Note that HV in Lemma 1 is the Jacobian matrix of
the right side of (3). Hence, the existence of a negative
eigenvalue of HV at P∗ implies the existence of a positive
eigenvalue of the Jacobian matrix at P∗, which means that
P∗ is an unstable equilibrium point of (3). Also, Lemma 1
means that V does not have a local minimum at any incorrect
equilibrium point of (3).
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Fig. 2. Typical K4 formations: (a) represents the actual 2-D formation
we are handling, and (b) represents the virtual 3-D formation such that the
projection onto the x-y plane is equal to the formation in (a).

III. K4 formation locked on x-y plane

A. Equations of motion and modified control law

In this section, we are considering a K4 formation which
exists in a 2-dimensional ambient space in reality, but one of
the agents is assumed to be in a virtual 3-dimensional space
containing the 2-dimensional space where all other three
agents live. For example, consider the formation illustrated in
Fig. 2(a). Four agents move in the x-y plane, and the motion
of the agents are basically governed by the equations in
Section II. However, we introduce a virtual variable enabling
an agent to be in the virtual 3-dimensional space by treating
the virtual variable as if it is the z coordinate of the position
vector of the agent. Hence, in Fig. 2(b), the actual location
of agent 4 is the location of the vertex denoted by 4, but we
think as if agent 4 is at the location of the vertex denoted
by 4’ so the formation can be treated as a virtual tetrahedron
formation with its base (defined by the plane containing
agents 1,2 and 3) locked on the x-y plane. We assume that the
virtual variable (the z-coordinate of agent 4’ and denoted by
p4z) can be transmitted to the other agents by communication.

We define a new state vector q ∈ R9 by

q =
[
p>1 p>2 p>3 p>4 p4z

]>
=

[
p1x p1y p2x p2y p3x p3y p4x p4y p4z

]>
,

to represent the overall system of the locked tetrahedron for-
mation. Although we are considering the virtual tetrahedron
formation still the ultimate control objective is to achieve
that √

(pix − p jx)2 + (piy − p jy)2 → di j, ∀{i, j} ∈ E . (4)

Equivalently, we want to achieve a desired tetrahedron for-
mation of which the projection onto the x-y plane is the same
as the desired K4 formation mentioned in Section II-B.

This can be done through setting another desired distance
set for the tetrahedron, as follows. Let α > 0 be arbitrary,
and define a tetrahedron formation in R3 with distances Di j

given by

Di j = di j, ∀1 ≤ i < j ≤ 3,

Di4 =

√
d2

i4 + α2, ∀i ∈ {1, 2, 3}.

Now, consider the following potential function:

V̄(q) =
1
4

∑
1≤i< j≤3

[
(pix − p jx)2 + (piy − p jy)2 − D2

i j

]2

+
1
4

∑
1≤i≤3

[
(pix − p4x)2 + (piy − p4y)2 + p2

4z − D2
i4

]2
.

We can observe that if V̄(q) → 0, then we achieve (4), i.e.,
we can achieve the 2-dimensional desired formation shape.

Suppose that p4z is governed by

ṗ4z = u4z, p4z(0) , 0, (5)

and (5) can be updated numerically by agent 4. The initial
condition p4z(0) can be set as an arbitrary nonzero number
(preferably as α). Then, we propose the following control
law:

q̇ =
[
u> u4z

]>
= −

[
∂V̄
∂q

]>
. (6)

Let ei j = (pix− p jx)2 +(piy− p jy)2−D2
i j for all 1 ≤ i < j ≤ 3

and ei4 = (pix−p4x)2+(piy−p4y)2+p2
4z−D2

i4 for all i ∈ {1, 2, 3}.
Then, (6) can be written in detail as

ṗ1 = (p2 − p1)e12 + (p3 − p1)e13 + (p4 − p1)e14,

ṗ2 = (p1 − p2)e12 + (p3 − p2)e23 + (p4 − p2)e24,

ṗ3 = (p1 − p3)e13 + (p2 − p3)e23 + (p4 − p3)e34,

ṗ4 = (p1 − p4)e14 + (p2 − p4)e24 + (p3 − p4)e34,

ṗ4z = (0 − p4z)e14 + (0 − p4z)e24 + (0 − p4z)e34.

Note that, under (6), the actual locations of the agents on
the x-y plane are determined by the equations for ṗ1, . . . , ṗ4.
Therefore, the overall virtual formation can be considered as
a tetrahedron formation evolving in R3 with three vertices
locked on the x-y plane.

Remark 1: In actual implementation of the control law in
(6), observe that each agent can calculate its control input
based on the local measurements. Specifically, ei j is given
by

ei j =

‖pi − p j‖
2 − D2

i j, (1 ≤ i < j ≤ 3),
‖pi − p4‖

2 + p2
4z − D2

i4, ( j = 4),

where the relative position vectors pi − p j, 1 ≤ i < j ≤ 4,
are assumed to be measured by sensors, and p4z is assumed
to be transmitted by communication. Furthermore, for the
relative-position measurements, it is not necessary that each
agent be equipped with an aligned local reference frame with
respect to the x-y plane. In other words, the agents do not
have to share a common sense of the north.

B. Stability analysis

Now we are going to analyze the stability/instability
characteristics of different equilibrium formations of (6).
It is not difficult to show that q(t) finally approaches an
equilibrium point of (6). Thus, whether q(t) approaches an
incorrect equilibrium point depends on the characteristics of
the incorrect equilibria.



Before we go further, we clarify the meaning of congru-
ence. In a slight abuse of terminology, we say P and q defined
in Sections II-C and III-A, respectively, are congruent if we
have that ‖Pi − P j‖ = ‖pi − p j‖ for all 1 ≤ i < j ≤ 3 and that

‖Pi − P4‖ =

√
‖pi − p4‖

2 + p2
4z for all i ∈ {1, 2, 3}. Since q

defines a tetrahedron of which the face defined by vertices
1, 2, and 3 is attached to the x-y plane, such an extension is
reasonable.

Lemma 2: Consider two realizations P ∈ R12 and q ∈
R9 which are congruent. Assume that P and q are critical
points of V and V̄ , respectively. Then, V does not have a
local minimum at P if and only if V̄ does not have a local
minimum at q.

Proof: Suppose that V does not have a local minimum
at P. Then, it must be true that, for any δ > 0, there exists
P′ ∈ {X ∈ R12 | ‖P − X‖ < δ} such that V(P′) < V(P).
Consider arbitrarily small δ̄ > 0. Then there always exists
q′ ∈ {x ∈ R9 | ‖q − x‖ < δ̄} such that V̄(q′) < V̄(q) because
we can choose q′ so that q′ and P′ are congruent and that
V(P′) < V(P) with arbitrarily small δ > 0. Consequently, V̄
does not have a local minimum at q if V does not have a
local minimum at P.

Conversely, suppose that V̄ does not have a local minimum
at q. Then, for any δ̄ > 0, there exists q′ ∈ {x ∈ R9 |

‖q − x‖ < δ̄} such that V̄(q′) < V̄(q). Now, for arbitrarily
small δ > 0, we can always find P′ ∈ {X ∈ R12 | ‖P−X‖ < δ}
such that V(P′) < V(P) from the fact that we can take P′ so
that P′ and q′ are congruent and that V̄(q′) < V̄(q). Thus,
we can conclude that V does not have a local minimum at
P if V̄ does not have a local minimum at q.

Those two arguments above complete the proof.
In addition to Lemma 2, we can more precisely say that

P is a maximizer (minimizer, saddle point, respectively) of
V if and only if q is a maximizer (minimizer, saddle point,
respectively) of V̄ provided that P and q are congruent. Also
such a characteristic implies that P is a critical point of V if
and only if q is a critical point of V̄ .

Recall that, in Lemma 2, q can be viewed as a tetrahedral
formation obtained by locking P on the x-y plane. Thus,
the relationship between V and V̄ in this paper is similar to
the relationship between VN and V in [16]. In the reference
paper, N-agent system evolving in one-dimensional space is
considered, and V in [16] is the reduced potential function
obtained from the nominal potential function VN by assuming
that an agent is fixed at the origin, where VN in [16]
corresponds to the one-dimensional version of V in this
paper.

Theorem 1: Any incorrect equilibrium point of (6) is
unstable.

Proof: To show the instability of an arbitrary incorrect
equilibrium point of (6), we can take an approach showing
that linearization of (6) at the incorrect equilibrium point
has a positive eigenvalue. Meanwhile, the linearization is
equal to the negative Hessian matrix of V̄ . Thus, showing
that the Hessian matrix has a negative eigenvalue at the
incorrect equilibrium point is equal to showing that V̄ does

not have a local minimum at the same point. We know that,
for an incorrect equilibrium point q∗ of (6), we can find an
incorrect equilibrium point P∗ of (3) such that q∗ and P∗

are congruent. Furthermore, we know that V̄ does not have
a local minimum at q∗ if and only if V does not have a
local minimum at P∗ from Lemma 2. Note that HV (P∗) has
a negative eigenvalue from Lemma 1, which means that V
does not have a local minimum at P∗. Therefore, we can
conclude that q∗ is unstable.

On the basis of Theorem 1, we can addresses the following
proposition.

Theorem 2: Under the proposed control law in (6), the
agents achieve the desired 2-D K4 formation on the x-y plane
for almost all initial conditions.

IV. Simulation

Consider a set of desired inter-agent distances defining a
K4 formation in R2 as follows.

d2
12 = 16, d2

13 = 25, d2
14 = 10, d2

23 = 17, d2
24 = 18, d2

34 = 5.
(7)

A representative realization satisfying the distance con-
straints in (7) is given by p̄ = [0 0 4 0 3 4 1 3]>.
Let α = 1. Then, the corresponding distance constraints for
a virtual tetrahedron are given by

D2
12 = 16, D2

13 = 25, D2
14 = 11,

D2
23 = 17, D2

24 = 19, D2
34 = 6.

Then, a simulation for (6) results in Fig. 3. Agents 1
through 3 are randomly located on the x-y plane at the initial
time, and p4z(0) is set to be α. We can observe that the agents
finally achieve the desired formation shape, and the distance
errors converge to 0 as time goes on.

V. Conclusion

In this paper, we proposed a control law to achieve
the desired K4 formation in R2. The proposed control law
guarantees almost global convergence in the sense that the
formation converges to the desired formation shape for
almost all initial conditions. The proposed control law is
one modified from Krick’s control law in [4] with a virtual
coordinate. With the virtual coordinate, the K4 formation in
R2 is treated as a virtual tetrahedron formation locked on
the plane. Then, we take advantage of the properties of K4
formations in R3 that can be found in [10], [11] to prove
the instability of any incorrect equilibrium formation of the
locked tetrahedron formation.

We expect that the proposed variation technique can be
extended to general cases of more than four agents. For
example, a formation of five agents might be treated as a
virtual 4-D formation. Depending on the actual realization
space, the number of necessary virtual coordinates might be
different. Thus, more rigorous verification on the relation-
ships between actual formations and corresponding virtual
formations should be considered.
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Fig. 3. K4 formation with virtual coordinate.
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