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Abstract— We present a mechanism for socially efficient im-
plementation of model predictive control (MPC) algorithms for
load frequency control (LFC) in the presence of self-interested
power generators. Specifically, we consider a situation in which
the system operator seeks to implement an MPC-based LFC for
aggregated social cost minimization, but necessary information
such as individual generators’ cost functions is privately owned.
Without appropriate monetary compensation mechanisms that
incentivize truth-telling, self-interested market participants may
be inclined to misreport their private parameters in an effort to
maximize their own profits, which may result in a loss of social
welfare. The main challenge in our framework arises from the
fact that every participant’s strategy at any time affects the
future state of other participants; the consequences of such
dynamic coupling has not been fully addressed in the literature
on online mechanism design. We propose a class of real-
time monetary compensation schemes that incentivize market
participants to report their private parameters truthfully at
every time step, which enables the system operator to implement
MPC-based LFC in a socially optimal manner.

I. INTRODUCTION

Load frequency control (LFC) regulates the power flow
between different areas in the power grid to minimize tran-
sient frequency deviation and ensuring steady state frequency
deviation to be zero. The power flow should ideally be done
in a way that minimizes the operating cost of the power
system. By its nature, LFC is a large-scale and highly com-
plex optimal control problem that is typically solved using
a hierarchical architecture [1], [2]. In a deregulated power
system, those generators (more precisely, their owners) that
provide LFC services have to be compensated appropriately
by the system operator. It is, therefore, important to de-
sign appropriate market mechanisms in which the collective
profit-maximizing behaviors of such entities are aligned with
the solution that maximizes the social welfare. Efficient
market design for LFC particularly as renewable penentration
increases continues to see active work. For one, the additional
stochasticity that renewables bring to the grid means extra
disturbances in frequency that the LFC needs to suppress
[3]. Further, physical inertia of the conventional generators,
which is an integral part of the frequency control loop, is re-
duced as more and more conventional generators are replaced
with converter-based power suppliers [4], [5]. To maintain
system frequency even in the face of these challenges, new
control and real-time optimization algorithms, together with
appropriate market mechanisms to incentivize companies to
provide LFC services, will be needed.
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A control algorithm that has recently been proposed for
LFC is Model Predictive Control (MPC), also known as
Receding Horizon Control (RHC) [6], [7]. MPC is a sub-
optimal control algorithm, which determines control inputs
by solving a finite horizon open-loop optimal control prob-
lems (i.e., optimization problems) repeatedly at every time
step [8]. Advantages of MPC include the flexibility to take
various system constraints into account explicitly and the
fact that computational tractability is obtained at the expense
of only moderate performance loss of control. Due to these
advantages, MPC has been proposed for several different
purposes in power system operations [9], [10], [7], [11], [6].
In particular, it has been proposed for real-time frequency
control of the synchronous grid in order to compensate
inertia loss due to the increasing penetration of distributed
generation units [6]. Distributed versions of MPC algorithm
have also been proposed for automatic generation control in
[7].

However, most of the existing literature assumes that
the MPC algorithm is implemented by the central system
operator. Even works that consider a distributed setting,
the individual decision makers are assumed to be fully
cooperative with the central system operator. In a realistic
situation in a deregulated power market, centralized solutions
are not feasible. Further, the individual decision makers that
own the generators are strategic entities that seek to optimize
their profits, rather than to collaborate with the central system
operator. For ensuring the wide-spread applicability of MPC
for frequency control in deregulated power systems, many
issues, thus, need to be addressed:

(A) Information-asymmetry: Important system parameters,
such as generation cost functions, are private information
and owned by the distributed decision-makers in the
system.

(B) Faithful implementation of control actions: Control ac-
tions are executed by these strategic decision makers who
are market participants, and not directly by the system
operator. Unless the central system operator has direct
control of power system resources, an incentive is needed
for market participants to faithfully execute appropriate
control actions [12], [13].

(C) Distributed computation of optimal control actions: Even
for calculating the optimal control actions, distributed
computation and communication among participants may
be required (e.g., [7]). Usually, incentives are needed for
market participants to faithfully implement the prescribed
distributed computation and communication algorithms
[14].
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In other words, to utilize MPC for load frequency control,
there is a need to design a market mechanism that incen-
tivizes the companies that own generators and are strategic
market participants to (A) report their private parameters
to the system operator truthfully, (B) execute socially op-
timal control actions faithfully, and (C) execute distributed
algorithms faithfully. Incorrect consideration of the strategic
behaviors from the participants can lead to control actions
that are not globally optimal, leading to loss of social
welfare. Since the power market is usually an oligopoly, this
phenomenon is similar to the well known fact that Cournot
equilibrium is, in general, different from the competitive
(and socially optimal) equilibrium [15] in oligopoly. In
fact, several examples of market failures and ensuing power
system disturbances (California in 2000 and 2001, Texas in
2005, and New York City between 2006 and 2008 [16]) are
now revealed to be, at least in part, due to underestimated
market power of the participants in the power markets.

In this paper, we design a market mechanism that mitigates
market participants’ incentives for strategic behaviors when
the system operator wishes to implement a model predictive
control algorithm. For simplicity, in this paper, we focus on
item (A) – information assymetry – alone; items (B) and (C)
are addressed elsewhere. We assume that the system operator
acts as a central planner who is responsible for solving MPC
in a real-time manner, and has the authority to command all
generators’ control inputs. However, to calculate the socially
optimal solution, the operator needs to know the private
parameters (such as costs) from the various participants.
Thus, the challenge is to incentivize market participants to
report their private parameters truthfully for every iteration of
the MPC algorithm (i.e., at every time step) so that the central
planner is able to solve for the socially optimal solution.

Truthful reporting of private information has been con-
sidered in mechanism design theory, which is an extensively
studied branch of microeconomic theory [15, Ch.23]. Indeed,
applying mechanism design theory to power system opera-
tion is not a new attempt [17], [18], [19]. However, most
such attempts are currently restricted to static (single-stage)
mechanism design problems. Since real-time market-based
power system operation involves repetitive auctions, dynamic
extensions of these results are desired.

The framework of online mechanism design can be found
in, e.g., [20], [21], [22] and references therein. However, the
problem has been solved under specific assumptions such
as the state evolution of the agents being independent of
each other. In the specific setting of our paper, the main
challenge arises from the fact that every participant’s strategy
at any time affects the future state of other participants; such
dynamic coupling has not been fully addressed in online
mechanism design literature; see [23] for a related discus-
sion. Related works include [13] where an online mechanism
design method was proposed to incentivize strategic power
generators to execute optimal control actions at every time
instance (item (B) in the list above). It was subsequently
shown in [24] that a similar online mechanism can also be
used for distributed computation and communication actions

TABLE I
TIE LINE STIFFNESS T12 = 1, TIME STEP ∆SAMPLE = 0.1.

Angular momentum M1 = 3.5 M2 = 4
Percent change in load

Percent change in frequency D1 = 2 D2 = 2.75

Charging time constant TCH1 = 50 TCH2 = 10
Percent change in frequency
Percent change in unit output Rf

1 = 0.03 Rf
2 = 0.07

Governor time constant TG1 = 40 TG2 = 25

TABLE II
PERFORMANCE COMPARISON.

Cost for area 1 Cost for area 2 Total cost
Case 1 24.64 18.01 42.65
Case 2 23.83 19.62 43.45

(item (C) in the list above). This result is discussed in a
general framework of indirect mechanism design theory in
[14], where sufficiency and necessity of VCG-like mech-
anism is presented. Allied works also include [25], [26]
which consider stochastic (LQG) power systems and propose
Bayesian incentive compatible mechanisms.

In contrast to [13], [24], [14], the goal of this paper
is to present how a mechanism design framework can be
used to address item (A) with the motivating application of
MPC-based LFC. We first introduce the notion of ε-incentive
compatibility, under which no strategic generator can gain
more than ε by misreporting private information. Then, we
propose a VCG-like online mechanism that implements MPC
with ε-incentive compatibility. Finally, we analyze how the
horizon length T of the considered MPC affects ε in the
proposed mechanism. An explicit relationship between T and
ε is obtained, in particular, for LQ control problems. We note
that receding horizon mechanisms in the context of power
systems were considered in [25], [26], but the relationship
between horizon length and ε-incentive compatibility was not
presented there.

The paper is organized as follows. We begin in Section II
with a motivating example showing that in MPC implemen-
tations of LFC, strategic behavior by the market participants
can easily lead to loss of social welfare. The problem is
formulated in Section III. The online mechanism is presented
as a solution in Section IV. The results are illustrated with the
special case of LQ optimal control in Section V. Section VI
concludes the paper and presents some avenues for future
work.

II. MOTIVATING EXAMPLE

Without appropriate monetary compensation mechanisms,
a strategic market participant (e.g., a generator) may misre-
port its private parameters, if such false reports induces the
system operator to command a control input that is globally
sub-optimal but incurs smaller cost for the misreporting
participant. In an LFC framework, we consider the following
illustrative example. Consider a situation in which two power
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Fig. 1. Case 1: LFC in which both generators report private cost function
truthfully. Case 2: LFC in which generator 1 misreports.

generation firms, say firm 1 and firm 2, own all generators in
areas 1 and 2, respectively. For simplicity, we assume that all
generator turbines in each area are completely synchronized,
and hence modeled as a single large turbine. Assume that
there is a tie line between two areas over which two areas
can exchange power. A simplified swing equaition linearized
around its nominal operation point, borrowed from [7], is
given by (for i, j = 1, 2)1

d∆ωi
dt

= −Di

Mi
∆ωi+

1

Mi
∆Pmechi−

Ttie

Mi
(∆δi−∆δj) (1a)

d∆Pmechi

dt
= − 1

TCHi

∆Pmechi +
1

TCHi

∆Pvi (1b)

d∆Pvi

dt
= − 1

TGi

∆Pvi −
1

Rf
iTGi

∆ωi +
1

TGi

∆Prefi (1c)

d∆δi
dt

= ∆ωi. (1d)

This is a dynamical system with eight dimensional state vec-
tor xt = (x1t , x

2
t ) where xit = (∆ωi,∆Pmechi ,∆Pvi ,∆δi).

For each area i = 1, 2, ∆ωi is the frequency deviation from
the nominal value, ∆Pmechi is the deviation in mechanical
power, ∆Pvi is the deviation in steam valve position, ∆δi
is the deviation in mechanical angle. Command input signal
uit = ∆Prefi for each i = 1, 2 is the control input. Other
system parameters used in the simulation are also borrowed
from [7] and are summarized in Table I. Suppose that firm
i’s generation cost is modeled by

J i =

∞∑
t=1

(
‖xt‖2Qi + ‖ut‖2Ri

)
where Qi and Ri are weight matrices only known to firm i.
In this example, we assume that true values of these weight
matrices are given by

Qi = diag(10, 1, 500, 10), Ri = 0.1

1For implementation of MPC, the state space model is converted a
discrete-time model.

for both i = 1, 2. Since these are private variables, each firm
needs to send this data to the system operator. The system
operator schedules a socially optimal control input minimiz-
ing J1 + J2 based on the reported information. Notice that
once private variables Qi and Ri are available, this is the
standard Linear-Quadratic-Regulator (LQR) problem.

As a case study, we consider a situation in which a
frequency deviation ω1(0) = −0.1 occurs in area 1 at time
t = 0, and study how the LFC recovers the nominal operation
points.

1) Case 1: This is the reference scenario in which both
firms report their private variables truthfully and hence the
system operator is able to schedule the socially optimal con-
trol sequence. Figure 1 (left) shows the dynamic response of
the frequency deviation in each area, deviation in mechanical
angle in each area, and deviation in steam valve position in
each area. The first line of Table II summarizes the simulated
value of J1 and J2 as well as the total cost J1 + J2.

2) Case 2: In this scenario, we suppose that firm 1
misreports its private value and the central planner designs a
control law based on the reported false information. In partic-
ular, suppose that firm 1 reports Q1 = diag(10, 1, 1000, 10),
pretending that moving steam valve position in area 1 is more
costly than the reality. Figure 1 (right) shows the dynamic
response in this scenario. Notice that steam valve position in
area 1 is kept low compared to Case 1. Of course, the control
signal in this scenario does not attain social optimality since
it is generated using false information. It can be seen in
Table II that the value of J1 + J2 has increased. However,
notice that J1 alone has decreased from Case 1 to Case 2,
indicating that firm 1 has an incentive to misreport its private
variables. This simple example suggests that, without an
appropriate monetary compensation mechanism, one cannot
expect truthful reports from the strategic market participants.

III. PROBLEM FORMULATION

To formally describe our problem, suppose that there exist
a central system operator and N strategic market participants
(i.e., generators) that seek to provide frequency control
services and be compensated. The plant to be controlled is
given by

xt+1 = f(xt, ut), t = 0, 1, · · · . (2)

Suppose that the state xt of the system is fully observable by
the system operator. Without loss of generality, we assume
that xt = 0 is the nominal operating point of the system. The
market participants are indexed by i ∈ {1, · · · , N}, and the
state and control vectors are concatenations of their “local
states” and “local controls”

xt = (x1t , · · · , xNt ), ut = (u1t , · · · , uNt ).

Suppose that the control cost cit(xt, ut) is incurred to the
i-th participant at time step t. The purpose of the system
operator is to minimize the aggregated cost by solving an
optimal control problem

min
u0:∞

∞∑
t=1

N∑
i=1

cit(x
i
t, u

i
t) (3)



subject to the dynamical equation (2), as well as local state
and control constraints

xit ∈ X it , uit ∈ U it , i = 1, · · · , N, t = 1, 2, · · ·

In (3), u0:∞ is a short-hand notation for (u0, u1, · · · ). Similar
notations will be used in the sequel.

A. MPC algorithm

Solving (3) directly may be computationally expensive as
well as not useful since parameters such as fuel prices may
change over time. Hence, we assume the system operator
repeatedly solves the following open-loop optimal control
problem at every t:

min

t+T∑
k=t

N∑
i=1

cik(xik, u
i
k) (4a)

s.t. xk+1 = fk(xk, uk) (4b)

xik ∈ X ik, uik ∈ U ik (4c)
∀k ∈ {t, · · · , t+ T},∀i ∈ {1, · · · , N}, (4d)

where T is the horizon length. Note that at every time step
the system operator observes xt, which is used as the initial
condition for (4b).

B. Problem setup

Suppose that the function ft, state constraint set X it and
the control constraint set U it are publicly known but the
cost function cit is private and only known to the i-th agent.
Private information must be truthfully reported to the central
planner in advance so that the open-loop optimal control
problem (4) is correctly solved. In particular, we denote
by θit the type of the i-th agent, which fully describes the
function cit. In the example in Section II, θit was a weight
matrix Qi(= Qit = Qit+1 = · · · ). The type vector θit must
be truthfully reported to the central planner at time step t.
Suppose that the i-th agent is interested in minimizing his/her
own cost

∑∞
t=0 c

i
t(x

i
t, u

i
t) rather than aggregated social cost

(3). As we have seen in Section II, strategic agents may be
incentivized to misreport their types in an effort to minimize
their own cost.

C. Disturbance model

For simplicity, we assume that LFC system is subject to an
impulse frequency disturbance at t = 0, and this is modeled
by a non-zero initial condition x0 6= 0. We assume that
system operator and market participants have no knowledge
about probability distribution of x0. Our goal is to design
a mechanism that induces truth-telling regardless of the
realization of x0. (In other words, in this paper we employ
the solution concept of ex post incentive compatibility.) Note
that impulse or step signals are commonly used disturbance
models in frequency control (e.g., [2], [27]).

IV. PROPOSED ONLINE MECHANISM

To achieve the aforementioned goal, we propose a real-
time mechanism inspired by the online Vickrey-Clarke-
Groves (VCG) mechanism [21]. Let ut:∞ be a sequence
of control inputs, and xt:∞ be the induced state trajectory.
Denote by

J it (u
i
t:∞; θit:∞) ,

∞∑
k=t

cik(xik, u
i
k) (5a)

Jt(ut:∞; θt:∞) ,
N∑
i=1

J it (u
i
t:∞; θit:∞). (5b)

the cost-to-go functions. Note that the dependence of the
cost-to-go function on θt:∞ reflects the fact that it is eval-
uated using private information cik contained in θt:∞. The
subroutine OPENLOOPT (·) shown in Algorithm 1 summa-
rizes how our MPC algorithm is executed at every time step.
At every t, this subroutine receives reported type vectors
θt from the agents. Based on the received information, an
open-loop optimal control problem (4) is formulated. By
solving (4) numerically, the subroutine returns a control
action ut = OPENLOOPT (θt) to be implemented at the
current time step.

Algorithm 1 OPENLOOPT (·)
Input: Type vectors θt = (θ1t , · · · , θNt ) reported by the
agents, which contains necessary information to formulate
an open-loop optimal control problem (4).
Output: Control input ut at current time step t.

1: Formulate an open-loop optimal control problem (4).
2: Solve (4) to obtain an optimal control sequence ut:t+T .
3: Discard ut+1:t+T and return ut.

The MPC scheme with the horizon length T is a sequential
execution of this subroutine

ut = OPENLOOPT (θt)

ut+1 = OPENLOOPT (θt+1)

...

This sequence of equations is denoted by ut:∞ =
MPCT (θt:∞). Note that MPCT (·) maps reported type vec-
tors θt:∞ to a social decision ut:∞. In the terminology of
mechanism design, such a map is called a decision rule.

Definition 1: A decision rule MPCT (·) is said to be ε-
efficient if, for all t and xt,

Jt(MPCT (θt:∞); θt:∞) ≤ Jt(ut:∞; θt:∞) + ε

for all ut:∞ ∈
∏∞
k=t

∏N
i=1 Uk,i and θt:∞ ∈

∏∞
k=t

∏N
i=1 Θk,i.

Notice that, in general, ut:∞ = MPCT (θt:∞) is only
a suboptimal control sequence. The notion of ε-efficiency
guarantees that the performance loss of the MPC from the
globally optimal control strategy is bounded by ε. In Section
V, we will present an example of an LQ control problem in
which ε can be obtained as a function of T .



We propose an online (multistage) mechanismM that can
be used by the system operator to induce truthful reports by
market participants at every time step. In this mechansim,
the system operator introduces a real-time tax scheme (the
amount of taxes charged to individual market participants
are calculated according to some rule based on participants’
reports), which creates an N -player multistage game. The
real-time tax rule is carefully designed so that truth-telling by
all participants corresponds to a subgame perfect equilibrium
[28] of the resulting multistage game.

Formally, we consider M as a collection of “submecha-
nisms”M(t, xt) parameterized by time t and the state xt. At
every (t, xt), a submechanismM(t, xt) accepts participants’
reports (θ1t , · · · , θNt ), computes control input ut, determines
tax values charged to individual participants at time t, and
sends the system to the next state (t + 1, xt+1). This way,
a submechanism defines a subgame, and a collection of
submechanisms defines a multistage game.

We assume that each player’s cost is quasilinear, i.e., a
summation of control-related cost (i.e., cost function cit) and
the amount of tax (denoted by pit) charged by the system
operator. Under this assumption, submechanisms M(t, xt)
are fully specified once we fix how control inputs ut and tax
values pit are determined based on the reported information.
Among many possible designs, we propose a particular
design MVCG-MPC specified by the following scheme.

1) A control action to be executed at the current time step
is ut(θt) = OPENLOOPT (θt).

2) Tax values to be charged to the i-th agent is pit(θt) =∑
j 6=i c

j
t (x

j
t , u

j
t (θt)) +Ki

t , where Ki
t is a quantity that

does not depend on the history of the i-th agent’s reports
(θi1, · · · , θit) calculated by a publicly know rule.

Notice that this choice is motivated by the structure of the
VCG mechanism (e.g., [15]).

A. Incentive compatibility

Denote by πit(θt:∞) ,
∑∞
k=t p

i
k(θk) the “tax-to-go” func-

tion for the i-th agent at time t.
Definition 2: For a given time-state pair (t, xt),M(t, xt)

is said to be ε-incentive compatible if for every i, θt:∞ ∈∏∞
k=t

∏N
i=1 Θi

k, and θ̂it:∞ ∈
∏∞
k=t Θi

k, we have

J it (MPCT (θt:∞); θit:∞) + πit(θt:∞)

≤ J it (MPCT (θ̂it:∞, θ
−i
t:∞); θit:∞) + πit(θ̂

i
t:∞, θ

−i
t:∞) + ε.

A mechanism M is said to be ε-incentive compatible if its
submechanisms are all ε-incentive compatible2.

The ε-incentive compatibility is a significant property of a
mechanism guaranteeing that, at any time t and any state
xt of the system, no participant can find a false report
sequence θ̂it, θ̂

i
t+1, · · · for the future that reduce her net cost

more than ε compared to the case in which she makes a
truthful sequence of reports θit, θ

i
t+1, · · · , and this holds true

regardless of the other players’ true cost functions and their
reporting strategies. Hence, if ε can be made sufficiently

2Superscript “−i” indicates the collection of agents excluding i. With an
abuse of notation, we also write a vector θ as (θi, θ−i).

small, no agent has a strict incentive to misreport her private
parameters.

Theorem 1: If MPCT (·) is ε-efficient, then for every
time-state pair (t, xt), MVCG-MPC(t, xt) is ε-incentive com-
patible.

Proof: Suppose there exists t, i, θt:∞ and θ̂it:∞ such that

J it (MPCT (θt:∞); θit:∞) + πit(θt:∞)

> J it (MPCT (θ̂it:∞, θ
−i
t:∞); θit:∞) + πit(θ̂

i
t:∞, θ

−i
t:∞) + ε.

Substituting (5a) and the expression of pik(θk) in 2),
∞∑
k=t

cik(xik, u
i
k) +

∞∑
k=t

∑
j 6=i

cjk(xjk, u
j
k) +

∞∑
k=t

Ki
k

>

∞∑
k=t

cik(x̂ik, û
i
k) +

∞∑
k=t

∑
j 6=i

cjk(x̂jk, û
j
k) +

∞∑
k=t

Ki
k + ε

where ut:∞ = MPCT (θt:∞), ût:∞ = MPCT (θ̂it:∞, θ
−i
t:∞),

and xt:∞ and x̂t:∞ are trajectories driven by ut:∞ and ût:∞
respectively, starting from xt = x̂t. Using (5b), this can be
rearranged as

Jt(MPCT (θt:∞); θt:∞) +

∞∑
k=t

Ki
k

> Jt(MPCT (θ̂it:∞, θ
−i
t:∞); θt:∞) +

∞∑
k=t

Ki
k + ε.

Since
∑∞
k=tKk,i does not depend on θi,

Jt(MPCT (θt:∞); θt:∞) > Jt(MPCT (θ̂it:∞, θ
−i
t:∞); θt:∞) + ε.

However, this contradicts to the ε-efficiency of MPCT (·).

B. Choice of free parameters

Proposed mechanism MVCG-MPC has a large degree of
freedom in the choice of function Ki

t . In the standard
framework of Groves mechanisms, this degree of freedom
is used to achieve other desirable properties, such as budget
balance and individual rationality [15, Ch.23]. In the context
of online mechanisms, [21] proposes to choose Ki

t as

Ki
t = −

∑
j 6=i

“j’s cost at t when i is absent”. (6)

In the problem formulated in [21], the tax calculated by
pit(θt) =

∑
j 6=i c

j
t (x

j
t , u

j
t (θt)) + Ki

t with (6) matches the
flow marginal contribution (marginal contribution at specific
time instances) of agent i to the rest of the society, and
the resulting online mechanism possesses some desirable
properties.

Unfortunately, due to several important differences be-
tween our problem setting and that of [21]3, evaluating (6) in
our scenario is a much more complicated task. To evaluate
the marginal contribution by the i-th agent, we need to
consider a situation in which the i-th agent is absent from

3In our problem formulation, participant i’s strategy at time t affects the
future state of other participants xjk , k > t, j 6= i. Such a dynamic coupling
does not appear in the model of [21].



the market. One possible approach is to force the i-th control
input to be zero over the entire time horizon. In this case,
the society’s cost with the i-th agent being absent is captured
by the following optimal control problem:

min

∞∑
t=1

∑
j 6=i

cjk(xjk, u
j
k) (7a)

s.t. xt+1 = ft(xt, ut) (7b)

xjt ∈ X
j
t , u

j
t ∈ U

j
t (7c)

∀t ∈ {1, 2, · · · },∀j ∈ {1, · · · , N} (7d)

uit = 0 ∀t ∈ {1, 2, · · · }. (7e)

Denote by an optimal solution to (7) by x[−i], u[−i]. Then
it is reasonable to evaluate (6) by

Ki
t = −

∑
j 6=i

cjt (x[−i]jt , u[−i]jt ). (8)

Notice that Ki
t defined this way does not depend on the i-th

agent’s reporting strategy, since solving (7) does not require
the knowledge of θi1, θ

i
2, · · · . Thus the resulting mechanism

attains ε-incentive compatibility, as per Theorem 1. However,
whether the choice (8) has an advantage (in terms of, e.g.,
individual rationality or budget balance) in the considered
LFC problem is currently unknown.

V. A SPECIAL CASE

In this section, we consider a special case in which plant
(2) is linear time-invariant (LTI), the cost functions are
quadratic, and there are no state and control constraints. The
purpose of this section is to show a concrete example in
which MPC is ε-efficient and hence the resulting mechanism
is ε-incentive compatible. Using techniques in [29], we also
analyze how the horizon length T affects the ε-incentive
compatibility. Such an explicit analysis may not be possible
for more practical MPCs, but simple observations in this
section provide valuable intuition for more complex cases.

Consider an infinite horizon optimal control problem

min
u0:∞

∞∑
t=0

(
x>t Qtxt + u>t Rtut

)
with Qt = diag(Q1

t , · · · , QNt ), Rt = diag(R1
t , · · · , RNt ),

subject to a linear plant equation xt+1 = Axt + But with
some given initial state x0. Assume (A,B) is a stabilizable
pair. Denote the cost-to-go function by

Jt(xt) =

∞∑
k=t

(
x>k Qkxk + u>k Rkuk

)
. (9)

Suppose that θit = (Qit, R
i
t) are private matrices and need to

be reported to the system operator. However, we assume that
it is a priori known that Qt and Rt satisfy

0 ≺ Q � Qt � Q (10a)

0 ≺ R � Rt � R (10b)

and are slowly time-varying in that

(1− δ)Qt � Qt+1 � (1 + δ)Qt (11a)
(1− δ)Rt � Rt+1 � (1 + δ)Rt (11b)

with some small constant δ > 0. We require that the reported
sequence of matrices also satisfy (10) and (11).

Consider an MPC in which the social planner solves an
open loop optimal control problem

Jt,T (xt; θt) ,
t+T−1∑
k=t

(
x>k Qtxk + u>k Rtuk

)
. (12)

In (12), notice the weight matrices Qt and Rt reported at
time step t are used over the entire horizon. If Qt and Rt
vary sufficiently slowly, this is a reasonable MPC algorithm.
This MPC policy can be written as

ût,T (xt) , (13)

argminut

[
x>t Qtxt + u>t Rtut + Jt+1,T−1(Axt +But; θt)

]
The cost-to-go incurred by the policy (13) is denoted by

Ĵt,T (xt) =

∞∑
k=t

x>k Qkxk + û>k,T (xk)Rkûk,T (xk). (14)

Based on [29], in Appendix we establish

Jt(xt) ≤ Ĵt,T (xt) ≤ (1 + εT )Jt(xt) (15)

for every (t, xt), with some explicit expression of a constant
εT . This inequality guarantees the ε-efficiency of the con-
sidered MPC algorithm, and the ε-incentive compatibility of
the corresponding online mechanism MVCG-MPC.

Since εT tends to be small for large T , one can conclude
that it is advantageous to use longer planning horizons to
mitigate strategic misreporting. However, since MPC with
long planning horizon is computational expensive, there
is a trade-off between computational cost and incentive
compatibility.

VI. CONCLUSION

In this paper, motivated by load frequency control in a
power grid, we formulate the problem of designing online
market mechanisms to incentivize strategic selfish entities
that wish to provide frequency control services to the grid,
to report their private information truthfully to the system
operator. Using this private information, the system operator
can use model predictive control to calculate control inputs
that are socially optimal. The main challenge arises from the
fact that every participant’s strategy at any time affects the
future state of other participants. Our solution is a VCG-
like online mechanism that implements MPC in a way that
guarantees that no strategic participant can gain by more than
a specified bound by misreporting.

Future work includes consideration of budget balance
constraints in the formulation. It will also be of interest to
include in the same framework the design of incentives for
the participants to implement the control actions as well.



APPENDIX: PROOF OF (15)

We start with the following technical lemma.
Lemma 1: There exists a sequence {αT } such that αT >

1, limT→∞ αT = 1, and

αT+1Jt,T (xt; θt) ≥ Jt,T+1(xt; θt) ∀t ∀xt.
Proof: Notice that Jt,T (xt; θt) = x>t PTxt and

Jt,T+1(xt; θt) = x>t PT+1xt where PT and PT+1 are ob-
tained by a Riccati recursion

Pk+1 = A>PkA−A>PkB(B>PkB +Rt)
−1B>PkA+Qt

with the initial condition P0 = 0. Due to the convergence of
the Riccati recursion, the claim clearly holds.

Next, introduce a constant 0 < ρT < 1 as the largest
number that satisfies

x>t Qtxt ≥ ρTJt,T (xt; θt) ∀xt ∀t.

To compute ρT explicitly, consider another Riccati recursion

P̄k+1 = A>P̄kA−A>P̄kB(B>P̄kB +Rt)
−1B>P̄kA+Qt

with the initial condition P̄0 = 0. Since Rt ≤ R̄ and Qt ≤
Q̄, due to the monotonicity of Riccati recursions, we have
P̄T � PT . Set ρT , max{ρ : ρP̄T � Q}. Then

x>t Qtxt ≥ x>t Qxt ≥ ρTx>t P̄Txt
≥ ρTx>t PTxt = ρTJt,T (xt; θt).

Lemma 2: Let x0:∞ and u0:∞ be the state and control
trajectories resulting from the receding horizon control policy
defined by (13).

(a) Jt+1,T (xt+1; θt+1) ≤ γTJt,T (xt; θt) holds for every
t = 0, 1, · · · , where γT , (1−ρT )αT

(1−δ) .
(b) If γT < 1, then the receding horizon control policy (13)

is stabilizing.
(c) If γT < 1, then for every t, we have

Jt(xt)≤ Ĵt,T (xt)≤ ρT
1−γT Jt,T (xt; θt)≤ ρT (1−δ)1−T

1−γT Jt(xt).

Proof: (a). For every t = 0, 1, · · · , we have

Jt,T (xt; θt) = x>t Qtxt + u>t Rtut + Jt+1,T−1(xt+1; θt)

≥ ρTJt,T (xt; θt) + Jt+1,T−1(xt+1; θt)

≥ ρTJt,T (xt; θt) + (1− δ)Jt+1,T−1(xt+1; θt+1)

≥ ρTJt,T (xt; θt) + 1−δ
αT

Jt+1,T (xt+1; θt+1).

Rearranging, we have γTJt,T (xt; θt) ≥ Jt+1,T (xt+1; θt+1).
(b). If γT < 1, this implies that

lim
t→∞

Jt,T (xt; θt) ≤ lim
t→∞

(γT )tJ0,T (x0; θ0) = 0.

Since Jt,T (xt; θt) ≥ x>Qx and Q � 0, this proves
limt→∞ xt = 0.

(c). The first inequality is trivial, since (9) is the optimal
cost-to-go, while (14) is the cost-to-go attained by a subop-
timal control polity (13). To see the second inequality, note

that

x>t Qtxt + û>t,T (xt)Rtût,T (xt)

= Jt,T (xt; θt)− Jt+1,T−1(xt+1; θt)

≤ Jt,T (xt; θt)− (1− δ)Jt+1,T−1(xt+1; θt+1)

≤ Jt,T (xt; θt)− 1−δ
αT

Jt+1,T (xt+1; θt+1)

= Jt,T (xt; θt)− Jt+1,T (xt+1; θt+1)

+ αT+δ−1
αT

Jt+1,T (xt+1; θt+1)

Similarly,

x>t+1Qt+1xt+1 + û>t+1,T (xt+1)Rt+1ût+1,T (xt+1)

≤ Jt+1,T (xt+1; θt+1)− Jt+2,T (xt+2; θt+2)

+ αT+δ−1
αT

Jt+2,T (xt+2; θt+2).

Thus,

Ĵt,T (xt) =

∞∑
k=t

x>k Qkxk + û>k,T (xk)Rkûk,T (xk)

≤ Jt,T (xt; θt) +
(
αT+δ−1
αT

) ∞∑
k=t

Jk+1,T (xk+1; θk+1)

≤ Jt,T (xt; θt) +
(
αT+δ−1
αT

)( ∞∑
l=1

γlT

)
Jt,T (xt; θt)

≤
(

1 + αT+δ−1
αT

γT
1−γT

)
Jt,T (xt; θt)

= ρT
1−γT Jt,T (xt; θt).

To see the last inequality, note that

Jt(xt) ≥ inf
ut:t+T−1

t+T−1∑
k=t

(
x>k Qkxk + u>k Rkuk

)
≥ (1− δ)T−1 inf

ut:t+T−1

t+T−1∑
k=t

(
x>k Qtxk + u>k Rtuk

)
= (1− δ)T−1Jt,T (xt; θt).

The second inequality follows from the fact that

(1− δ)T−1Qt � Qk, (1− δ)T−1Rt � Rk

for every k = t, · · · , t+T − 1. This is a consequence of the
rate-of-change constraints (11).

Finally, (15) is obtained by choosing 1+εT = ρT (1−δ)1−T

1−γT .
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