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Impacts of Network Topology on the Performance of a Distribued
Algorithm Solving Linear Equations

Hong-Tai Cad, Travis E. Gibsoh, Shaoshuai Motiand Yang-Yu Lid

Abstract— Recently a distributed algorithm has been pro- matrix is denoted by an upper case letter with a subscript,
posed for multi-agent networks to solve a system of linear je. A; is a partition of matrixA, which can also be a row
algebraic equations, by assuming each agent only knows paof y,ector, Vectors are denoted by lower case italic lettershsu

the system and is able to communicate with nearest neighbots )
update their local solutions. This paper investigates howte net- 357 ¥ 2- A network or graph is denoted &8V, £), where

work topology impacts exponential convergence of the propged V' IS the node (or vertex) set and is the link (or edge)
algorithm. It is found that networks with higher mean degree,  set. The network topology is represented by the adjacency

smaller diameter, and homogeneous degree distribution teh matrix A = {ai;} of the network. This paper is organized
to a‘l’h'e"e fastg(; %onvergence' Both analytical and nume@t 55 follows. The network-based distributed algorithm is
results are provided. briefly presented in Sectiohlll. The theory of how the

. INTRODUCTION network topology impacts the algorithm performance

A major goal in studying networked systems is to underS Present in Sectiof 1il. The main proof is presented in
stand the impact of network topology within the context ofSectiorL V. Finally, the conclusion is presented in Sedlion
the application of interest, from epidemic spreading [2], [
to synchronization [3], [4], controllability [5]—[7] , olesv-

II. ADISTRIBUTED ALGORITHM FOR SOLVING LINEAR
ability [8], flocking [9], [10] and consensus [11]-[14].

EQUATIONS
Recently, Mouet al. proposed a network-based distributed ) Q_ ) )
algorithm to solve forz in the linear equatiot\z = b [15], Consider a system of linear algebraic equations
[16]. In this algorithm it is assumed that each agent is ledat Az —b 1)

in a communication network and has partial knowledge of
A andb. Under mild conditions on the connectivity of thewhich has a unique solution*. Here A € R"*", b € R"
underlying network, all the agents’ states (or local solut) andz € R™. The partition of the matrixA is defined as

converge to the exact solutian= A ~'b [15]-[19]. A =col{Ay, As, -+, Ap}, wherecol{-} is an operator that
The proposed algorithm in [16] is distributed, applicablestacks elements into a colum#; € R™*™, and the partition
for all linear equations as long as they have solutiongf the vector is defined a$ = [b1, bo, - - - ,bm]T, b, € R™i,

works for time-varying networks, converges exponentiallyvhered""" , n, = n. Assume that the entire syste\, b) is

fast, operates asynchronously, and does not involve anly smanavailable to a single agent; instead different partgiof

step-size. The aim of this paper is to further charactetiee t the systerT(A?iX", b;”) are available to different agents. In

relation between its exponential convergence and the mietwahis paper we consider the simplest case= 1 andm = n,

topology. The main contribution of this work is an analyticai.e. each agent knows exactly one rowAfmatrix and one

bound that connects the convergence rate of the algorithmetement of theh vector.

the network topology and the linear equation. Both theoret- The distributed algorithm proposed in [16] computes the

ical and numerical results show that networks with highesolution of the linear equatiorf](1) through a multi-agent

mean degree, smaller diameter, and homogeneous degne¢workG(V, &), whereV = {1,2,--- ,n} and& CV x V.

distributions tend to speed up this distributed algorithm. The topology of thisn-agent network is represented by its
The following notation is used throughout the paper. Thadjacency matrixA(G) = [a;],, .., With

¢2-norm is denoted a§ - ||. Matrices are denoted by upper

case letters in bold such a& and P. A partition of a {1 if(i,j) € £

;s =
i o N ) 7 0 otherwise.
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x; with its neighbors, denoted as; = {j € V|(i,j) € £}.

Before we state the main theorem, we introduce the following

In this work ¢ is the discrete time variable and takes valuedefinitions.

in {0, 1, 2,---}. The exact (or global) solution tAx = b

is obtained when all the local solutions's reach consensus [23] of length [ is a sequence of verticggy, vy, - - -

through the following iteration procedure:

Soa ], @

JEN;

1

whereP; =I— AT (A, - AiT)flAi is the orthogonal projec-
tion on the kernel of4;, i = 1,--- ,n, andd; = Z?:l @i
is the degree of agerit

Let z* be the true solution to[11) and it must satisfy

Ajx* =b; fori =1,--- ,n. Define the error between;(t)
andz* as

yi(t) = xi(t) — a7, 3)
which is in the kernel of4;. In addition, note than =P;

andP;y;(t) = vy;(t). Replacing; (t+1) andz;(t) by y; (t+
1) andP,y;(¢) in (@), we get theerror updating equation

1
yilt+1) = —Pi Y Py;(t), (4)
t JEN;
fori =1, ---,n. Thesen equations can be rewritten in the

following compact form

y(t) = (Pasag [(D7AT) @) Paiag) 4(0) = M),
where the matrixM is called theupdating matrix and
y(t) col {y1(t), y2(t), - éyngt)}. The matrixPyiae =
diag{P1,Ps,--- ,P,} € R™ *" is a block diagonal matrix
with P; € R"*™ and D diag{di,ds,--- ,d,} is a
diagonal matrix. The operatap is the kronecker product
[20].

Definition 3.1 (Walk):In a graphg, a walk w' € V!*!
;1)
with {v;_1,v;} € £(G) forall 1 < i <[l whenl > 1. If
I =0, thenw? is simply a vertex,. Specifically, we denote
a walk of lengthl starting at vertexy, and ending at vertex
v aswl .

Definition 3.2 (f(w', 3) Product of a Walk):Let w' be a
walk of length!. Let 5,, € U be a value associated with
vertexv;. We can define a function of the walk! as

fl', ) = =B,

where 3 is indexed by the walk! = (vg, vy, -+ ,v;) with
valuess = (Buys Boys -+, By, )- The functionf(w!, 3) € U
is called theproduct of walkw'. In this work U is eitherR
or R™*™,

Definition 3.3 §(/) and S*(/) Spaces):In a graphg, all
the possible walks of lengthform the S(I) Space. Denote
a subspace d8(/) asS*(l) if and only if

« the walkw! starts from an arbitrary vertex, and ends
at v; and visits all the vertices; € V of G,

« there does not exist a vertex € V that dividesw!' into
two sub-walks, where one walk startsigtand ends at
vj;, the other one starts at and ends at;, that both
of them visit all the vertices; € V of G.

Note that the end vertex of the previous sub-walk and the
starting vertex of the following sub-walk are repeated @wic
when dividing a walk. It is trivial that fow' walks of length
I < n—1, they can't be in thes'(I) subspace.

Definition 3.4 (Orderr): If a walk w' can be divided
into several walksw!t, w'2, ---, w'", wherel; > 1 and
w' € S'(1;), then all the walks of the same numbeform

This algorithm has been proven to converge by using the subspacé&” (1) wherer is called theorder of the space.

mixed norm [21] [16, Chapter 4.3.1] &¥1 defined as
M| mix = Q]|

We also say that is theorder of the walkw!. S"(1) € S(1)
for any orderr.
If a walk w! does not visit all the vertices in a gragh

whereQ = {¢;;}, ¢;; = 52| P;P;]|. Indeed,M" satisfies then its order is = 0 and it is inS°(l). This special case
limy 00 || M| pmix = O if the undirected multi-agent network means that there exists at least one vertex 1V which does
is connected [16]. Thereforg = M'y(0) — 0 and thus notappear in the sequence of the walk The order of any
x; — x* foralli e V. w' walk is uniquely determined and non-negative, i.¢: 0.
Network properties play important roles in consensus Let ¢ m, 7 = max([|Al]), v
problems. In particular, the second smallest eigenvajy€ .
of the graph laplacian bounds the convergence ratg o)f cogd%:’ ﬁ’ o ’d%' bg indexed by the walkwj,
sensus [14], [22]. Given the fact that projection matriPe's (%> 01, -, vi—1,) Which starts at agentand ends at agent
are used in constructing the updating madvix it is not clear J Wherew; € V**, then we have the following theorem
how the network topology4 impacts the convergence rate Theorem 3.5 (Convergence Boundjiven a linear equa-
of this algorithm. Thus, in this work we approach the proofion Az = b, A = col{A;} € R"*" and its unique solution

an undirected network(V, ) whose adjacency matrix is

A = {w;}, then the erroy;(t) defined in[(B) is bounded as

Il. | MPACTS OFNETWORK TOPOLOGY ON THE

DISTRIBUTED ALGORITHM
TM(t)

s+ DI <D S sty 2y (-9 F s 00)]
N,

i =0 wi esn
(6)

A. Theoretical Analysis

In this section, we study how network topology impacts
the performance of the network-based distributed algarith



fori=1,--- ,n. Herer,(t) < [£] is the maximum order walk w!; € S°(t), when the walkw! ;, makes one more
of the product. Note thab{; = wy; = (i) andw;; = (i,4).  visit from agenti; to the next agentt+1, it forms d;, new
Theorem3.b provides another method to prove that thgroducts and the summation of dll products is unchanged,
distributed algorithm converges to the true solutighbe- which is already shown i {7). However, there exists a walk
sides the mixed norm method in [16], which is discussedf length¢; when there exists at least one walk changing
at the end of this work. The bound ifi] (6) connects thérom the S°(¢;) subspace to th&°(¢; + 1) subspace. For
network topology with the convergence rate of the algorithmeveryw?? walk (of orderr > 1) of lengtht,, it never changes
by the degreed; of agenti explicitly, and by counting to a walk of order = 0. This hold for any walkuv! € S°(t),
the number ofw! € S"(t) walks in every orderr > 0 hence the summation of afl(w’, 1), w' € S°(t) product is
in the network implicitly. Before moving to the detailed never increasing, that is
proof of this theorem, we first discuss how topology impacts 1
Fhe performance of .the algorlt_hr.n.. To illustrate the topglog Z Z t+1 Z Z f(w W Z
impacts, we start with the definition of a walk’, then we N, w&lesoaH) N; w,€80(t)
discuss the properties of the correspondfitg’, ) product. Y
Given a networkG of size n, all the possible walks of and given a walk of lengthand a starting agerit the bound
lengtht are determined by its adjacency matix= {a;;}. in () decreases when the order of walks increases, due to
Let 11 be the inverse degree of agezhtthen the product the exponential factotim, . (1 — 90)% = 0. Since the
d}g dll,l ---—t can be represented b/ (v ;, , 1), where we summation of allf products starting from a chosen agent

recall that? is indexed by the walkw{, ;. For simplicity, 7 iS alwaysl (8), the bound iri3I5 can only be decreased
we leti = i, andj = i,. Hence given a starting agent by either i) for a fixed lengtlt, increasing the percentage of
the summation of all products of the walk' from i to all Walks with higherr, or ii) by increasing the order for all

the agentsj = 1,2,--- ,n is represented a5_}_, 74-. In walks as rapidly as possible.

general, we have With the above two observations we conclude that given

any two networksg; and G,, the distributed algorithn{2)

Ti(t)Zf’” N i i Qily Vgl MUy 1 tends to converge faster on netwoiks if G; and G, have
CA d;d d d;" similar topology properties except any combinations of the
r=0 wt =1 =1 1y li—1 Uy
e e e following
It is trivial that for anyr, i, j and the walkw};, f(w};, 1y e 1 G; has a shorter diameter,

(0,1). We now explore a scenario when the above mentioned2 G, has a more homogeneous degree distribution,
sum remains a constant, even if the walk length increases. 3 G; has a higher mean degree.

Given a networkg and given a starting ageﬁl'f all Although Theorenfi 35 haé as a factor in the products,
walks wj;, j = 1,2,--- ,n are repeated by walks;;;” Who i is" ot Yrivial to conclude that higher degree makes the
visit one more ageny’ at theHelnoi after reaching agent products smaller since higher degree decreases each produc
then the summation of alf (w;;;", 3) products remains the \hjje increases the number of products. The summation of
same. Th|s visit of agent’ generates: products based ON all products remains a constant, as showiiin (8). However the
each f(wj;, 3) and each of them equals @Lf( i»a)  bound decreases when the ordesf the products increases.
j=1,2,---,n.0nlyd; out ofn products are not zero when We address these three points in order.
ajj = 1. The summation of all newly generated products is 1) Diameter: For two graphsg:, and Gs
unchanged, which is

with the same
degree distribution and hence the same mean degrég, if
;1 ;1 has a shorter diameter [24] th&h, then for fixedt, walks
; dj %:f(wij’ 3) o %:f(wij’ E) (7) from G; will necessarily have a larger minimum ordemas
’ ’ g compared to those fror;. This follows from the fact that
for ZN = d;. In general, the summation of all productsall the agents can be visited with fewer steps in a network
of all walks byt + 1 visits starting from a given ageritto ~ with shorter diameter. Thus, all things being equal between

all the neigbors of all the agenjsis two graphs, ifr(t) increases more rapidly for one graph
o (8) as opposed to another, the exponential fadtbr ) 2
Z Z Z Flwl, X vv_iII decrease more ra_tpit;ily. Therefor_e networks with shorte
= =tn ”’ diameter make the distributed algorithm converge faster.
nj o 8) 2) Degree Distribution:Let G; andG, be two graphs with
_ Z Z Z Z Qi - Qiead Xjr same mean degree but different degree distributionsgl et
di,_, d; have a more homogeneous degree distribution thakvalks

J'=1 J -1

in G, typically have lower order than the walks of the
Given a networkg and a starting agent the summation same length irG;. This is because walks o, rather than
2N, 2wt ,€5°0) f(wf;, 3) is never increasing and the orderg, have to walk though the high degree vertices again and
r of the f( ) product is never decreasmg as the walkagain to reach all the other low degree vertices. Hence for
lengtht grows leen an arbitrary (wj ; , d) product of the a given length of walks, the orderfrom the walks onG,



10 (&

is higher. Therefore homogeneous degree distribution mak *
the algorithm converges faster.
3) Mean Degree: Adding edges to a graph typically xw

results in a shorter diameter. Given two graphis and
G- with similar degree distribution wherg, has a higher
mean degree, the diameter ¢f is typically no larger
than G,. Hence the orders’s from G; are typically higher
than those inG, for walks of fixed length. Adding a new
edge can either make the degree distribution homogenec
or make it heterogeneous, depending on where the ne
edge is added. The overall change of degree distribution f .
each newly added edge is difficult to analyze. However, i.
multiple new edges are added uniformly to a graph, this wi
typically result in a more homogeneous degree distributiol
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Iteration Steps Iteration Steps Iteration Steps
B. Simulation Results Fig. 1. Impact of network topology on the performance of tieéwork-

; ; [ i\, based distributed algorithm. . Tens of different linear atgns are solved
To Ve“fy our theoretical predlctlons, we perform extersiv by the distributed algorithm on six groups of networks ofesiz = 100.

numerical simulations. We ﬁ.rSt quantify the convergende rathe complex networks in each group are (a-c) Small-world Y8¥#works;
of the network-based distributed algorithm. One measufe-) Scale-free (SF) networks, Erdos-Rényi (ER) randgraphs, random

is the solution accuracy of the algorithm which is théegular (RR) graphs. In each case, we show the box-and-emhjgkts and
! he median value of the relative error (or convergence tafe) as functions

Euclidean distance between the local solution and the exagt. at each marked iteration stepa box-and-whisker plot is drawn. The
(or global) one: mean degree of the complex networks is representegkas

ei(t) = los(t) — ¥, i =1,2,-- ,n.

Smallere; means faster convergence rate and hence bet v @ ) © © ®
algorithm performance. The impacts of different networl B hun I e B Rt I Heslg e
topologies are measured by the statistical performances I: i
the distributed algorithm, i.eE' (3~ ; ;) on an ensemble 10°- f? o 1
of linear equations. We notice that the Euclidean distanc iﬁ, 1 - i
defined above needs a reference. For example, if the tr ‘& IH; g
solutions of two cases afer*!| = 100 and ||z*2|| = 0.1 0t . . N SRR
respectively, while the summation of Euclidean distandes « 2. B Hﬂ
all local solutions toz*7 are both> >, e = Y7 ||2] — || aemgys o A
™3| =1, j = 1,2, it is obvious the accuracy of the former ; | o
iterative process is much higher than the latter one. Thezef 1
the Euclidean distance should be scaled by the initial err jgg;d =§§§;d 3555;_ S QR . |
>i_y €i(0), yielding the relative error seoose Soonse oooons ITLC OIS LTI

=11 annnntn arnrrn N RhNh  KARVKEE  ARKKRE  AABRBRKM

n n
R(t) = Doz €i(t) iy lloi(t) — 27l (9) Fig. 2. Convergence rate at a chosen time step for complewories

o S €(0) o S lwi(0) — a*|)2 with different topologies. The box-plot shows the relatiors at a given
. stepTs = 2000. Networks with similar topological features are grouped
In this way, convergence performances among a System ©fether in a particular subfigure.

linear equations can be compared.

Figure.[1 shows the relative error changes with different
network topologies, including small-world (SW) networks The numerical results shown in Figuid. 1 clearly verify
[25] with random rewiring probabilityp, scale-free (SF) our theoretical predictions, i.e. if two networks share -sim
networks [26] with degree exponent Erdds-Rényi (ER) ilar topological properties, the one with smaller diameter
random graphs [27] with connectivity probability and (or more homogeneous degree distribution, or higher mean
random regular (RR) graphs [28] with mean degké¢. degree) perform better than the other. To further dematestra
The networks in each subfigure are the same in their me#ime topology impacts, consideR(t) at ¢ = 2000 shown
degree and they are different on only one parameter. Smadls box-and-whisker plots in Figurlg. 2. The smaller relative
world networks (a-c) are different in rewiring probabgii error R(¢) means higher convergence rate. It is clear from
p, which determines network diameters. Scale-free networkBigure[2a-c and Figurg] 2d-f that the upper bound of redativ
graphs and RR graphs are drastically different in their elegr errors decreases as the mean degree increases for a given
distributions: scale-free networks are most heterogesiand network model. In other words, higher mean degree makes
random regular graphs are most homogeneous. the algorithm reach the true solution faster, and is coesist



with our theoretical analysis. Figufd. 2a-c display thaakm in the error updating equation _{(10) by bounding the error
world networks with higher rewiring probability (and hencesequences of (12).

smaller diameters) have smaller relative erd@rsconfirming Define a sequence of vector&) € R™ as following
our theoretical prediction smaller diameter contributes t

higher convergence rate. As shown in Figlde. 2d-f, for any Z(j)(t +1)=z(t) + MAT, (14)
given mean degree, the random regular graphs have the 14112 !

smallest relative errors while scale free networks perforjyheret > 0 and the superscriptj) corresponds to its row
the worst. This means that the degree heterogeneity deQra%ctorA and its scaleb;. Then

the performance of the network-based distributed algarith

in solving linear equation$g{1). P, (2(0) — 2*) = 2(0) — Aiz(0 )AT e b AT
! A2 A2
IV. PROOF OF THEBOUND THEOREM H HA 2(0) Al
— 'L T *

Before the formal proof of Theorem 3.5, we discuss the =2(0)+ 42 A —=
structure of the matriM* (B) and introduce some technical —20(1) — z*
lemmas. ) N '

Let ml('j) € R"*" be thei, j-th partition matrix of M, et »()(0) = z;(0), then each error sequence [M](12) can
then s be written as

* d; PiPh e .Plt—2Plt—1Pjyj (O)

where we recall thaP; is an orthogonal projection matrix —p,p, ...P, .P;,_, (z(j)(()) _ I*)
defined right after [{2). Theses block matricesgl.) are _

actually the updating matrix of;(t), which meansy; (¢ + PPy, (290 + bi_, — AlHZ(J)(O)AlT g
=", ml(.;)yj(t). Similarly, Ietmg.) denote the partition e Az, |I? o

. : .
matrix of M*, then -P,..-P, , (Z(mfl)(l) _ x*)

n n
E § ily-ly—2ly—17
Mgty = MY,y :Z(ll t—20t ]J)(t)—I*.

[ Pt R et (15)
s Q- oy Essgntially,z(“l”'“*2“*1-_7')(t)_ forms the sequence af(t)
= Z =1 Z dl y ——2P;---P;, Pj. by taking different combinations of orthogonal projection
li_1=1 d,_, b P; at different agents; = 1,2,--- ,n. We now show that

. OF . . sequences(t) can be bounded, so that the error sequence
Although the expression cm is long, it shows thaiVi is bounded as well.

is simply a weighted sum of prOJect|on products. It follows We now present two theorems for bounding) — z*
that [4) can be written ag;(t) = >°7_ m{Y) (0). Define t
1 M5 Yj first for the case when the walk?® is associated Wlth

pij = G+ €[0,0.5], then we have the productf (w!,P;), w' € S°(t), and second for the
n n f (w',P;) product wherew! € S"(t) andr > 1.
= Z e Z Mty - ptp_y1; Pi - Pr,_ Pjy;(0). Theorem 4.1 (° Bound): For anyw’ € S%(¢) it follows
j=1 =1 that || f(w',P)|| < 1 and thus||f(w!, P)|| < 1. Therefore

o _ (10) the dynamics in[(114) satisfy the following inequality
Note that it is a summation oft products. We now separate

ftity stz + o1, PP, - Py, Pjy;(0) into ap product [2(t) — 2™ [| < [|2(0) — 2| (16)
Proof: Given thatP; is a normalized projection matrix
ity iyl - [, (11) it follows that ||P;|| = 1. n
and its corresponding projection product wigh(0), which Theorem 4.2  Bound): The sequence(t) — z* of the
uct wherew® € S”(t) andr > 1, then all the sequence
PPy, - Py, Pjy;(0). (12) P, P;,---y;(0) in this part from [I5) can be written as
From [7) the summation of ajl products[(Ill) satisfies the 2(t) — 2 = f (w', P) y;(0),

following equality . ‘
where z(t) — z* consists of severaf (w’,P), w® € S!(i)

Z Z Z [ty sty - i,y = 1. (13) products. Then all the sequence@) — z* in this part are
J=1l—1=1  L=1 bounded by

The construction ofM? as ap product and an error 1 kil
sequence of projections allows us to separate the topalbgic [2(t) — 2™[| < (1 - —12> [[2(0) — ™|
features from the part of the algorithm that is specific to (\/HT”AM )
a particular linear equation. We first analyse each product < (1= K(A)7?) 2 ||2(0) — 2¥|,



wherex(A) = ||A|| - ||A~}| is the usual condition number Moreover,

of A and we recall the definitiom = max (|| 4;]]). n A n A
The proof of Theoreri 412 requires several technical Lem- ZT2H<|\A1-|| )| = %1 AZH )2
mas. ‘ !
Lemma 1 (Orthogonal Projection)et z(t) € R", > 22,
[2(0)|| = 0 be a sequence that follows [A~12
_ b — A,=(1) wherer > 0 since A is full rank. Dividing by = we arrive
2Dt 4+1) = 2(t) + WAJT, at the following inequality
A 2 1 2
where A;, b; are defined as those in linear equatiéh (1), Z||<||A_H,$>H > - 5 Il *.
which is the same a$ (Ll4). Then the orthogonal projection i=1 g (rllA=])
matrix P} onto the solution space of the linear equatioh (1) ]
is given in [29] as Proof: [Proof of f Bound4.2] Letz* denote the unique

solution to the linear equatiofil(1). Lett) — z* be vector
sequence from th¢(w’, P;), w' € S"(¢) product part of the
error sequenc€ (15) where> 1 and substitute the(¢+1) by
Sthe updating function [(14) in the the Orthogonality Lemma

2(t+1) =Prz(t).

Let (z(t+1), z(¢)) denotes the inner product of two vectors
z(t+1) and z(t), then the above equation can be written
follows by using the updating functiof (114) " then W|T ?ave ) "

z(t+1)—z*
Pra(0) = 2(1) - ST == llst+ D) = 2O + () — "I
. (Ai, 2(t) —a*) A7 o |2
+ ||z(t) —
AT Al =0 = =)
== [{z(t) — 2", Z)II* + [|2(t) — =*||?,

where Z; = 4. Since the walkw! € S"(t), r > 1, the

subscripti in Z; = ”A T takes all the values,2,--- ,n at
least once. There ems% t) = 0 such that

= 2(t) — L
O ==& TAl
= Z(t) - <Z(t) - Z*v Zi>ZiT7

where Z; = p4ip, i = 1,2,---,n, ||Zi] = 1is a set of

normal vectors in the hyperplade(t) : (A;, 2(t)) = b; }.
Lemma 2 (Orthogonality)Consider the linear equation

(@) and letz* be the unique solution. The difference of two 1z(t) — 2%, Z) || > Oi() () — &*||?

vectorsz(t+1) andz(t) is in the kernel ofP} by Orthogonal P = (r]|A-1|)?

Projection LemmaAll, which means that it is orthogonal to thF

solution space. Therefore it is also orthogonatto+1) —x =1,2,-++,n, by the Inequality Lemm@l3. Note that

In other words, the orthogonality of two vectarg@+1)— () 0 _ « A2
andz(t + 1) — 2* satisfies CIA-1)? 1”)2H 2(t) — 2|7 < [{2(t) — 2%, Z) |
* < t) — z* 27
l2(t+1) = 2 (O + ll=(t + 1) — 2" |]* = ||(t) — ">, [|2(t) — =7
Lemma 3 (Inequality)Let A = col{A;}, A € R"™is  \yhere |z, = 1. Therefore HAl(t)l > < 1 fori(t) =
full rank. Then the following inequality holds 1., and then| () — z* Hé I bounded as
- A; 1 . 2
> g ol > =g el |2(t) — 27|
i=1 Al (rlA=])

Oicn) Oi 2
<|1l-—————— ] - [1-—————= | ||2(0) — 27|
. Y 12 )
where (A;, z) denotes the inner product of vectds andx (T A=) (t]|A-1]))
and we recall the definitiom = max (|| 4;]|). Where

Proof: [Proof of Inequality Lemma&l3] Consider the lin- ( 0ir) ) an

ear equation in[{1) and using the submultiplicative propert (7-||A*1||)2
of the ¢2-norm the following holds

s ) . ) Note that the sequence(t) — z* forms the f(w',P),

[ATH" - [|Az]® = [AT Az]”, V 2 € R", w' € S”(t), r > 1 product part. Because of the fdef = P
all i(t) = 1,2,--- ,n are present at least once in the each
sub-walk of the original walk by definition. Hence the walk
t ; b5 1) 410}

w' corresponding to(l - 7) e (1 - 72)

where A~! is defined because* is the unique solution of
the linear equation in({1). Considering the matrix pantitio

A = col{A;}, we have oo : (r[A-T])? (I A=1])
is divided intor sub-walksw': € S'(t;) and each sub-walk
n 2 ti ] — o
S A 2 = D> ||£107H1 N corresponds to ary (w1 (THA*III)Z) product where
=1 A~ 6 = (6;) are the values at all the agents indexed by the



walk w? and all the agents = 1,2, - -

,n appear in the bound in terms of condition numbet(A). The bounds

walk w' at least once. Then each sub-part of the producin be easily computed when the iterative sequence of

corresponding to the walk® is denoted as

)= (- )
Hwti 1—— | = f il
( (T A1)’ T Ay

where the subscriptv®' denotes the consecutive product
Furthermore each product

corresponding to the walky’:.
corresponding to a': € S'(¢;) is bounded as

0 0,
Pl ——— | S, (1 - ————
/ <w <T||A—1||>2> : ( <T|A-1||>2>

since we can always pick agentsi = 1,2,---

,n in the

Kaczmarz's algorithm is given, compared to the known

estimate [33]. Furthermore theBound Theorerh 412 clearly

explains the reason that Kaczmarz’s algorithm is slowen tha

a randomized Kaczmarz's algorithm [29], [32], [34].
Remark 2:With the help of f Bound Theoreni 411 and

f Bound Theoreni_4]2, each product in the error updating

equation [(ID) can be divided into two parts and bounded

separately. One corresponding to tfigoroduct part where

r > 1 and all thel < ¢ < n are present and the other one

corresponding to th¢® product part where notall < i < n

are present. We can now prove the Bound Thedremn 3.5.

Proof: [Proof of Bound Theoreh 3.5] Lef (w', pi;)

walk w' and keep their values unchanged and let all the leftenote the corresponding product of the error sequence

L i __ b%m
0; = 0. Slnce(l TA-1])?

1<\
om0, < (=S50
s ()

>0 ({@I4) and

holds whend; > 0. Therefore the||z(t) — z*||? is bounded
as
l2(t) — 2"
<z 1f< " 1—%) 12(0) — 2™
(A=)
—a*||?

T n 9
S I, | 1= W) 12(0)
<II (

1< 0; ! ,
= . S 2(0) — 2*
(n;< AT )) [[2(0) — =]

= <1 - m> [[2(0) — z*|?,

where}"" | 6, =1 by the Inequality LemmA&l3.

A loose bound given in terms of condition numbkgA ) =
A - ||A~Y| is as follows. Since- = max (||4;|) and A is

full rank, then

T = InilX(HAln) < HAHFa

where ||A]|F =
The scaled condition number [3G](A) = ||A| r||A7Y|

and the condition numbet(A) satisfies the following in-

Ks(A)
vn

Vir|ATH < Vol Al p|ATH < K(A
and therefore the loose bound is

12(8) = 2*[|* < (1~ w(A) %)™ |1(0)

equality 1 < < k(A), then

— 2|2

This concludes the proof of TheordmK.2. [ |

>iz1 >_j—y ai; is the Frobenius norm.

(12) in (0), then according to th&’ Bound Theorerh 411 and
f Theoren{4.R the error updating equatibnl (10) is bounded
as follows

lya(t + 1)
ZZ ||lu7;l1.../’blt—1le7; Jy7( )”
j=1 =1

n Tm(t)

<Y % S w3 (1= ) ¥ ;0]

J=1 r=1 w! EST

+Z > f W— (1= ¢)% ||y (0)]
J=1w} GSU

n Tm(t) o

=> > Z flw w— (1— )% [ly;(0)]]
=1 r=0 w? 687

where;; = [ |

The bound in [IB) gives another proof that the distributed
algorithm studied in this paper converges:tofor connected
undirected networks, as shown below.

Discussion of the Algorithm Convergence

Note that the order of as® walk typically increases as
the length of walks keeps growing, singeis a connected
network. This implies that for any given order the total
number ofw! € S"(¢) is limited and hence the summation
of all correspondingf (w* é) products is bounded, for the
summation of all walks is 1[{8). The number of all walks
starting at vertex; for any given order and lengtht can
be estimated by combinatorics. This method is shown when
the network topology is a complete graph. For any given
network, the number of walks can be bounded similarly, but
it can become quite involved.

For any walk of lengtht starting at a fixed vertex, in a
complete networlg € R"*", the total number of all walks
is n. Lett > n. In order to count the maximum number of

Remark 1:The f Bound Theoreri4]2 is important sincew® € S°(¢) walks, we first choose subsets of vertiagsC V

it also bounds the convergence rate of Kaczmarz’s algorithby picking k¥ < n — 2 vertices out ofn and 12

_1ngy

[31], which was not well solved in literature [32]. It gives apickingn—1 vertices except the casg is not picked, which
tight bound in terms of matrix inversgA—!|| and a loose results in walks inS!(¢) space rather thafi®(¢). There are



n!

ik k< n-—2 wherelim;, r,(t) = co. Therefore the algorithm con-
andC”~1 —1 of V9 _, sets. Then we choose a vertex withverges as all théim; . =;(t) — =* for regular networks.
replacement each time frow andV?_; and put it into the Future work will look to analyze the combinatorics of
sequence of walks to generate all possible walks. The totalore general network topologies.

numberc?(¢) of w®(t) walks is

n—1
O0(t) =Y Ckk' -
k=1

a total C* of VY sets whereC* =

V. CONCLUSIONS

(n— 1)t- In this work, we systematically study the impact of net-

work topology on the performance of a network-based dis-
Thew' € S'(t) walks are regarded as combinationaéf €  tributed algorithm in solving linear algebraic equatioBeth

S!(n) walks andw'~™ e S°(¢t —n) walks. We first choose ~ theoretical analysis and simulation results show that net-
positions out of in the sequences of walks and make thesworks with higher mean degree, smaller diameter, and more
n positions formw” € S*(n) walks. There ar&’" ways to homogeneous degree distribution make the algorithm con-
choosen vertices to form aV! set and the number’(n) Verge faster. Interestingly;-regular random networks with
walks is exactlyn! for each set, so the number of differentsmall mean degree could have a comparable performance as

sub-sequences im' (t) walks is P/* = n!Cy*. The number degree-heterogeneous networks with very high mean degree.
of walks w°(t — n) is simply ¢°(t — n). Hence the number Hence, it is possible to reduce the communication cost (i.e.

of w!(t) walks is bounded by by designing sparser networks) and simultaneously keep the
fast convergence rate.

1 _ 0 . .
¢ (t) = Pt —n). Besides classical consensus problems, we expect that more
In general cases where > 2, we pick n positions out of complicated problems can also be solved with network-based
1,---,t — (r — 1)n locations to form the firsw™ € S*(n) distributed algorithms. Our results presented here pmvid

walk sequence and pick the left-over locationsttill(r—2)n @ method to analyse the topology impacts on a network-
to form the second™ € S!(n) walk and so on. Let; denote based distributed algorithm. It may shed light on the design
the start position antk — 1 be the end position picked out by Of better network topologies to improve the performance of
the firstw” € S'(n) walk sequence, then the total number ogeneral multi-agent distributed algorithms in solving eor
sub-sequences B, . Definets, - - -, similarly, then the challenging real-world problems.
seconduw™ € S'(n) walk sequence can pick from position
to till t3 — 1 in the originalw® € S™(¢) sequence. The total
number of sub-sequences for the secaride S'(n) walk This work was partially supported by the John Templeton
is P _4,. The total number ofv” (¢) walks is bounded by  Foundation (award number 51977).

() HT lptn+1 ti C (t_'f'n)

The number of total walks then satisfies
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