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Abstract— In this paper, we present a sub-optimal controller
for semilinear partial differential equations, with partially
known nonlinearities, in the dyadic perturbation observer
(DPO) framework. The dyadic perturbation observer uses a
two-stage perturbation observer to isolate the control input
from the nonlinearities, and to predict the unknown parameters
of the nonlinearities. This allows us to apply well established
tools from linear optimal control theory to the controlled stage
of the DPO. The small gain theorem is used to derive a condition
for the robustness of the closed loop system.

I. INTRODUCTION

In this paper, we are concerned with the boundary control
of systems of semilinear partial differential equations (PDEs)
of the form ẇ(t) = Aw(t) + f(w), Bw(t) = u(t), y(t) =
Cw(t), where w(t) denotes the system state, u(t) is the
control input, and y(t) is the output. The operators A, B
and C are the drift, boundary control, and output operators,
respectively. The nonlinearity f(w) is described as a linear
combination of known basis functions and unknown coeffi-
cients. The specific objective of this paper is to present an
extension, based on the linear quadratic regulator (LQR) the-
ory, of the dyadic perturbation observer (DPO) architecture
developed by the authors in a series of recent papers [12],
[13], [14].

A large body of work on the control of PDE systems
has focussed on approximating the PDE system by ordinary
differential equations (ODEs), and using any of the rich
assortment of techniques available for controlling ODEs [1],
[2], [4]. More recently, a number of control techniques have
emerged which use Lyapunov-based approaches to derive
controllers for PDEs directly, without resorting to finite order
approximations of the PDE [5], [6], [7], [10], [16], [17], [18].
These methods tend to do away with some limitations of the
ODE-based approach, such as the occasional necessity for
large order approximations, and the risk of spillover insta-
bilities. The DPO control architecture is also PDE-based,
but is designed largely in the operator-theoretic framework.
The motivation for the DPO framework lies in the need
to accommodate unmatched nonlinearities and disturbances,
such as those which arise routinely in semilinear boundary
control systems.

In this paper, we investigate the inclusion of optimality in
the DPO framework. We use the LQR theory in an infinite
dimension setting (Chapter 6, [3]) to aid the design of the
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Fig. 1. A schematic of the DPO architecture.

tracking law. This seemingly straight-forward idea opens up
the possibility of achieving (sub-) optimality in the presence
of distributed nonlinearities which could be unmatched to
the control signal.

The DPO architecture, shown in Fig. 1, uses the linear
term Aw(t) as a pivot and decouples the system into two
components, or halves. The homogeneous half contains the
tracking control signal (i.e., the signal based on the tracking
error) but not the nonlinearity, while the particular half
contains the nonlinearity but not the tracking control signal.
The control signal itself is designed to ensure that the output
of the homogeneous half tracks the reference signal minus
the output of the particular half, ensuring that the tracking
objective is met. The small gain theorem from robust control
is used to prove the stability and the robustness of the closed
loop system in the sense of L∞. The analysis is similar
to [11], although the key difference vis-a-vis [11] is the
unmatched nature of the nonlinearities.

It must be noted that the nature of the DPO architecture
prevents us from applying the exact solution of the optimal
control problem as the control signal. Instead, we approxi-
mate the optimal controller by a linear filter, which allows us
to prove the well-posedness of the closed-loop system and
its stability. The sub-optimality arises, in particular, due to
the tracking objective of the homogeneous half consisting of
the output of the particular half.

The paper is organized as follows. We introduce the
mathematical preliminaries in Section II, and the problem
formulation in Section III. The design of the DPO-based
sub-optimal controller is presented in Section IV, and the
stability analysis in Section V.



II. PRELIMINARIES

Definition 1 (L∞ and L1 norms): Given q(t) ∈ Rn with
components qi(t) (1 ≤ i ≤ n), we define

‖q(t)‖∞ = max
1≤i≤n

|qi(t)|, ‖q‖L∞ = ess sup
t≥0
‖q(t)‖∞

‖q‖L∞,τ = ess sup
0≤t≤τ

‖q(t)‖∞

The 1-norm of a matrix F : Rm → Rn is defined as ‖F‖1 =
sup‖q‖∞=1 ‖Fq‖∞, q ∈ Rm. If ‖q‖L∞ < ∞, then we
denote q ∈ Lm∞. The L1 norm of a linear operator F : Lm∞ 7→
Ln∞ is defined as ‖F‖L1 = sup‖q‖L∞=1 ‖Fq‖L∞ , q ∈ Lm∞

The spatial domain of interest in this paper is the closed in-
terval [0, L] for some finite L > 0. Let Z = L2([0, L], Rn),
n ≥ 1, denote the standard Hilbert space (in the spatial
domain) with the inner product 〈z1, z2〉Z =

∫ L
0
z>1 z2dx

for any z1, z2 ∈ Z. The standard norm on Z is given by

‖z‖Z =
√∫ L

0
z>z dx.

Definition 2: We define the space W consisting of vari-
ables w(t, x) ∈ Rn, with x ∈ [0, L] and t ∈ R+, satisfying
w(t) , w(t, ·) ∈ Z, ∀ t ≥ 0 and ess supt≥0 ‖w(t)‖Z <
∞. More formally, W = L∞(R+, L2([0, L], Rn)). The
space W is a Banach space (and not necessarily a Hilbert
space) with the norm ‖w‖W = ess supt≥0 ‖w(t)‖Z, and the
truncated norm given by ‖w‖W,τ = ess sup0≤t≤τ ‖w(t)‖Z.

Definition 3: The domain of an operator V is denoted by
D(V). If V : X → Y where X and Y are Banach spaces,
(obviously, D(V) ⊂ X), then we denote the induced norm
of V by ‖V‖i.

In this paper, we will encounter operators which map
Rm → Z, with the ∞ norm used for Rm. An expression for
the induced norm of such operators, denoted by ‖ · ‖(Rm,Z),
may be found in [9].

Definition 4 ([15], Definition 1.1, Ch. 6): Consider a
system ẇ = Aw + f(t, w), w(t = 0) = w0 ∈ Z, where A
is the infinitesimal generator of a C0 semigroup T (t). The
mild solution w(t) is given by

w(t) = T (t)w0 +

∫ t

0

T (t− τ)f(τ, w(τ)) dτ, (1)

Definition 5 (Convolution): Given a semigroup T (t), we
define the operator T ? (t) : W 7→ W so that ∀ f ∈ W and
∀ t > 0, T ? (t)f(t, w(t)) =

∫ t
0
T (t − τ)f(τ, w(τ)) dτ. We

further define the induced norm ‖T ∗‖i , ess sup(t≥0) ‖T ?
(t)‖i

We recall the following result from Pazy [15] for solutions
of initial value problems in Definition 4.

Theorem 1 (Theorems 6.1.4, 6.1.5, [15]): Let A be the
infinitesimal generator of a C0 semigroup T (t) on the Hilbert
space Z. If f : [0, T ]×Z→ Z is continuously differentiable
with respect to both arguments, for T > 0, then the mild
solution (1) is a classical solution of the initial value problem
in Definition 4 for t ∈ [0, T ]. If the solution exists only up
to Tmax < T , then ‖w(t)‖Z →∞ as t→ Tmax.

Finally, we define the projection operator, following [8],
which will be used for constructing the adaptive law in the

paper. Let π : Rk → R be defined by

π(α) ≡ π(α;K, ε) =
〈α, α〉 −K2

εK2
, α ∈ Rk

where K ∈ R+. The number ε ∈ R+ is chosen to be
arbitrarily small. The Fréchet derivative of π at α1 ∈ Rk
is denoted by π′(α1) ∈ Rk and it satisfies

〈π′(α1), α2〉 =
2〈α1, α2〉
εK2

∀α2 ∈ Rk (2)

Definition 6: The projection operator Proj : Rk ×Rk →
Rk is defined as

Proj(α1, α2)=


α2, if π(α1) ≤ 0 or 〈π′(α1), α2〉≤0

α2− π′(α1)
‖π′(α1)‖2×

〈
π′(α1)
‖π′(α1)‖2 , α2

〉
π(α1),

otherwise
(3)

The following property of the projection operator will be
invoked in the proof of convergence of the observation error.
Let Ω0 and Ω1 denote the convex sets satisfying

Ω0 = {α | π(α) ≤ 0} , Ω1 = {α | π(α) ≤ 1}

The following result has been proved in [8]:
Lemma 1: Suppose that α∗1 ∈ Ω0. Then, for all

α1, α2 ∈ Rk, (α1 − α∗1) (Proj(α1, α2)− α2) ≤ 0. More-
over, the solution of the initial value problem α̇1 =
Proj (α1, α2) , α1(0) = α10, has the property that if α10 ∈
Ω1, then α1(t) ∈ Ω1 for all t.

III. PROBLEM FORMULATION

This paper is concerned with boundary control of systems
of semilinear partial differential equations described by

ẇ(t) = Aw(t) + f(w), Bw(t) = u(t), y(t) = Cw(t) (4)

where w(t) ∈ Z ⊆ L2([0, L], Rn) and u(t) ∈ U . The
operator C is bounded. We consider the abstract Cauchy
problem

v̇ = Av + Aβu− βu̇+ f(v + βu), v(0) = v0

y(t) = C(v + βu) (5)

where Az = Az ∀ z ∈ Z, D(A) ⊂ D(A) ∩ ker(B) and
Bβu = u. The operators β and Aβ are bounded [3]. The
control objective is to design u(t) so that the output y(t)
tracks a reference signal r(t), and the resulting closed-loop
system is stable and robust (in a sense which will be made
precise later).

Assumption 1: The nonlinearity can be expressed as a
linear combination of known basis functions with unknown
weights: f(w) =

∑N
i=1 αiφi(w), where φi(w) are C1

functions of w, and αi ∈ Rn satisfy |αi,j | < να for all
i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , n}. Note that the
analysis in the paper does not require that αi be a constant
(see [13]). The assumption does simplify the presentation.



Let us reformulate (5) on an extended space Ze = U ⊕Z:

ẇe(t)=

[
0 0
Aβ A

]
we(t)+

[
1
−β

]
ū(t) +

[
0

f(we)

]
,

we(0)=

[
we0,1
we0,2

]
(6)

which we denote succinctly as ẇe(t) = Aewe(t)+Beū(t)+
fe(we). The output is given by y(t) = Cewe(t) =
C[β In]we(t). where In is the n× n identity matrix. Note
that the operators Be and Ce are bounded.

Assumption 2: The permissible initial conditions are re-
stricted by ‖we0‖Ze < ρ0, and we0 ∈ D(A).

Assumption 3: The system (Ae, Be) is exponentially sta-
bilizable.

Definition 7: Corresponding to the space Ze, we define
the Banach space We = L∞(R+, Ze).

Lemma 2: For every ρ > 0, there exist positive constants
νφ,1(ρ) and νφ,2(ρ) such that if ‖we(t)‖Ze < ρ for some
t > 0, then ‖φj(w)‖Z ≤ νφ,1(ρ)‖we(t)‖Ze + νφ,2(ρ), ∀ j.
In general, νφ,1(ρ) and νφ,2(ρ) are class K functions of
ρ. It follows that if ‖we‖We,τ < ρ for some τ > 0, then
‖f(we)‖W,τ ≤ ν1(ρ)‖we‖We,τ + ν2(ρ), for some constants
ν1(ρ) and ν2(ρ).

IV. CONTROL DESIGN

A. Optimal Control of a Subsystem

Consider the system

ẇeh(t) = Aeweh(t) + Beūe(t), yh = Ceweh (7)

which is found by neglecting the nonlinearity in (6). Suppose
that we have to design an optimal controller to ensure that
yh tracks a reference signal σ(t). To facilitate the design of
an optimal control law, we define an extended state space
Zf = Ze ⊕ R, and define

ẇf (t)=

[
Ae 0
0 0

]
wf (t)+

[
Be
0

]
ūe(t), wf (0)=

[
weh,0

1

]
(8)

The control problem is stated as follows:

min
ūe

∫ T

0

(
〈wf (t), Q(t)wf (t)〉+ 〈ūe(t), Rūe(t)〉

)
dt

Q(t) = [Ce − σ(t)]∗[Ce − σ(t)]; (9)
R > 0 is coercive

The control design mirrors the approach in ([3], Chapter 6).
Ideally, we would like T → ∞ in (9). However, since the
reference signal σ(t) is arbitrary, the optimal cost will be
infinite as T →∞.

The solution to (9) is given by

ūe(t) = −R−1Be∗ (Π(t)we(t) + q(t)) (10)

where Π(t) is the solution of the Riccati equation

d

dt
(z2, Π(t)z1) = −〈z2, Π(t)Aez1〉 − 〈Aez2, Π(t)z1〉

+〈Cez1, Cez2〉+ 〈Π(t)BeR−1Be∗Π(t)z1, z2〉 (11)
Π(T ) = 0, z1, z2 ∈ D(Ae)

and q(t) is the mild solution of

q̇(t) = −
(
Ae − BeR−1Be ∗Π(t)

)∗
q(t)+Ce∗σ(t), q(T ) = 0

(12)
It is evident that the problem has to be restricted to

a finite horizon setup due to σ(t); the first part of the
control signal (10) is identical to the problem where σ ≡ 0.
Therefore, we set Π(t) ≡ Π, the (steady state) solution to
the infinite horizon Riccati equation. This can be justified if
T is sufficiently large. This allows us to write the control
signal as

ūe(t) = −R−1Be∗Πweh(t)−R−1Be∗q(t) (13)
q̇(t)=−

(
Ae−BeR−1Be ∗Π

)∗
q(t) + Ce∗σ(t), q(T )=0 (14)

Definition 8: The operator Aem = Ae − BeR−1Be∗Π
generates an exponentially stable semigroup T (t) (as a
consequence of Assumption 3), i.e., there exist constants
M, β > 0 such that ‖T (t)‖i ≤ Me−βt. Moreover, ‖T ∗ ‖i
is bounded.

The equation for the adjoint state q(t) is considerably
challenging to solve when σ(t) is not known a priori.
This is a well-known problem in optimal tracking and there
are no known exact analytical solutions to the problem.
Rather than prescribing a solution based on nonlinear model
predictive control, a natural option in this scenario, we make
an assumption which compromises the optimality of the
controller, but ensures that no future values of the states are
needed.

Assumption 4: For a known σ(t), the control signal can
be represented approximately as

ūe(t) = −R−1Be∗Πweh(t)−HCp(t),

ṗ(t) = HAp(t) +HBσ(t), p(0) = p0 ∈ Rnp

where HA ∈ Rnp×np is Hurwitz, and HB , H
>
C ∈ Rnp . All

of HA, HB and HC may depend on r.
The motivation for Assumption 4 is that the adjoint state
evolves on the stable manifold of the combined system-
adjoint dynamics, and the stable eigenvalues are precisely
those of Aem.

B. Sub-Optimal Control of the Original System

Based on the analysis in the previous section, we propose
the following control law for the system (6):

ū(t) = −R−1Be∗Π︸ ︷︷ ︸
Kw

we(t)−HCp(t) (15)

ṗ(t) = HAp(t) +HBσ(t), p(0) = p0 (16)

The term σ(t), on which p(t) depends, will be defined
presently. The system (6) can now be written as

ẇe(t) = Aemwe(t)− BeHCp(t) + fe(we(t)) (17)

Using the linear term as a pivot, we decompose the system
in (6) into two sub-systems

ẇep = Aemwep + fe(we), yp = Cewep (18)
ẇeh = Aemweh − BeHCp(t), yh = Ceweh (19)



The two systems (18) and (19) are referred to as the
particular and homogeneous halves, respectively. In the next
section, we will derive an observer for estimating the states;
for now, we use (18) and (19) to investigate tracking.

We immediately note that (19) is identical to (7). If we
choose σ(t) = r(t) − yp(t), it is evident that we have
basically optimized the control input and obtained guaranteed
bounds on the tracking error y(t)− r(t) = yh(t)− σ(t). In
practice, we will choose

σ(t) = r(t)− ŷp(t)

where ŷp(t) is the output of an observer which will be
designed presently (see (21)). The next assumption asserts
the existence of a Lyapunov function corresponding to the
generator Am, which we need for constructing the observer.

Assumption 5: There exists a self-adjoint coercive opera-
tor P > 0 and a constant λP > 0 such that ∀t,

〈Aemz(t),Pz(t)〉Z+〈Pz(t),Aemz(t)〉Z ≤ −λP〈z(t),Pz(t)〉Z,
∀ z(t) ∈ D(Aem) (20)

C. Observer Design

We use the symbol “∧” to denote observer states, and the
subscripts p and h to denote states of the particular and the
homogeneous halves, respectively. The dynamics of the two
halves are given by

˙̂wep=Aemŵep +

[
0∑N

i=1 α̂i(t)φi(w
e)

]
, ŷp = Ceŵep (21)

˙̂weh=Aemŵeh − BeHCp(t), ŷh = Ceŵeh (22)

with the initial conditions at t = 0 set to ŵeh(0) = we(0)
and ŵep(0) = 0. The predicted values α̂i(t) are found using
the projection operator (see [8], [11] for details).

˙̂αi,j(t) = γ Proj
(
α̂i,j , −〈Pw̃e(t), [0 In]>φj(w)ei〉Z

)
,

|α̂i,j(t)| < να(1 + ε) (23)

where ε ∈ R+ is arbitrarily small; w̃e = ŵep + ŵeh − we;
α̂i,j (1 ≤ i ≤ n) is the jth component of α̂i, ei denotes the
ith column of the n × n identity matrix, and γ > 0 is the
adaptation gain.

In summary, the closed-loop system consists of the orig-
inal system (6), together with the controller (15), and the
dyadic observer (21), (22) and (23).

V. CLOSED-LOOP STABILITY ANALYSIS

A. Observer Error Regulation

We first show that the observer states ŵeh and ŵep converge
to wep and weh, respectively. Let ŵe = ŵeh + ŵep, and let
(̃·) = (̂·) − (·) denote the error between predicted and the
actual terms.

From (17), (21) and (22), the observation error dynamics
are given by

˙̃we = Aemw̃e +

[
0
In

] N∑
i=1

α̃i(t)φi(w
e) (24)

Lemma 3: Suppose that ‖we‖Ze,t < ρw for some constant
ρw > 0. Then, the observation error dynamics (24) are
uniformly bounded, i.e., ‖w̃e(t)‖Ze is uniformly bounded.
Moreover, the bound can be made arbitrarily small by
increasing γ.

Proof: We consider the Lyapunov function

V (t) = 〈w̃e(t), Pw̃e(t)〉+
1

γ

N∑
i=1

α̃>i α̃i(t)

Differentiating the Lyapunov function gives

V̇ (t) = 〈Pw̃e, Aemw̃e〉+ 〈Aemw̃e, Pw̃e〉

+2〈Pw̃e, [0 In]>
N∑
i=1

α̃i(t)φi(w
e)〉+ 1

γ

N∑
i=1

α̃i(t)
> ˙̂αi(t)

Using the properties of the projection operator in Lemma 1
and Assumption 5, it follows that

V̇ ≤ −λp〈w̃e, Pw̃e〉 (25)

Using Barbalat’s lemma, and the fact that P is coercive, we
deduce that ‖w̃e‖Ze → 0. Furthermore, we can write (25) as
V̇ ≤ −λpV +

λp

γ

∑N
i=1 α̃i(t)

>α̃i(t). Since ‖we‖Ze < ρ, and
α̃i is bounded, it follows that there exists a constant µp such
that V (t) ≤ µp

γ
e−λpt. Using the coercivity of P , we deduce

that ‖w̃e(t)‖Ze ≤ νp√
γ , where the constant νp depends on P

and µp. This completes the proof. �
Lemma 4: The observation errors w̃p and w̃h are uni-

formly bounded, and can be made arbitrarily small by
increasing γ.

Proof: The observation error dynamics of the homogeneous
half are given by ˙̃weh = Aemw̃eh. It is obvious that w̃eh(t) →
0 exponentially fast (in the sense of the Ze norm). The
boundedness of w̃ep follows from Lemma 3 and the triangle
inequality. �

B. Error and Control Boundedness

Lemma 5: Suppose that ‖we‖We,t ≤ ρw for some ρw > 0.
Then, there exist constants δ0 and δ1 such that ‖ŷp‖L∞,t ≤
δ0 + δ1‖we‖We,t.

Proof: From (21), we get

ŵep(t) = T ? (t)

([
0∑N

i=1 α̂i(t)φi(w)

])
Taking the truncated We norm of both sides,
and using Lemma 2, gives ‖ŵep‖We,t ≤ ‖T ∗
‖i (ν1(ρw)‖we‖We,t + ν2(ρw)) . Since Ce is bounded, there
exists a constant K such that |yp(t)| ≤ K‖ŵep(t)‖We . This
leads to ‖ŷp‖L∞,t ≤ K‖T ∗‖i (ν1(ρw)‖we‖We,t + ν2(ρw)) .
Set δ0 = K‖T ∗ ‖iν2(ρw) and δ1 = K‖T ∗ ‖iν1(ρw). This
completes the proof. �

To prove that the closed-loop system is well-posed, we
construct the augmented vectorwe = [we, ŵep, ŵ

e
h, p(t)]

> ∈



V = Ze × Ze × Ze ×Rnp . The dynamics of we is given by

ẇe(t) = Āewe + f̄(α̂(t), w(t), r(t)) (26)
we(0) = ŵeh = we0, ŵ

e
p(0) = 0, p(0) = p0

Ā =


Aem 0 0 −Bekr
0 Aem 0 0
0 0 Aem −Bekr
0 −HB 0 HA


where the exogenous signal α̂(t) is known to be C1 in time.
Therefore, it can be checked readily that f̄(·) function of its
arguments. Furthermore, the operator Āe is the infinitesimal
generator of a semigroup. We state the following result
without proof, but as a direct application of Thm. 1.

Lemma 6: The system (26) has a unique classical solution
we(t) for t ∈ [0, Tmax] for some Tmax > 0. Moreover, if
Tmax < T , then limt→Tmax

‖we(t)‖V →∞.
We will now prove that the control input ū(t), given

by (15) and (16), is bounded. Let us denote the second
term in the control signal (15) by ūr(t) = −HCp(t). Let
H(s) = HC(sI − HA)HB denote the transfer function
between Ur(s) = HCp(t) and (R(s)− Ŷp(s)).

Lemma 7: Let ‖we‖We,t < ρw for some t and ρw > 0.
Then, the control input ū(t) is bounded and a C1 function
of time. Moreover, there exist constants δiw ≡ δiw(H(s), ρ),
δir ≡ δir(H(s), ρ) and δiu ≡ δiu(H(s), ρ) for i = 0, 1 such
that ‖ur‖L∞,τ ≤ δ0w‖we‖W,τ + δ0r‖r‖L∞,τ + δ0u.

Proof: The control input ū(t) = −Kwwe(t) − Beūr(t).
Since the operators Kw and Be are bounded, it follows
from Lemma 6 that ū(t) is C1 in time. The second term
of the control ū(t) is found as the output of (16), where
p(t) is C1 function of time (from Lemma 6). Thus, ū(t)
is C1 function of time. Taking the Laplace transform of
(16) gives U(s) = H(s)(R(s) − Ŷp(s)), and it follows
that ‖ūr‖L∞,τ ≤ ‖H(s)‖L1

(‖r‖L∞ + ‖ŷp‖L∞,τ ), where
τ < T , the maximum interval for the existence of the
classical solution in Lemma 6. This completes the proof. The
constants δ0(·) in the statement of the result can be found
readily from the above expressions in terms of ‖H(s)‖L1

and using Lemma 5. �
We are now ready to prove the stability of the complete

closed-loop system, in the sense of W boundedness of
signals, using the following small gain.

Assumption 6 (Small-gain condition): We assume that
there exists a constant ρw, an arbitrarily small εs > 0, and a
stable strictly proper H(s) such that the following inequality
is satisfied:
Mρ0 + ‖T ∗ ‖i(τ)(ν2(ρw)+δ0r‖r‖L∞ +δ0u)

1− ‖T ∗ ‖i(τ)(ν1(ρw) + ‖Be‖i(δ0w)
≤ ρ− εs

where the constants have been defined in Lemmas 2 and 7.
In the small gain condition, the constants δi(·) were derived
in Lemma 7, while νi(ρ) were defined in Lemma 2.

Theorem 2: The closed-loop system (17), (21), (22), (23),
(15) and (16) is bounded-input-bounded-state stable in the
sense of L∞ if Assumption 6 is satisfied. Moreover, the
solution exists for all time.

Proof: We will prove the result by contradiction. Suppose that
‖we(τ)‖Ze = ρw for some τ < Tmax, and ‖w(t)‖Ze < ρw
for all t < τ . The solution to (17) is given by

we(t) = T (t)we0 + T ? (t) (Beū+ [0 f(w)])

Taking the We norm of both sides, we get

‖we‖We,τ ≤M‖we0‖Ze + ‖T ∗ ‖i
(
ν1(ρw)‖w‖We,τ

+ν2(ρw) + ‖Be‖i(δ0w‖we‖We,τ + δ0r‖r‖L∞ + δ0u)

)
(27)

Isolating ‖we‖We,τ on the left hand side, we get

‖we‖We,τ ≤
Mρ0+‖T ∗ ‖i(τ)(ν2(ρw)+δ0r‖r‖L∞ + δ0u)

1− ‖T ∗ ‖i(τ)(ν1(ρw) + ‖Be‖i(δ0w)
< ρw − εs
which contradicts our claim that ‖we‖We,τ = ρw. Thus,
‖we‖We,τ < ρw. This bound on we automatically translates
into a similar bound on the other states, viz., ŵep, ŵeh and
p(t). It thus follows from Thm 1 that Tmax = T because of
the boundedness of the states. Notice that Tmax would be
infinite if the problem is posed on an infinite time interval.
This completes the proof. �

C. Closed Loop System in the Boundary Control Form

We link up the dynamics on the extended space Ze with
the dynamics on Z and the boundary control system. We
note that the dynamics on Z have a classical solution (v(t),
v̂(·)(t)) which is directly related to that in Ze.

We can view Aem and Be as matrix operators

Aem =

[
Aem,11 Aem,12

Aem,21 Aem,22

]
, Be =

[
1
−β

]
Consider the systems (4), (5) and (6), together with the

control input given by u̇ = ū from (15). Since we have
proved in Lemma 7 that u̇ = ū is C1 in time, it follows
that u(t) is C2 in time. This allows us to use ([3], Theorem
3.3.4) to state the following result.

Lemma 8: Consider the abstract Cauchy equation for open
loop system (5) with u(t) found using (15). If v0 ∈ D(A)
and u ∈ C2([0, T ]; U), then (6) with we0,1 = u(0), we0,2 =
v̂h(0), and ū = u̇ has a unique classical solution we(t) =
[u(t), v(t)]> for t ∈ [0, T ], where v(t) is the classical
solution of (5). Furthermore, if w0 = v0 + βu(0), then the
classical solution of (4) is given by w(t) = [β In]we(t).

Lemma 8 establishes that the system (4) with (15) is
identical to (17). This analogy allows us to construct the
boundary form for the homogeneous and particular halves:

˙̂wh = Aŵh, Bŵh = ûh
˙̂uh = (Aem,11 −Aem,12β)ûh +Aem,12ŵh −HCp(t)(28)

˙̂wp = Aŵp +

N∑
i=1

α̂(t)φ(w), Bŵp = ûp

˙̂up = (Aem,11 −Aem,12β)ûp +Aem,12ŵp (29)

This form of the controller is different from the original
DPO architecture as follows. In the original DPO, the control



signal was generated entirely in the homogeneous half and
consisted of just ūr(t) in (15). On the other hand, in the
current system, it is generated partly in the original system
itself (via the feedback term −Kwwe in (15)), and partly
designed for the homogeneous half (the term ur(t)). The
modified DPO architecture thus provides a rigorous way
to inject stabilizing feedback into the system. At the same
time, the tracking objective is formulated entirely in the
homogeneous half in the original as well as the modified
architectures, and this forms the basis for isolating the
nonlinearity from the tracking objective.

VI. SIMULATION

Consider the unstable forced wave equation

θ̈(t, x)− 0.02θ̇xx(t, x)− θxx(t, x) = (5 + α) θ(t, x)(30)

θx(t, 1) = 0, θ(t, 0) = u(t), y(t) =

∫ 1

0

θ(t, x) dx

where the value of α = 0.6 is assumed to be unknown
to the controller, and α ∈ [−2, 2] for the purpose of
designing the projection law. We note that the uncontrolled
system is unstable for α ≥ −2.5. For designing the LQR,
we choose the state-dependent part of the cost function as
J1 =

∫∞
0

∫ 1

0

(
˙̂
θ2
h + θ̂2

x,h

)
dx dt.

We design the DPO and the controller for the purpose
of simulation in the finite dimensional space. We write
θ =

∑N
i ηi(t)ψi(x), where ψi(x) are chosen to be the

mode shapes of the unforced wave equation. We choose
the operator βu = u, Aβ = 0, in (5), which allows us to
write the finite dimensional system for ηi(t) using Galerkin’s
method as η̇ = Aη + Bu, where where u = ü and
η = [η>, u, η̇>, u̇]> . The cost function for LQR is chosen
as J = 20 J1 +

∫∞
0
u2 dt. The DPO is designed for the re-

sulting finite dimensional system exactly as described in the
paper. Simulation results in Figs. 2(a) and (b), obtained by
approximating the system with N = 5 modes, demonstrate
that the steady-state tracking error is negligible, and that
transient response characteristics are uniform with respect
to the initial condition and the reference input.
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Fig. 2. The optimized DPO illustrated for two reference inputs.

VII. CONCLUSION

We derived an LQR-based tracking control law in the DPO
framework for a class of semilinear partial differential equa-
tions. The LQR-based law was found as an approximation to

a time-varying optimal control law, in the dyadic perturbation
observer framework. The closed-loop stability was proved in
the bounded-input-bounded-ouput sense using the small gain
theorem. The DPO architecture was modified in the process,
with the addition of a stabilizing feedback term. Future work
is expected to refine the optimal law by determining the most
suitable filter-based approximation to the adjoint equation.
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