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Impacts of Network Topology on the Performance of a Distributed
Algorithm Solving Linear Equations

Hong-Tai Cao1, Travis E. Gibson2, Shaoshuai Mou3 and Yang-Yu Liu4

Abstract— Recently a distributed algorithm has been pro-
posed for multi-agent networks to solve a system of linear
algebraic equations, by assuming each agent only knows partof
the system and is able to communicate with nearest neighborsto
update their local solutions. This paper investigates how the net-
work topology impacts exponential convergence of the proposed
algorithm. It is found that networks with higher mean degree,
smaller diameter, and homogeneous degree distribution tend
to achieve faster convergence. Both analytical and numerical
results are provided.

I. I NTRODUCTION

A major goal in studying networked systems is to under-
stand the impact of network topology within the context of
the application of interest, from epidemic spreading [1], [2]
to synchronization [3], [4], controllability [5]–[7] , observ-
ability [8], flocking [9], [10] and consensus [11]–[14].

Recently, Mouet al.proposed a network-based distributed
algorithm to solve forx in the linear equationAx = b [15],
[16]. In this algorithm it is assumed that each agent is located
in a communication network and has partial knowledge of
A and b. Under mild conditions on the connectivity of the
underlying network, all the agents’ states (or local solutions)
converge to the exact solutionx = A−1b [15]–[19].

The proposed algorithm in [16] is distributed, applicable
for all linear equations as long as they have solutions,
works for time-varying networks, converges exponentially
fast, operates asynchronously, and does not involve any small
step-size. The aim of this paper is to further characterize the
relation between its exponential convergence and the network
topology. The main contribution of this work is an analytical
bound that connects the convergence rate of the algorithm to
the network topology and the linear equation. Both theoret-
ical and numerical results show that networks with higher
mean degree, smaller diameter, and homogeneous degree
distributions tend to speed up this distributed algorithm.

The following notation is used throughout the paper. The
ℓ2-norm is denoted as‖ · ‖. Matrices are denoted by upper
case letters in bold such asA and P. A partition of a
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matrix is denoted by an upper case letter with a subscript,
i.e. Ai is a partition of matrixA, which can also be a row
vector. Vectors are denoted by lower case italic letters, such
asx, y, z. A network or graph is denoted asG(V , E), where
V is the node (or vertex) set andE is the link (or edge)
set. The network topology is represented by the adjacency
matrix A = {αij} of the network. This paper is organized
as follows. The network-based distributed algorithm is
briefly presented in Section II. The theory of how the
network topology impacts the algorithm performance
is present in Section III. The main proof is presented in
Section IV. Finally, the conclusion is presented in SectionV.

II. A D ISTRIBUTED ALGORITHM FOR SOLVING L INEAR

EQUATIONS

Consider a system of linear algebraic equations

Ax = b, (1)

which has a unique solutionx∗. HereA ∈ Rn×n , b ∈ Rn

and x ∈ Rn. The partition of the matrixA is defined as
A = col {A1, A2, · · · , Am}, wherecol{·} is an operator that
stacks elements into a column,Ai ∈ Rni×n, and the partition
of the vectorb is defined asb = [b1, b2, · · · , bm]

T, bi ∈ Rni ,
where

∑m

i=1 ni = n. Assume that the entire system(A, b) is
unavailable to a single agent; instead different partitions of
the system

(

Ani×n
i , bni

i

)

are available to different agents. In
this paper we consider the simplest case:ni = 1 andm = n,
i.e. each agent knows exactly one row ofA matrix and one
element of theb vector.

The distributed algorithm proposed in [16] computes the
solution of the linear equation (1) through a multi-agent
networkG(V , E), whereV = {1, 2, · · · , n} andE ⊆ V × V .
The topology of thisn-agent network is represented by its
adjacency matrixA(G) = [αij ]n×n

with

αij =

{

1 if(i, j) ∈ E
0 otherwise.

Agent i in the network is synonymous with vertexi in the
graphG(V , E). The topology of the multi-agent network is
completely independent of the linear equation in (1).

For simplicity we make the following assumption:
Assumption 1:The graphG is undirected and connected.

Every vertex has a self loop and there are no multiple edges
between two vertices.

Consider agenti who knows(Ai, bi). It calculates its local
solutionxi ∈ Rn to Aixi = bi and exchanges the solution
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xi with its neighbors, denoted asNi = {j ∈ V|(i, j) ∈ E}.
In this work t is the discrete time variable and takes values
in {0, 1, 2, · · · }. The exact (or global) solution toAx = b

is obtained when all the local solutionsxi’s reach consensus
through the following iteration procedure:

xi(t+ 1) = xi(t)−
1

di
Pi



dixi(t)−
∑

j∈Ni

xj(t)



 , (2)

wherePi = I−AT
i

(

Ai · AT
i

)−1
Ai is the orthogonal projec-

tion on the kernel ofAi, i = 1, · · · , n, anddi =
∑n

j=1 αij

is the degree of agenti.
Let x∗ be the true solution to (1) and it must satisfy

Aix
∗ = bi for i = 1, · · · , n. Define the error betweenxi(t)

andx∗ as
yi(t) = xi(t)− x∗, (3)

which is in the kernel ofAi. In addition, note thatP2
i = Pi

andPiyi(t) = yi(t). Replacingxi(t+1) andxi(t) by yi(t+
1) andPiyi(t) in (2), we get theerror updating equation

yi(t+ 1) =
1

di
Pi

∑

j∈Ni

Pjyj(t), (4)

for i = 1, · · · , n. Thesen equations can be rewritten in the
following compact form

y(t) =
(

Pdiag

[(

D−1AT
)

⊗ I
]

Pdiag

)t
y(0) = Mty(0),

(5)
where the matrixM is called theupdating matrix and
y(t) = col {y1(t), y2(t), · · · , yn(t)}. The matrixPdiag =

diag{P1,P2, · · · ,Pn} ∈ Rn2×n2

is a block diagonal matrix
with Pi ∈ Rn×n and D = diag{d1, d2, · · · , dn} is a
diagonal matrix. The operator⊗ is the kronecker product
[20].

This algorithm has been proven to converge by using the
mixed norm [21] [16, Chapter 4.3.1] ofM defined as

‖M‖mix = ‖Q‖∞,

whereQ = {qij}, qij =
αij

di
‖PiPj‖. Indeed,Mt satisfies

limt→∞ ‖Mt‖mix = 0 if the undirected multi-agent network
is connected [16]. Thereforey = Mty(0) → 0 and thus
xi → x∗ for all i ∈ V .

Network properties play important roles in consensus
problems. In particular, the second smallest eigenvalueλ2(L)
of the graph laplacian bounds the convergence rate of con-
sensus [14], [22]. Given the fact that projection matricesPi’s
are used in constructing the updating matrixM, it is not clear
how the network topologyA impacts the convergence rate
of this algorithm. Thus, in this work we approach the proof
of convergence from a different angle.

III. I MPACTS OFNETWORK TOPOLOGY ON THE

DISTRIBUTED ALGORITHM

A. Theoretical Analysis

In this section, we study how network topology impacts
the performance of the network-based distributed algorithm.

Before we state the main theorem, we introduce the following
definitions.

Definition 3.1 (Walk):In a graphG, a walk wl ∈ V l+1

[23] of length l is a sequence of vertices(v0, v1, · · · , vl)
with {vi−1, vi} ∈ E(G) for all 1 6 i 6 l when l > 1. If
l = 0, thenw0 is simply a vertexv0. Specifically, we denote
a walk of lengthl starting at vertexv0 and ending at vertex
vl aswl

v0vl
.

Definition 3.2 (f(wl, β) Product of a Walk):Let wl be a
walk of length l. Let βvi ∈ U be a value associated with
vertexvi. We can define a function of the walkwl as

f(wl, β) = Πi=l
i=0βvi ,

whereβ is indexed by the walkwl = (v0, v1, · · · , vl) with
valuesβ = (βv0 , βv1 , · · · , βvl). The functionf(wl, β) ∈ U

is called theproduct of walkwl. In this workU is eitherR
or Rn×n.

Definition 3.3 (S(l) andS1(l) Spaces):In a graphG, all
the possible walks of lengthl form theS(l) Space. Denote
a subspace ofS(l) asS1(l) if and only if

• the walkwl starts from an arbitrary vertexv0 and ends
at vl and visits all the verticesvi ∈ V of G,

• there does not exist a vertexvj ∈ V that divideswl into
two sub-walks, where one walk starts atv0 and ends at
vj , the other one starts atvj and ends atvl, that both
of them visit all the verticesvi ∈ V of G.

Note that the end vertex of the previous sub-walk and the
starting vertex of the following sub-walk are repeated twice
when dividing a walk. It is trivial that forwl walks of length
l 6 n− 1, they can’t be in theS1(l) subspace.

Definition 3.4 (Orderr): If a walk wl can be divided
into several walkswl1 , wl2 , · · · , wlr , where li > 1 and
wli ∈ S1(li), then all the walks of the same numberr form
a subspaceSr(l) wherer is called theorder of the space.
We also say thatr is theorder of the walkwl. Sr(l) ( S(l)
for any orderr.

If a walk wl does not visit all the vertices in a graphG,
then its order isr = 0 and it is inS0(l). This special case
means that there exists at least one vertexvi ∈ V which does
not appear in the sequence of the walkwl. The order of any
wl walk is uniquely determined and non-negative, i.e.r > 0.

Let ϕ = 1

(
√
nτ‖A−1‖)2

, τ = max
i

(‖Ai‖), 1
d

=
(

1
di
, 1
dv1

, · · · , 1
dj

)

be indexed by the walkwt
ij =

(i, v1, · · · , vt−1, j) which starts at agenti and ends at agent
j wherewt

ij ∈ Vt+1, then we have the following theorem
Theorem 3.5 (Convergence Bound):Given a linear equa-

tion Ax = b, A = col{Ai} ∈ Rn×n and its unique solution
x∗, let xi(t) be the local solution at agenti located in
an undirected networkG(V , E) whose adjacency matrix is
A = {αij}, then the erroryi(t) defined in (3) is bounded as

‖yi(t+ 1)‖ 6
∑

Nj

rm(t)
∑

r=0

∑

wt
ij
∈Sr

f(wt
ij ,

1

d
) (1− ϕ)

nr
2 ‖yj(0)‖

(6)



for i = 1, · · · , n. Hererm(t) 6 ⌊ t
n
⌋ is the maximum order

of the product. Note thatw0
ij = w0

ii = (i) andw1
ij = (i, j).

Theorem 3.5 provides another method to prove that the
distributed algorithm converges to the true solutionx∗ be-
sides the mixed norm method in [16], which is discussed
at the end of this work. The bound in (6) connects the
network topology with the convergence rate of the algorithm,
by the degreedi of agent i explicitly, and by counting
the number ofwt ∈ Sr(t) walks in every orderr > 0
in the network implicitly. Before moving to the detailed
proof of this theorem, we first discuss how topology impacts
the performance of the algorithm. To illustrate the topology
impacts, we start with the definition of a walkwt, then we
discuss the properties of the correspondingf(wt, 1

d
) product.

Given a networkG of size n, all the possible walks of
lengtht are determined by its adjacency matrixA = {αij}.
Let 1

di
be the inverse degree of agenti, then the product

1
di0

1
di1

· · · 1
dit

can be represented byf r(wt
i0it

, 1
d
), where we

recall that 1
d

is indexed by the walkwt
i0it

. For simplicity,
we let i = i0 and j = it. Hence given a starting agenti,
the summation of all products of the walkw1 from i to all
the agentsj = 1, 2, · · · , n is represented as

∑n
j=1

αij

didj
. In

general, we have

rm(t)
∑

r=0

∑

wt
ij

f r(wt
ij ,

1

d
) =

n
∑

lt−1=1

· · ·
n
∑

l1=1

αil1αl1l2

didl1
· · · αlt−1j

dlt−1

1

dj
.

It is trivial that for anyr, i, j and the walkwt
ij , f(w

t
ij ,

1
d
) ∈

(0, 1). We now explore a scenario when the above mentioned
sum remains a constant, even if the walk length increases.

Given a networkG and given a starting agenti, if all
walkswt

ij , j = 1, 2, · · · , n are repeated by walkswt+1
ij′ who

visit one more agentj′ at the end, after reaching agentj,
then the summation of allf(wt+1

ij′ , 1
d
) products remains the

same. This visit of agentj′ generatesn products based on
eachf(wt

ij ,
1
d
) and each of them equals to

αjj′

dj′
f(wt

ij ,
1
d
),

j = 1, 2, · · · , n. Only dj out ofn products are not zero when
αjj′ = 1. The summation of all newly generated products is
unchanged, which is

∑

Nj′

1

dj′

∑

Nj

f(wt
ij ,

1

d
) =

∑

Nj

f(wt
ij ,

1

d
) (7)

for
∑

Nj′
= dj′ . In general, the summation of all products

of all walks by t+ 1 visits starting from a given agenti to
all the neigbors of all the agentsj is

∑

Nj

rm(t)
∑

r=0

∑

wt
ij
∈Sr(t)

f(wt
ij ,

1

d
)

=

n
∑

j′=1

n
∑

j

n
∑

it−1

· · ·
n
∑

i1

αii1

di
· · · αit−1j

dit−1

αjj′

dj
= 1.

(8)

Given a networkG and a starting agenti, the summation
∑

Nj

∑

wt
ij
∈S0(t) f(w

t
ij ,

1
d
) is never increasing and the order

r of the f(wt, 1
d
) product is never decreasing as the walk

lengtht grows. Given an arbitraryf(wt
i0it

, 1
d
) product of the

walk wt
i0it

∈ S0(t), when the walkwt
i0it

makes one more
visit from agentit to the next agentit+1, it forms dit new
products and the summation of alldit products is unchanged,
which is already shown in (7). However, there exists a walk
of length t1 when there exists at least one walk changing
from the S0(t1) subspace to theS0(t1 + 1) subspace. For
everywt2 walk (of orderr > 1) of lengtht2, it never changes
to a walk of orderr = 0. This hold for any walkwt ∈ S0(t),
hence the summation of allf(wt, 1

d
), wt ∈ S0(t) product is

never increasing, that is

∑

Nj

∑

wt+1
ij

∈S0(t+1)

f(wt+1
ij ,

1

d
) 6

∑

Nj

∑

wt
ij
∈S0(t)

f(wt
ij ,

1

d
)

and given a walk of lengtht and a starting agenti, the bound
in (6) decreases when the order of walks increases, due to
the exponential factorlimr→∞ (1− ϕ)

nr
2 = 0. Since the

summation of allf products starting from a chosen agent
i is always1 (8), the bound in 3.5 can only be decreased
by either i) for a fixed lengtht, increasing the percentage of
walks with higherr, or ii) by increasing the orderr for all
walks as rapidly as possible.

With the above two observations we conclude that given
any two networksG1 and G2, the distributed algorithm (2)
tends to converge faster on networksG1 if G1 andG2 have
similar topology properties except any combinations of the
following

1 G1 has a shorter diameter,
2 G1 has a more homogeneous degree distribution,
3 G1 has a higher mean degree.

Although Theorem 3.5 has1
d

as a factor in the products,
it is not trivial to conclude that higher degree makes the
products smaller since higher degree decreases each product
while increases the number of products. The summation of
all products remains a constant, as shown in (8). However the
bound decreases when the orderr of the products increases.
We address these three points in order.

1) Diameter: For two graphsG1 and G2 with the same
degree distribution and hence the same mean degree, ifG1

has a shorter diameter [24] thanG2, then for fixedt, walks
from G1 will necessarily have a larger minimum orderr as
compared to those fromG2. This follows from the fact that
all the agents can be visited with fewer steps in a network
with shorter diameter. Thus, all things being equal between
two graphs, ifr(t) increases more rapidly for one graph
as opposed to another, the exponential factor(1− ϕ)

nr
2

will decrease more rapidly. Therefore networks with shorter
diameter make the distributed algorithm converge faster.

2) Degree Distribution:Let G1 andG2 be two graphs with
same mean degree but different degree distributions. LetG1

have a more homogeneous degree distribution thanG2. Walks
in G2 typically have lower orderr than the walks of the
same length inG1. This is because walks onG2 rather than
G1 have to walk though the high degree vertices again and
again to reach all the other low degree vertices. Hence for
a given length of walks, the orderr from the walks onG1



is higher. Therefore homogeneous degree distribution makes
the algorithm converges faster.

3) Mean Degree: Adding edges to a graph typically
results in a shorter diameter. Given two graphsG1 and
G2 with similar degree distribution whereG1 has a higher
mean degree, the diameter ofG1 is typically no larger
thanG2. Hence the ordersr’s from G1 are typically higher
than those inG2 for walks of fixed length. Adding a new
edge can either make the degree distribution homogeneous
or make it heterogeneous, depending on where the new
edge is added. The overall change of degree distribution for
each newly added edge is difficult to analyze. However, if
multiple new edges are added uniformly to a graph, this will
typically result in a more homogeneous degree distribution,
thus increasing the mean degree of the network makes the
distributed algorithm converge faster.

B. Simulation Results

To verify our theoretical predictions, we perform extensive
numerical simulations. We first quantify the convergence rate
of the network-based distributed algorithm. One measure
is the solution accuracy of the algorithm, which is the
Euclidean distance between the local solution and the exact
(or global) one:

ǫi(t) = ‖xi(t)− x∗‖, i = 1, 2, · · · , n.
Smaller ǫi means faster convergence rate and hence better
algorithm performance. The impacts of different network
topologies are measured by the statistical performances of
the distributed algorithm, i.e.E (

∑n
i=1 ǫi) on an ensemble

of linear equations. We notice that the Euclidean distance
defined above needs a reference. For example, if the true
solutions of two cases are‖x∗,1‖ = 100 and ‖x∗,2‖ = 0.1
respectively, while the summation of Euclidean distances of
all local solutions tox∗,j are both

∑n
i=1 ǫ

j
i =

∑n
i=1 ‖xj

i −
x∗,j‖ = 1, j = 1, 2, it is obvious the accuracy of the former
iterative process is much higher than the latter one. Therefore
the Euclidean distance should be scaled by the initial error
∑n

i=1 ǫi(0), yielding the relative error

R(t) =

∑n
i=1 ǫi(t)

∑n

i=1 ǫi(0)
=

∑n
i=1 ‖xi(t)− x∗‖2

∑n

i=1 ‖xi(0)− x∗‖2
. (9)

In this way, convergence performances among a system of
linear equations can be compared.

Figure. 1 shows the relative error changes with different
network topologies, including small-world (SW) networks
[25] with random rewiring probabilityp, scale-free (SF)
networks [26] with degree exponentγ, Erdös-Rényi (ER)
random graphs [27] with connectivity probabilityp and
random regular (RR) graphs [28] with mean degree〈k〉.
The networks in each subfigure are the same in their mean
degree and they are different on only one parameter. Small-
world networks (a-c) are different in rewiring probabilities
p, which determines network diameters. Scale-free networks,
graphs and RR graphs are drastically different in their degree
distributions: scale-free networks are most heterogeneous and
random regular graphs are most homogeneous.
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Fig. 1. Impact of network topology on the performance of the network-
based distributed algorithm. . Tens of different linear equations are solved
by the distributed algorithm on six groups of networks of size n = 100.
The complex networks in each group are (a-c) Small-world (SW) networks;
(d-f) Scale-free (SF) networks, Erdös-Rényi (ER) randomgraphs, random
regular (RR) graphs. In each case, we show the box-and-whisker plots and
the median value of the relative error (or convergence rate)R(t) as functions
of t. At each marked iteration stept, a box-and-whisker plot is drawn. The
mean degree of the complex networks is represented as〈k〉.

Fig. 2. Convergence rate at a chosen time step for complex networks
with different topologies. The box-plot shows the relativeerrors at a given
stepTs = 2000. Networks with similar topological features are grouped
together in a particular subfigure.

The numerical results shown in Figure. 1 clearly verify
our theoretical predictions, i.e. if two networks share sim-
ilar topological properties, the one with smaller diameter
(or more homogeneous degree distribution, or higher mean
degree) perform better than the other. To further demonstrate
the topology impacts, considerR(t) at t = 2000 shown
as box-and-whisker plots in Figure. 2. The smaller relative
error R(t) means higher convergence rate. It is clear from
Figure. 2a-c and Figure. 2d-f that the upper bound of relative
errors decreases as the mean degree increases for a given
network model. In other words, higher mean degree makes
the algorithm reach the true solution faster, and is consistent



with our theoretical analysis. Figure. 2a-c display that small-
world networks with higher rewiring probability (and hence
smaller diameters) have smaller relative errorsR , confirming
our theoretical prediction smaller diameter contributes to
higher convergence rate. As shown in Figure. 2d-f, for any
given mean degree, the random regular graphs have the
smallest relative errors while scale free networks perform
the worst. This means that the degree heterogeneity degrades
the performance of the network-based distributed algorithm
in solving linear equations (1).

IV. PROOF OF THEBOUND THEOREM

Before the formal proof of Theorem 3.5, we discuss the
structure of the matrixMt (5) and introduce some technical
lemmas.

Let m(1)
ij ∈ Rn×n be the i, j-th partition matrix ofM,

then
m

(1)
ij =

αij

di
Pi ·Pj ,

where we recall thatPi is an orthogonal projection matrix
defined right after (2). Theses block matricesm(1)

ij are
actually the updating matrix ofyi(t), which meansyi(t +
1) =

∑n
j=1 m

(1)
ij yj(t). Similarly, letm(t)

ij denote the partition
matrix of Mt, then

m
(t)
ij =

n
∑

lt−1=1

· · ·
n
∑

l1=1

mil1 · · ·mlt−1j

=

n
∑

lt−1=1

αlt−1j

dlt−1

· · ·
n
∑

l1=1

αil1 · αl1l2

di · dl1
Pi · · ·Plt−1Pj .

Although the expression ofm(t)
ij is long, it shows thatMt

is simply a weighted sum of projection products. It follows
that (4) can be written asyi(t) =

∑n

j=1 m
(t)
ij yj(0). Define

µij =
αij

di
∈ [0, 0.5], then we have

yi(t) =

n
∑

j=1

· · ·
n
∑

l1=1

µil1 · · ·µlt−1ljPi · · ·Plt−1Pjyj(0).

(10)
Note that it is a summation ofnt products. We now separate
µil1µl1l2 · · ·µlt−1ljPiPl1 · · ·Plt−1Pjyj(0) into aµ product

µil1µl1l2 · · ·µlt−1j (11)

and its corresponding projection product withyj(0), which
is callederror sequence,

PiPl1 · · ·Plt−1Pjyj(0). (12)

From (7) the summation of allµ products (11) satisfies the
following equality

n
∑

j=1

n
∑

lt−1=1

· · ·
n
∑

l1=1

µil1µl1l2 · · ·µlt−1j = 1. (13)

The construction ofMt as a µ product and an error
sequence of projections allows us to separate the topological
features from the part of the algorithm that is specific to
a particular linear equation. We first analyse each product

in the error updating equation (10) by bounding the error
sequences of (12).

Define a sequence of vectorsz(t) ∈ Rn as following

z(j)(t+ 1) = z(t) +
bj −Ajz(t)

‖Aj‖2
AT

j , (14)

wheret > 0 and the superscript(j) corresponds to its row
vectorAj and its scalerbj. Then

Pi (z(0)− x∗) = z(0)− Aiz(0)

‖Ai‖2
AT

i − x∗ +
bj

‖Ai‖2
AT

i

= z(0) +
bi −Aiz(0)

‖Ai‖2
AT

i − x∗

= z(i)(1)− x∗.

Let z(j)(0) = xj(0), then each error sequence in (12) can
be written as

PiPl1 · · ·Plt−2Plt−1Pjyj(0)

=PiPl1 · · ·Plt−2Plt−1

(

z(j)(0)− x∗
)

=Pi · · ·Plt−2

(

z(j)(0) +
blt−1 −Alt−1z

(j)(0)

‖Alt−1‖2
AT

lt−1
− x∗

)

=Pi · · ·Plt−2

(

z(jlt−1)(1)− x∗
)

=z(il1···lt−2lt−1j)(t)− x∗.
(15)

Essentially,z(il1···lt−2lt−1j)(t) forms the sequence ofz(t)
by taking different combinations of orthogonal projection
Pi at different agents,i = 1, 2, · · · , n. We now show that
sequencesz(t) can be bounded, so that the error sequence
is bounded as well.

We now present two theorems for boundingz(t) − x∗,
first for the case when the walkwt is associated with
the productf (wt,Pi), wt ∈ S0(t), and second for the
f (wt,Pi) product wherewt ∈ Sr(t) andr > 1.

Theorem 4.1 (f0 Bound): For anywt ∈ S0(t) it follows
that ‖f(wt,P)‖ 6 1 and thus‖f(wt,P)‖ 6 1. Therefore
the dynamics in (14) satisfy the following inequality

‖z(t)− x∗‖ 6 ‖z(0)− x∗‖ (16)
Proof: Given thatPi is a normalized projection matrix

it follows that ‖Pi‖ = 1.
Theorem 4.2 (f Bound): The sequencez(t) − x∗ of the

part whosePiPl1 · · ·Plt−1Pj product is anf (wt,P) prod-
uct wherewt ∈ Sr(t) and r > 1, then all the sequence
Pi1Pi2 · · · yj(0) in this part from (15) can be written as

z(t)− x∗ = f
(

wt,P
)

yj(0),

where z(t) − x∗ consists of severalf(wi,P), wi ∈ S1(i)
products. Then all the sequencesz(t) − x∗ in this part are
bounded by

‖z(t)− x∗‖ 6

(

1− 1

(
√
nτ‖A−1‖)2

)
nr
2

‖z(0)− x∗‖

<
(

1− κ(A)−2
)

nr
2 ‖z(0)− x∗‖,



whereκ(A) = ‖A‖ · ‖A−1‖ is the usual condition number
of A and we recall the definitionτ = max

i
(‖Ai‖).

The proof of Theorem 4.2 requires several technical Lem-
mas.

Lemma 1 (Orthogonal Projection):Let z(t) ∈ Rn,
‖z(0)‖ = 0 be a sequence that follows

z(j)(t+ 1) = z(t) +
bj −Ajz(t)

‖Aj‖2
AT

j ,

whereAj , bj are defined as those in linear equation (1),
which is the same as (14). Then the orthogonal projection
matrix P⋆

i onto the solution space of the linear equation (1)
is given in [29] as

z(t+ 1) = P⋆
i z(t).

Let 〈z(t+1), z(t)〉 denotes the inner product of two vectors
z(t+1) andz(t), then the above equation can be written as
follows by using the updating function (14)

P⋆
i z(t) = z(t)− Aiz(t)− bi

‖Ai‖2
AT

i

= z(t)− Aiz(t)−Aiz
∗

‖Ai‖
AT

i

‖Ai‖
= z(t)− 〈z(t)− z∗, Zi〉ZT

i ,

whereZi = Ai

‖Ai‖ , i = 1, 2, · · · , n, ‖Zi‖ = 1 is a set of
normal vectors in the hyperplane{z(t) : 〈Ai, z(t)〉 = bi}.

Lemma 2 (Orthogonality):Consider the linear equation
(1) and letx∗ be the unique solution. The difference of two
vectorsz(t+1) andz(t) is in the kernel ofP⋆

i by Orthogonal
Projection Lemma 1, which means that it is orthogonal to the
solution space. Therefore it is also orthogonal toz(t+1)−x∗.
In other words, the orthogonality of two vectorsz(t+1)−z(t)
andz(t+ 1)− x∗ satisfies

‖z(t+ 1)− z(t)‖2 + ‖z(t+ 1)− x∗‖2 = ‖z(t)− x∗‖2.
Lemma 3 (Inequality):Let A = col{Ai}, A ∈ Rn×n is

full rank. Then the following inequality holds

n
∑

i=1

‖〈 Ai

‖Ai‖
, x〉‖2 >

1

(τ‖A−1‖)2
‖x‖2.

where〈Ai, x〉 denotes the inner product of vectorAi andx
and we recall the definitionτ = max

i
(‖Ai‖).

Proof: [Proof of Inequality Lemma 3] Consider the lin-
ear equation in (1) and using the submultiplicative property
of the ℓ2-norm the following holds

‖A−1‖2 · ‖Ax‖2 > ‖A−1Ax‖2, ∀ x ∈ Rn,

whereA−1 is defined becausex∗ is the unique solution of
the linear equation in (1). Considering the matrix partition
A = col{Ai}, we have

n
∑

i=1

‖〈Ai, x〉‖2 =

n
∑

i=1

‖Ai‖2‖〈
Ai

‖Ai‖
, x〉‖2 >

‖x‖2
‖A−1‖2 .

Moreover,
n
∑

i=1

τ2‖〈 Ai

‖Ai‖
, x〉‖2 >

n
∑

i=1

‖Ai‖2‖〈
Ai

‖Ai‖
, x〉‖2

>
1

‖A−1‖2 ‖x‖
2,

whereτ > 0 sinceA is full rank. Dividing by τ we arrive
at the following inequality

n
∑

i=1

‖〈 Ai

‖Ai‖
, x〉‖2 >

1

(τ‖A−1‖)2
‖x‖2.

Proof: [Proof of f Bound 4.2] Letx∗ denote the unique
solution to the linear equation (1). Letz(t) − x∗ be vector
sequence from thef(wt,Pi), wt ∈ Sr(t) product part of the
error sequence (15) wherer > 1 and substitute thez(t+1) by
the updating function (14) in the the Orthogonality Lemma
2 then we have

‖z(t+ 1)− x∗‖2

=− ‖z(t+ 1)− z(t)‖2 + ‖z(t)− x∗‖2

=− ‖〈Ai, z(t)− x∗〉
‖Ai‖

AT
i

‖Ai‖
‖2 + ‖z(t)− x∗‖2

=− ‖〈z(t)− x∗, Zi〉‖2 + ‖z(t)− x∗‖2,

whereZi = Ai

‖Ai‖ . Since the walkwt ∈ Sr(t), r > 1, the

subscripti in Zi =
Ai

‖Ai‖ takes all the values1, 2, · · · , n at
least once. There existsθi(t) > 0 such that

‖〈z(t)− x∗, Zi〉‖2 >
θi(t)

(τ‖A−1‖)2
‖z(t)− x∗‖2

for i(t) = 1, 2, · · · , n, by the Inequality Lemma 3. Note that

θi(t)

(τ‖A−1‖)2
‖z(t)− x∗‖2 6 ‖〈z(t)− x∗, Zi〉‖2

6 ‖z(t)− x∗‖2,

where ‖Zi‖ = 1. Therefore
θi(t)

(τ‖A−1‖)2 6 1 for i(t) =

1, · · · , n, and then‖z(t)− x∗‖2 is bounded as

‖z(t)− x∗‖2

6

(

1− θi(1)

(τ‖A−1‖)2

)

· · ·
(

1− θi(t)

(τ‖A−1‖)2

)

‖z(0)− x∗‖2,

where

0 6

(

1− θi(t)

(τ‖A−1‖)2

)

6 1. (17)

Note that the sequencez(t) − x∗ forms the f(wt,P),
wt ∈ Sr(t), r > 1 product part. Because of the factPr

i = Pi,
all i(t) = 1, 2, · · · , n are present at least once in the each
sub-walk of the original walk by definition. Hence the walk
wt corresponding to

(

1− θi(1)

(τ‖A−1‖)2
)

· · ·
(

1− θi(t)

(τ‖A−1‖)2
)

is divided intor sub-walkswti ∈ S1(ti) and each sub-walk

corresponds to anf
(

wti , 1− θ

(τ‖A−1‖)2
)

product where

θ = (θi) are the values at all the agents indexed by the



walk wti and all the agentsi = 1, 2, · · · , n appear in the
walk wti at least once. Then each sub-part of the product
corresponding to the walkwti is denoted as

Πwti

(

1− θi(t)

(τ‖A−1‖)2

)

= f

(

wti , 1− θ

(τ‖A−1‖)2

)

where the subscriptwti denotes the consecutive product
corresponding to the walkwti . Furthermore each product
corresponding to awti ∈ S1(ti) is bounded as

f

(

wti , 1− θ

(τ‖A−1‖)2

)

6 Πn
i=1

(

1− θi

(τ‖A−1‖)2

)

since we can always pickn agentsi = 1, 2, · · · , n in the
walk wti and keep their values unchanged and let all the left
θi = 0. Since

(

1− θi(t)

(τ‖A−1‖)2
)

> 0 (17) and

Πn
l=1θl 6

(

1

n

n
∑

l=1

θl

)n

holds whenθl > 0. Therefore the‖z(t) − x∗‖2 is bounded
as

‖z(t)− x∗‖2

6Πr
i=1f

(

wti , 1− θ

(τ‖A−1‖)2

)

‖z(0)− x∗‖2

6Πr
l=1Π

n
i=1

(

1− θi

(τ‖A−1‖)2

)

‖z(0)− x∗‖2

6Πr
l=1

(

1

n

n
∑

i=1

(

1− θi

(τ‖A−1‖)2

))n

‖z(0)− x∗‖2

=

(

1− 1

(
√
nτ‖A−1‖)2

)nr

‖z(0)− x∗‖2,

where
∑n

i=1 θi = 1 by the Inequality Lemma 3.
A loose bound given in terms of condition numberκ(A) =

‖A‖ · ‖A−1‖ is as follows. Sinceτ = max
i

(‖Ai‖) andA is

full rank, then

τ = max
i

(‖Ai‖) < ‖A‖F ,

where ‖A‖F =
√

∑n

i=1

∑n

j=1 a
2
ij is the Frobenius norm.

The scaled condition number [30]κs(A) = ‖A‖F ‖A−1‖
and the condition numberκ(A) satisfies the following in-
equality1 6

κs(A)√
n

6 κ(A), then
√
nτ‖A−1‖ <

√
n‖A‖F ‖A−1‖ 6 κ(A)

and therefore the loose bound is

‖z(t)− x∗‖2 <
(

1− κ(A)−2
)nr ‖z(0)− x∗‖2.

This concludes the proof of Theorem 4.2.
Remark 1:The f Bound Theorem 4.2 is important since

it also bounds the convergence rate of Kaczmarz’s algorithm
[31], which was not well solved in literature [32]. It gives a
tight bound in terms of matrix inverse‖A−1‖ and a loose

bound in terms of condition numberκ(A). The bounds
can be easily computed when the iterative sequence of
Kaczmarz’s algorithm is given, compared to the known
estimate [33]. Furthermore thef Bound Theorem 4.2 clearly
explains the reason that Kaczmarz’s algorithm is slower than
a randomized Kaczmarz’s algorithm [29], [32], [34].

Remark 2:With the help off0 Bound Theorem 4.1 and
f Bound Theorem 4.2, each product in the error updating
equation (10) can be divided into two parts and bounded
separately. One corresponding to thef product part where
r > 1 and all the1 6 i 6 n are present and the other one
corresponding to thef0 product part where not all1 6 i 6 n

are present. We can now prove the Bound Theorem 3.5.
Proof: [Proof of Bound Theorem 3.5] Letf(wt, µij)

denote the correspondingµ product of the error sequence
(12) in (10), then according to thef0 Bound Theorem 4.1 and
f Theorem 4.2 the error updating equation (10) is bounded
as follows

‖yi(t+ 1)‖

6





n
∑

j=1

· · ·
n
∑

l1=1

‖µil1 · · ·µlt−1ljPi · · ·Pjyj(0)‖





6

n
∑

j=1

rm(t)
∑

r=1

∑

wt
ij
∈Sr(t)

f(wt
ij ,

1

d
) (1− ϕ)

nr
2 ‖yj(0)‖

+

n
∑

j=1

∑

wt
ij
∈S0(t)

f(wt
ij ,

1

d
) (1− ϕ)

0
2 ‖yj(0)‖

=

n
∑

j=1

rm(t)
∑

r=0

∑

wt
ij
∈Sr

f(wt
ij ,

1

d
) (1− ϕ)

nr
2 ‖yj(0)‖

whereµij =
αij

di
. Hence the proof is finished.

The bound in (6) gives another proof that the distributed
algorithm studied in this paper converges tox∗ for connected
undirected networks, as shown below.

Discussion of the Algorithm Convergence

Note that the order of awt walk typically increases as
the length of walks keeps growing, sinceG is a connected
network. This implies that for any given orderr, the total
number ofwt ∈ Sr(t) is limited and hence the summation
of all correspondingf(wt, 1

d
) products is bounded, for the

summation of all walks is 1 (8). The number of all walks
starting at vertexvi for any given orderr and lengtht can
be estimated by combinatorics. This method is shown when
the network topology is a complete graph. For any given
network, the number of walks can be bounded similarly, but
it can become quite involved.

For any walk of lengtht starting at a fixed vertexv0 in a
complete networkG ∈ Rn×n, the total number of all walks
is nt. Let t ≫ n. In order to count the maximum number of
wt ∈ S0(t) walks, we first choose subsets of verticesV0

k ( V
by picking k 6 n − 2 vertices out ofn andV0

n−1 ( V by
pickingn−1 vertices except the casev0 is not picked, which
results in walks inS1(t) space rather thanS0(t). There are



a total Ck
n of V0

k sets whereCk
n = n!

k!(n−k)! , k 6 n − 2

andCn−1
n − 1 of V0

n−1 sets. Then we choose a vertex with
replacement each time fromV0

k andV0
n−1 and put it into the

sequence of walks to generate all possible walks. The total
numberc0(t) of w0(t) walks is

c0(t) =

n−1
∑

k=1

Ck
nk

t − (n− 1)
t
.

Thewt ∈ S1(t) walks are regarded as combinations ofwn ∈
S1(n) walks andwt−n ∈ S0(t−n) walks. We first choosen
positions out oft in the sequences of walks and make these
n positions formwn ∈ S1(n) walks. There areCn

t ways to
choosen vertices to form aV1

n set and the numberw1(n)
walks is exactlyn! for each set, so the number of different
sub-sequences inw1(t) walks isPn

t = n!Cn
t . The number

of walksw0(t − n) is simply c0(t − n). Hence the number
of w1(t) walks is bounded by

c1(t) = Pn
t c

0(t− n).

In general cases wherer > 2, we pick n positions out of
1, · · · , t − (r − 1)n locations to form the firstwn ∈ S1(n)
walk sequence and pick the left-over locations tillt−(r−2)n
to form the secondwn ∈ S1(n) walk and so on. Lett1 denote
the start position andt2−1 be the end position picked out by
the firstwn ∈ S1(n) walk sequence, then the total number of
sub-sequences isPn

t2−t1
. Definet3, · · · tr similarly, then the

secondwn ∈ S1(n) walk sequence can pick from position
t2 till t3 − 1 in the originalwt ∈ Sr(t) sequence. The total
number of sub-sequences for the secondwn ∈ S1(n) walk
is Pn

t3−t2
. The total number ofwr(t) walks is bounded by

cr(t) = Πr
i=1P

n
ti+1−ti

c0 (t− rn) .

The number of total walks then satisfies

lim
t→∞

cr(t)

nt
= lim

t→∞
trnc0(t− rn)

nrnnt−rn
= 0

since c0(t−rn)
nt−rn reduces exponentially to 0. This means for

any given orderr, the corresponding walks account for only
a minor portion of all walks. In other words, the order of all
products keeps growing when the length of walks increases.

Since the summation of allf
(

wt, 1
d

)

products is 1 (8) and
the limit of the portion of walks among all walks of a given
orderrc is 0, therefore the following two limits exist

lim
t→∞

ρ1 = lim
t→∞

n
∑

j=1

rm(t)
∑

r=rc+1

∑

wt
ij
∈Sr

f(wt
ij , µ) = 1,

lim
t→∞

ρ2 = lim
t→∞

n
∑

j=1

rc
∑

r=0

∑

wt
ij
∈Sr(t)

f(wt
ij , µ) = 0.

for any finite rc. Furthermore, the limit of the error in (3)
satisfies the following

lim
t→∞

‖yi(t+ 1)‖

6 lim
t→∞

ρ1 (1− ϕ)
nr
2 ‖yj(0)‖+ lim

t→∞
ρ2 (1− ϕ)

nr
2 ‖yj(0)‖

=0,

where limt→∞ rm(t) = ∞. Therefore the algorithm con-
verges as all thelimt→∞ xi(t) → x∗ for regular networks.

Future work will look to analyze the combinatorics of
more general network topologies.

V. CONCLUSIONS

In this work, we systematically study the impact of net-
work topology on the performance of a network-based dis-
tributed algorithm in solving linear algebraic equations.Both
theoretical analysis and simulation results show that net-
works with higher mean degree, smaller diameter, and more
homogeneous degree distribution make the algorithm con-
verge faster. Interestingly,k-regular random networks with
small mean degree could have a comparable performance as
degree-heterogeneous networks with very high mean degree.
Hence, it is possible to reduce the communication cost (i.e.
by designing sparser networks) and simultaneously keep the
fast convergence rate.

Besides classical consensus problems, we expect that more
complicated problems can also be solved with network-based
distributed algorithms. Our results presented here provide
a method to analyse the topology impacts on a network-
based distributed algorithm. It may shed light on the design
of better network topologies to improve the performance of
general multi-agent distributed algorithms in solving more
challenging real-world problems.
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