
Real-time FPGA Implementation of Direct MPC for Power Electronics

Bartolomeo Stellato and Paul J. Goulart

Abstract— Common approaches for direct model predic-
tive control (MPC) for current reference tracking in power
electronics suffer from the high computational complexity
encountered when solving integer optimal control problems
over long prediction horizons. Recently, an alternative method
based on approximate dynamic programming showed that it is
possible to reduce the computational burden enabling sampling
times under 25µs by shortening the MPC horizon to a very
small number of stages while improving the overall controller
performance. In this paper we implemented this new approach
on a small size FPGA and validated it on a variable speed
drive system with a three-level voltage source converter. Time
measurements showed that only 5.76µs are required to run
our algorithm for horizon N = 1 and 17.27µs for N = 2
while outperforming state of the art approaches with much
longer horizons in terms of currents distortion and switching
frequency. To the authors’ knowledge, this is the first time
direct MPC for current control has been implemented on an
FPGA solving the integer optimization problem in real-time
and achieving comparable performance to formulations with
long prediction horizons.

I. INTRODUCTION

Among the control strategies adopted in power electronics,
model predictive control (MPC) [1] has recently gained
popularity due to its various advantages [2]. MPC has been
shown to outperform traditional control methods because of
its ease in handling time-domain constraint specifications and
its wide applicability to several power systems topologies and
operating conditions compared to traditional approaches.

Direct (finite control set) MPC [3] tackles both the control
and modulation problems in a single computational stage
where the manipulated variables are the discrete switch
positions applied to the converter without the need of a
modulator. However, the resulting optimization problem is an
integer program that is provably NP-hard [4] to solve. In [5]
and [6] the authors propose various means of reducing the
computational burden of direct MPC by efficiently solving
the optimization problem using the sphere decoding [7] al-
gorithm. Although this method appears promising relating to
previous work, the computation time required to perform the
sphere decoding algorithm for long horizons (i.e. N = 10),
is still far slower than the sampling time typically required,
i.e. Ts = 25µs.

In a recent approach described in [8] and [9] the authors
address the computational issues of direct MPC by casting
the problem in the framework of approximate dynamic
programming (ADP) [10]. The infinite horizon value function
is approximated using the approach in [11] and [12] by

This work was supported by the People Programme (Marie Curie Actions)
of the European Unions Seventh Framework Programme (FP7/2007-2013)
under REA grant agreement no 607957 (TEMPO).

B. Stellato and P. J. Goulart are with the University of Oxford,
Parks Road, Oxford, OX1 3PJ, U.K. {bartolomeo.stellato,
paul.goulart}@eng.ox.ac.uk

solving a semidefinite program (SDP) [13] offline. In this
way the controller horizon can be shorten by applying the
estimated tail cost to the last stage while keeping good
control performance. Closed loop simulations [8], [9] showed
that with the ADP based approach, even short prediction
horizons give better performance than the approach in [5]
and [6] with much longer planning horizons.

In this work we implemented the ADP based approach
on a small size Xilinx Zynq FPGA (xc7z020) in fixed-point
arithmetic and verified its performance with hardware in the
loop (HIL) tests in both steady state and transients. As a case
study, we considered a variable-speed drive system consisting
of a three-level neutral point clamped voltage source inverter
connected to a medium-voltage induction machine. The plant
is modeled as a linear system with a switched three-phase
input with equal switching steps for all phases.

The results showed almost identical performance to the
closed-loop simulations in [8] and [9] and very fast compu-
tation times allowing us to comfortably run our controller
within the 25µs sampling time.

The remainder of the paper is organized as follows. In
Section II we describe the drive system case study. In
Section III the direct MPC problem is derived. Section IV
the physical model used. In Section V we briefly present
closed-loop simulation results from [8], [9] to characterize
the achievable performance of the hardware implementation.
In Section VI we describe the hardware setup, the algorithm
and all the FPGA implementation details. In Section VII HIL
tests are performed in steady state and transients operation.
Finally, we provide conclusions in Section VIII.

In this work we use normalized quantities by adopting the
per unit system (pu). The time scale t is also normalized
using the base angular velocity ωb that in this case is
2π · 50 rad/s.

II. DRIVE SYSTEM CASE STUDY

In this work we consider a variable speed drive system
consisting of a three-level neutral point clamped (NPC) volt-
age source inverter driving a medium-voltage (MV) induction
machine; see [9]. The total dc-link voltage Vdc is assumed
to be constant and the neutral point potential N fixed.

We define the switch positions in the three-phase
legs as integer input variables usw =

[
ua ub uc

]>
with

ua, ub, uc ∈ {−1, 0, 1}. The model of the drive and the
induction motor can be described in terms of the stator
currents is and the rotor fluxes ψr in the αβ plane using the
following discrete-time linear time invariant (LTI) system

xph(k + 1) = Aphxph(k) +Bphusw(k)

yph(k) = Cphxph(k),
(1)



where the state vector is xph =
[
is,α is,β ψr,α ψr,β

]>
and

the output vector is taken as the stator current, i.e. yph = is.
The sampling time is Ts = 25µs. See [9] for a detailed
derivation.

III. MODEL PREDICTIVE CURRENT CONTROL

A. Problem Description
Our control scheme must address two conflicting objec-

tives simultaneously. On the one hand, the distortion of the
stator currents is corresponds to ripples in the torque of the
motor that are the main source of mechanical stress on the
load and the bearings. In order to reduce damage to the
machine and the load, the distortion of stator currents must
be kept as low as possible. On the other hand, high frequency
switching of the inputs usw produces high power losses
and stress on the physical devices. To reduce the energy
needed and to preserve the lifespan of the components, we
therefore should minimize the switching frequency of the
integer inputs.

We measure the current distortion via the total harmonic
distortion (THD) that can be minimized by reducing the
ripples in the produced currents [9]. Given the ideal reference
stator sinusoids i∗s in the αβ plane, the ripples can be
obtained as the error signal: e = is − i∗s . Thus, minimiz-
ing the 2-norm of e will minimize the THD. We include
the reference currents as two additional purely oscillating
uncontrollable states xosc = i∗s within our model dynamics.

In order to avoid the high computational and storage
cost involved in computing online the switching frequency
estimate defined as a finite impulse response (FIR) filter with
a large time window, we approximate it using an infinite
impulse response filter (IIR) modeled as an LTI system;
see [9]. Let us define three binary phase inputs denoting
the phase switch position changes:

p(k) =
[
pa(k) pb(k) pc(k)

]> ∈ {0, 1}3, (2)

with ps(k) = ‖us(k)− us(k − 1)‖1 , s ∈ {a, b, c}. We
define the second order filter estimating the switching fre-
quency as

xflt(k + 1) = Afltxflt(k) +Bfltp(k)

where f̂sw =
[
0 1
]
xflt(k) is the estimated switching

frequency. The poles of Aflt are defined as a1 = 1 − 1/r1
and a2 = 1−1/r2 with r1, r2 >> 0. We define the difference
between the approximation f̂sw(k) and the target frequency
f∗sw by esw(k) := f̂sw(k)− f∗(k). Thus, minimizing the 2-
norm of esw will bring the switching frequency estimate
as close as possible to the desired one. We can augment
the state space to include the filter dynamics and the target
frequency by adding the states xsw =

[
x>flt f

∗
sw

]>
and

matrices Asw = blkdiag(Asw, 1), Bsw =
[
B>flt 0

>
1×3
]>

.

B. MPC Problem Formulation
Let us define the complete augmented state as

x(k) :=
[
xph(k)

> xosc(k)
> xsw(k)

> usw(k − 1)>
]>

(3)

with x(k) ∈ R9 × {−1, 0, 1}3 and total state dimension
nx = 12. Vector xph represents the physical system from
Section II, xosc defines the oscillating states of the sinusoids

to track introduced in Section III-A, usw(k − 1) are addi-
tional states used to keep track of the switches positions at
the previous stage and xsw the states related to the switching
filter from Section III-A.

The system inputs are defined as

u(k) :=
[
usw(k)

> p(k)>
]> ∈ Rnu ,

where usw are the physical switches positions and p are
the three binary inputs entering in the frequency filter from
Section III-A. The input dimension is nu = 6. To sim-
plify the notation, let us define the matrices G and T to
obtain usw(k) and p(k) from u(k) respectively: i.e. such
that usw(k) = Gu(k) and p(k) = Tu(k). Similarly, to
obtain usw(k − 1) from x(k) we define matrix W so that
usw(k − 1) =Wx(k).

The MPC problem with horizon N ∈ N can be written as

minimize
u(k)

N−1∑
k=0

γk`(x(k)) + γNV (x(N)) (4a)

subject to x(k + 1) = Ax(k) +Bu(k) (4b)
x(0) = x0 (4c)
x(k) ∈ X , u(k) ∈ U(x0), (4d)

where the stage cost is defined combining the THD and the
switching frequency penalties

`(x(k)) = ‖Cx(k)‖22 = ‖e(k)‖22 + δ ‖esw(k)‖22 .
The tail cost V (x(N)) is an approximation of the infinite
horizon tail and is defined as the quadratic function

V (x(N)) = x(N)>P 0x(N) + 2q>0 x(N) + r0, (5)

where P 0 ∈ Snx is positive semidefinite, q0 ∈ Rnx and
r0 ∈ R. We precompute the tail cost approximation using
approximate dynamic programming (ADP) by solving a
semidefinite program (SDP) [13] offline. For a comprehen-
sive description of the ADP method employed refer to [9].
The matrices A, B and C define the extended system
dynamics and the output vector; they can be derived directly
from the physical model (1) and from the considerations in
Section III-A.

The input constraints set is denoted as

U(x0) = { − Tu(k) ≤ Gu(k)−Wx(k) ≤ Tu(k), (6a)
‖Tu(k)‖∞ ≤ 1, (6b)

Gu(k) ∈ {−1, 0, 1}3}, (6c)

where constraint (6a) defines the relationship between usw
and p from (2). Constraint (6b) together with (6a) defines
the switching constraints ‖usw(k)− usw(k − 1)‖∞ ≤ 1 im-
posed to avoid a shoot through in the inverter positions
that could damage the components. Finally, (6c) enforces
integrality of the switching positions.

Observe that the controller tuning parameters are δ, which
defines the relative importance of the THD and fsw compo-
nents in the cost function, and r1, r2 that shape the switching
frequency estimator.

C. Control Loop

The complete block diagram is shown in Figure 1. The
desired torque T determines the currents xosc by setting the



OSC

MPC

FLT

z−1

MOTOR

OBS

T (k) xosc(k)

usw(k)

is(k)ωr(k)

p(k)

xsw(k)

usw(k − 1)

xph(k)

xph(k)

CONTROLLER

Fig. 1. Block diagram of the control loop. The controller within the dotted
line receives the desired torque T (k) and the current motor states xph(k)
providing the switches position usw(k).

initial states of the oscillator OSC. The motor speed ωr and
the stator currents is are measured directly from the machine
and used by the observer OBS providing the physical states
of the motor xph. The auxiliary inputs p are fed into the
filter FLT estimating the switching frequency in xsw. The
switches positions usw go through a one step delay and are
exploited again by the MPC formulation.

Following a receding horizon control strategy, at each
stage k problem (4) is solved obtaining the optimal se-
quence {u?(k)}N−1k=0 from which only u?(0) is applied to
the switches. At the next stage k + 1, given new vectors
xosc(k),xph(k),usw(k − 1) and xsw(k) as in Figure 1
a new optimization problem is then solved providing an
updated optimal switching sequence, and so on. The whole
control algorithm, appearing within the dotted line, runs
within 25µs.

D. Optimization Problem in Vector Form

Since we consider short horizons, we adopt a condensed
MPC formulation of problem (4) with only input variables
producing a purely integer program. In this way all the pos-
sible discrete input combinations can be evaluated directly.
With a sparse formulation including the continuous states
within the variables, it would be necessary to solve a mixed-
integer program requiring more complex computations.

Let us define the input sequence over the horizon N

starting at time 0 as U =
[
u>(0) u>(1) . . . u>(N − 1)

]>
,

where we have dropped the time index from U to simplify
the notation. With straightforward algebraic manipulations
outlined in [9] it is possible to rewrite problem (4) as a
parametric integer quadratic program in the initial state x0

minimize U>QU + 2f (x0)
>
U

subject to AineqU ≤ bineq(x0)

GU ∈ {−1, 0, 1}3N .
(7)

IV. FRAMEWORK FOR PERFORMANCE EVALUATION

To benchmark our algorithm we consider a neutral point
clamped voltage source inverter connected with a medium-
voltage induction machine and a constant mechanical load.
As a typical medium-voltage induction machine example,

we use the same model as in [5]. We consider an idealized
model with the semiconductors switching instantaneously. In
addition, if not otherwise stated, all simulations were done at
rated torque, nominal speed, fundamental frequency of 50Hz
and rated currents.

V. ACHIEVABLE PERFORMANCE IN STEADY STATE

We hereby briefly present the results of closed loop
simulations in steady-state operation obtained in [8] and [9]
to show the achievable performance of our hardware imple-
mentation in terms of THD and switching frequency. For
comparison, the system was simulated also with the con-
troller described in [5] (denoted as DMPC). Both controllers
were tuned to obtain a switching frequency around 300Hz.
For more details, please refer to [8], [9]. The results are
presented in Table I.

TABLE I
SIMULATION RESULTS FROM [8], [9] WITH ADP AND WITH DMPC [6]

AT SWITCHING FREQUENCY 300Hz

ADP DMPC [6]

δ THD [%] λu THD [%]

N = 1 4 5.24 0.00235 5.44
N = 2 5.1 5.13 0.00690 5.43
N = 3 5.5 5.10 0.01350 5.39
N = 10 10 4.80 0.10200 5.29

Our method, with a horizon of N = 1 provides both
a THD improvement over the DMPC formulation in [5]
with N = 10 and a drastically better numerical speed.
This shows how choosing a meaningful cost function can
provide good control performance without recourse to long
horizons. Moreover, we also performed a comparison with
longer horizons N = 2, N = 3 and N = 10. Our method,
with horizon N = 10 would give an even greater reduction
in THD to 4.80%.

VI. FPGA IMPLEMENTATION

A. Hardware Setup
We implemented the control algorithm on a Xilinx Zynq

(xc7z020) [14], a low cost FPGA, running at approximately
150MHz mounted on the Zedboard evaluation module [15].
The control algorithm was coded in C++ using the PRO-
TOIP Toolbox [16]. The FPGA vendors tool Xilinx Vivado
HLS [17] was used to convert the written code to VHDL
defining the Programmable Logic connections.

B. Algorithm Description
We now present a detailed description of how the con-

troller within the dotted lines in Figure 1 is implemented on
the FPGA.

The updates in OSC and FLT were implemented as
simple matrix multiplications. The solver for the integer
problem (7) has been implemented with a simple exhaustive
search algorithm for three reasons: first, the tail cost approx-
imation provides good performance with very few horizon
steps while considering a relatively small amount of input



combinations; second, the structure of the problem allows
us to evaluate both the inequalities and cost function for
multiple input sequences in parallel; third, the FPGA logic
is particularly suited for highly pipelined and/or parallelized
operations, which are at the core of exhaustive search.

To exploit the FPGA architecture, we implemented our
algorithm in fixed-point arithmetic using custom data types
defined in Vivado HLS [17]. In particular, we used 4 integer
and 0 fractional bits to describe the integer inputs and 2
integer and 22 fractional bits to describe the states and the
cost function values. This choice is given by the minimum
number of bits necessary to describe these quantities from
floating-point simulations in Section V. Note that the exhaus-
tive search algorithm does not suffer from any accumulation
of rounding error because it consists entirely of independent
function evaluations, in contrast to iterative optimization
algorithms [18].

Algorithm 1 Controller Algorithm
1: function COMPUTEMPCINPUT(T (k),xph(k))

Data: xosc(k − 1), xsw(k − 1), p(k − 1), usw(k − 1)

Parameters: U seq ∈ Z6×27N , Jub ∈ R
Initialize: J ∈ R27N , Jmin ∈ R and imin ∈ N
Execute Filter and Oscillator to Obtain Initial State:

2: if change in T (k) then
3: xosc(k)← Reset to match torque [9]
4: else
5: xosc(k)← Aoscxosc(k − 1)
6: end if
7: xsw(k)← Aswxsw(k − 1) +Bswp(k − 1)

8: x0 ←
[
xph(k)

> xosc(k)
> xsw(k)

> usw(k − 1)>
]>

Precompute Vectors:
9: f(x0)← Compute from x0 [9]

10: bineq(x0)← Compute from x0 [9]
Loop 1 - Compute Cost Function Values:

11: for i = 1, . . . , 27N do
12: u← U seq

(:,i)

13: u(4:6) ← p(k) = ‖u(1:3) − usw(k − 1)‖1
14: if Ainequ ≤ bineq(x0) then
15: J (i) ← u>Qu+ 2f(x0)

>u
16: else
17: J (i) ← Jub
18: end if
19: end for

Loop 2 - Find Minimum:
20: Jmin ← Jub, imin ← 1
21: for i = 1, . . . , 27N do
22: if J (i) ≤ Jmin then
23: Jmin ← J (i)

24: imin ← i
25: end if
26: end for

Return Results
27: usw(k)← U seq

(1:3,imin)
and p(k)← U seq

(4:6,imin)

28: return usw(k)
29: end function

We provide pseudo-code for our method in Algo-
rithm 1. From Figure 1, the controller receives the re-
quired torque T (k) and the motor states xph(k) and returns
switches usw(k).

From line 2 to line 8 the oscillator OSC and the filter
FLT are updated to compute the new initial state x0 for the
optimization algorithm. Note that, if there is a change in
the required torque, the oscillator states xosc(k) are reset to
match the new T (k). Line 9 and 10 precompute the vectors
in problem (7) depending on x0.

The main loop iterating over all input combinations is split
in two for parts: Loop 1 which is completely decoupled and
can be parallelized and Loop 2 which can only be pipelined.

Loop 1 from line 11 to 19 computes the cost function
values for every combination i and stores it into vector J .
All the possible input sequences combinations are saved in a
static matrix U seq . For every loop cycle, sequence i is saved
into variable u. Then, in line 13, the value of p(k) is updated
inside u with usw(k − 1) according to (2). If u satisfies
constraint Ainequ ≤ bineq(x0), then the cost function is
stored in J (i) (line 15). Otherwise, J (i) is set to a high value
Jub. Note that, even though it would bring considerable speed
improvements, we cannot precompute offline the quadratic
part u>Qu of the cost and the left side of the inequality
Ainequ because we need to update vector u in line 13 at
each control cycle according to usw(k − 1). Each iteration
of this loop is independent from the others and can therefore
be parallelized efficiently.

Loop 2 from line 20 to 26 is a simple loop iterating over
the computed cost function values to find the minimum and
save it into Jmin. Every iteration depends sequentially on
Jmin which is accessed and can be modified at every i. Thus,
in this form it is not possible to parallelize this loop which
can be, however, pipelined.

C. Circuit Generation

In Vivado HLS [17] it is possible to specify directives
to optimize the circuit synthesis according to the resources
available on our board. Loop 1 and Loop 2 were pipelined
and the preprocessing operations from line 2 to 10 paral-
lelized. We generated the circuit for the algorithm 1 with
horizons N = 1 and N = 2 at frequency 150MHz (clock
cycle of 7 ns). The resources usage and the timing estimates
are displayed in Table II. Since timing constraints were met,
there was no need to parallelize Loop 1 to reduce clock
cycles. Note that for N = 2 we are using already 91% of

TABLE II
RESOURCES USAGE AND TIMING ESTIMATES FOR IMPLEMENTATION ON

THE XILINX ZYNQ FPGA (XC7Z020) RUNNING AT 150MHz

N = 1 N = 2

FPGA Resources

LUT 15127 (28%) 31028 (58%)
FF 11156 (10%) 20263 (19%)
BRAM 6 (2%) 21 (7%)
DSP 89 (40%) 201 (91%)

Clock Cycles 371 1953
Delay 2.60µs 13.67µs



Time [ms]
0 5 10 15 20

-1

-0.5

0

0.5

1

(a) Three-phase stator currents (solid lines) with
their references (dashed lines).

0 500 1000 1500 2000

0.01

0.02

0 500 1000 1500 2000

0.01

0.02

Time [ms]
0 500 1000 1500 2000

0.01

0.02

(b) Stator current spectrum.

0 5 10 15 20

-1

0

1

0 5 10 15 20

-1

0

1

Time [ms]
0 5 10 15 20

-1

0

1

(c) Three-phase switching position inputs.

Fig. 2. Waveforms produced during HIL Tests by the direct model predictive controller at steady state operation, at full speed and rated torque. Horizon
of N = 1 is used. The switching frequency is approximately 300Hz and the current THD is 5.23%.

the DSP multipliers. This is due to the limited amount of
resources available on our chosen low cost hardware.

VII. HARDWARE IN THE LOOP TESTS

We performed hardware in the loop (HIL) experiments
using the controller FPGA fixed-point implementation de-
veloped in Section VI and the machine model described
in Section IV. The control loop was operated using the
PROTOIP toolbox [16]: the plant model was simulated on a
Macbook Pro 2.8 GHz Intel Core i7 with 16GB of RAM
while the control algorithm was entirely executed on the
Zedboard development board described in Section VI-A.

A. Steady State
The controller was benchmarked in HIL in steady-state

operation to compare its performance to the achievable
performance results obtained in Table I. We chose the same
controller parameters as in [8], [9]. The weighting δ is chosen
such that the switching frequency is around 300Hz. The
infinite horizon tail cost approximation SDP [9] is formulated
using YALMIP [19] and solved offline using MOSEK [20].

The HIL tests for horizon N = 1 are shown in Figure 2
in the per unit system. The three-phase stator currents are
displayed over a fundamental period in Figure 2a, the three
spectra are shown in Figure 2b with THD of 5.23% and the
input sequences are plotted in Figure 2c.

From the experimental benchmarks with horizon N = 1
and N = 2 we obtained THD = 5.23% and THD = 5.14%
respectively. As expected, these results are very close to the
simulated ones from [8], [9]; see Table I. The slight differ-
ence (∼ 0.01%) comes from the fixed-point implementation
of the oscillator OSC and the filter FLT in Figure 1.

B. Transients
One of the main advantages of direct MPC is the fast

transient response [5]. We performed HIL torque transients
tests with the same tuning parameters as in the steady state
benchmarks. At nominal speed, reference torque steps are
imposed, see Figure 3b. These steps are translated into
different current references to track, as shown in Figure 3a,
while the computed inputs are shown in Figure 3c.

These behaviors match very closely the transient results
in [8], [9]. In particular, the torque step from 1 to 0 in the

per unit system presents an extremely short settling time of
0.35ms similar to deadbeat control approaches [21]. This
is achieved by inverting the voltage applied to the load.
Switching from 0 to 1 torque produces much slower response
time of approximately 3.5ms because of the limited available
voltage in the three-phase admissible switching positions.

As noted in [5], having a longer horizon in direct MPC or a
better predictive behavior does not significantly improve the
settling times. This is because the benefit of longer prediction
obtainable by extending the horizon or adopting a powerful
final stage costs is reduced by the saturation of the inputs
during the transients.

C. Execution Time

To show that the controller is able to run on cheap
hardware within Ts = 25µs, we measured the time the
FPGA took to execute Algorithm 1 for horizon N = 1 and
N = 2. We compared our results to the time needed to solve
the DMPC formulation in [6] for the same horizon lengths
on a Macbook Pro with Intel Core i7 2.8 GHz and 16GB of
RAM using the commercial integer program solver Gurobi
Optimizer [22]. The results are shown in Figure 4.

The FPGA execution times are 5.76µs and 17.27µs for
horizon N = 1 and N = 2 respectively. Note that they
present a slight overhead of approximately 3.5µs compared
to the estimates in Table II since the measured times include
the time needed to exchange the input-output data from the
FPGA to the ARM processor through the RAM memory.
Without the overhead, the estimated FPGA computing times
obtained by the circuit generation are always exact, see [17].

Note that the time needed by the FPGA to compute the
control algorithm is deterministic with zero variance. This
makes our HIL implementation particularly suited for real-
time applications. Furthermore, it is important to underline
that the method we propose is the only method available
that can produce integer optimal solutions to this problem
achieving this performance in 25µs sampling time.

The execution times needed by Gurobi Optimizer are
621.2± 119.98µs and 750.40±216.15µs for horizons N =
1 and N = 2 respectively. The non-negligible standard
deviation appears because of the branch-and-bound algorithm
implemented in Gurobi. However, since we are considering



Time [ms]
0 5 10 15 20 25 30

-1

-0.5

0

0.5

1

(a) Three-phase stator currents (solid lines) with
their references (dashed lines).

Time [ms]
0 5 10 15 20 25 30

0

0.25

0.5

0.75

1

(b) Actual (solid line) and reference (dashed line)
torques.

0 5 10 15 20 25 30

-1

0

1

0 5 10 15 20 25 30

-1

0

1

Time [ms]
0 5 10 15 20 25 30

-1

0

1

(c) Three-phase switching position inputs.

Fig. 3. Reference torque steps produced by the direct model predictive controller in HIL tests with horizon N = 1.

0 200 400 600 800 1000

N
=

1
N

=
2

Ts

621.2

750.4

5.76

17.27

Execution Time [µs]

Gurobi
FPGA

Fig. 4. Execution times required by the Xilinx Zynq FPGA (xc7z020)
to execute our controller based on an ADP formulation (blue) and using
Gurobi Optimizer [22] to solve the formulation in [5] on a Macbook Pro
with Intel Core i7 2.8 GHz and 16GB of RAM

real-time applications, we are interested in the worst case
number of visited nodes which is always the whole tree of
combinations, i.e. 27N . Note that, the DMPC formulation
has been solved in [5] using a different branch-and-bound
algorithm based on the sphere decoding algorithm [7], but
the worst case number of visited nodes cannot be simplified
because of the NP−hardness of the problem.

VIII. CONCLUSIONS

In this work we implemented on the low size Xilinx Zynq
FPGA (xc7z020) platform the ADP based approach in [8],
[9] for efficient direct model predictive current in power
converters.

Hardware in the loop (HIL) tests in steady state operation
showed almost identical closed loop performance to the sim-
ulation results in [8], [9] in terms of total harmonic distortion
(THD) and switching frequency. With our implementation of
the ADP based method on low cost hardware and very small
number of stages, we were able to outperform the direct
MPC formulation in [5], [6] with long horizons. We also
performed HIL transient simulations where we managed to
obtain the same fast dynamic performance as the simulations
in [8], [9].

In addition, we demonstrated that the implemented method
from [8], [9] can run within the sampling time of 25µs
by measuring the execution time on the FPGA. Results
show that only 5.76µs and 17.27µs are required to run our
controller for horizons N = 1 and N = 2 respectively while
obtaining good control performance.

ACKNOWLEDGMENT
We would like to thank Andrea Suardi and Bulat Khu-

sainov for their suggestions regarding FPGA implementation.

REFERENCES

[1] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory
and Design . Nob Hill Publishing, LLC, 2014.

[2] P. Cortes, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and
J. Rodriguez, “Predictive Control in Power Electronics and Drives,”
IEEE Transactions on Industrial Electronics, vol. 55, no. 12, pp. 4312–
4324, Nov. 2008.

[3] T. Geyer, “Low Complexity Model Predictive Control in Power Elec-
tronics and Power Systems,” Ph.D. dissertation, ETH Zürich, 2005.

[4] D. Bertsimas and R. Weismantel, Optimization over integers. Bel-
mont, Massachussetts: Dynamic Ideas, 2005.

[5] T. Geyer and D. E. Quevedo, “Multistep Finite Control Set Model
Predictive Control for Power Electronics,” IEEE Transactions on
Power Electronics, vol. 29, no. 12, pp. 6836–6846, 2014.

[6] ——, “Performance of Multistep Finite Control Set Model Predictive
Control for Power Electronics,” IEEE Transactions on Power Elec-
tronics, vol. 30, no. 3, pp. 1633–1644, 2015.

[7] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. Ex-
pected complexity,” IEEE Transactions on Signal Processing, vol. 53,
no. 8, pp. 2806–2818, Jul. 2005.

[8] B. Stellato and P. J. Goulart, “High-Speed Direct Model Predictive
Control for Power Electronics,” in Control Conference (ECC), 2016
European, Jul. 2016.

[9] ——, “High-Speed Finite Control Set Model Predictive Control for
Power Electronics,” IEEE Transactions on Power Electronics (To
appear), 2016.

[10] D. P. Bertsekas, Dynamic programming and optimal control. Athena
Scientific Belmont, Massachusetts, 1996.

[11] D. P. de Farias and B. Van Roy, “The linear programming approach
to approximate dynamic programming,” Operations Research, 2003.

[12] Y. Wang, B. O’Donoghue, and S. Boyd, “Approximate dynamic
programming via iterated Bellman inequalities,” International Journal
of Robust and Nonlinear Control, 2014.

[13] L. Vandenberghe and S. Boyd, “Semidefinite Programming,” SIAM
Review, vol. 38, no. 1, pp. 49–95, 1996.

[14] Xilinx, Inc., Zynq-7000 All Programmable SoC Technical Reference
Manual.

[15] Avnet Inc., Zedboard Hardware User’s Guide, 2nd ed.
[16] A. Suardi and E. C. Kerrigan, “Fast FPGA prototyping toolbox for

embedded optimization,” European Control Conference (ECC), pp.
2589–2594, 2015.

[17] Xilinx, Inc., Vivado Design Suite User Guide - High-Level Synthesis.
[18] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed.

Springer Science & Business Media, 2006.
[19] J. Löfberg, “YALMIP : A Toolbox for Modeling and Optimization in

MATLAB,” in Proceedings of the CACSD Conference, Taipei, Taiwan,
2004.

[20] MOSEK ApS, The MOSEK optimization toolbox for MATLAB manual.
Version 7.1 (Revision 35)., 2015.

[21] J. Rodriguez and P. Cortes, Predictive control of power converters and
electrical drives. John Wiley & Sons, 2012, vol. 40.

[22] Gurobi Optimization, Inc., “Gurobi Optimizer Reference Manual,”
Tech. Rep., 2015.


