
HAL Id: hal-01426900
https://hal.science/hal-01426900

Submitted on 5 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Riccati observers for position and velocity bias
estimation from direction measurements

Tarek Hamel, Claude Samson

To cite this version:
Tarek Hamel, Claude Samson. Riccati observers for position and velocity bias estimation from direc-
tion measurements. CDC 2016 - Conference on Decision and Control, Dec 2016, Las Vegas, United
States. �hal-01426900�

https://hal.science/hal-01426900
https://hal.archives-ouvertes.fr


Riccati observers for position and velocity bias estimation
from direction measurements

Tarek Hamel and Claude Samson

Abstract— This paper addresses the problem of estimating
the position of a body moving in n (≥ 2)-dimensional Euclidean
space using body velocity measurements and the measure-
ments of direction(s) between the body and one (or several)
source point(s) whose location(s) is (are) known. The proposed
solutions exploit the Continuous Riccati Equation (CRE) to
calculate observer gains yielding global uniform exponential
stability of zero estimation errors, even when the measured body
velocity is biased by an unknown constant perturbation. These
results are obtained under persistent excitation (p.e.) conditions
depending on the number of source points and body motion that
ensure both uniform observability and good conditioning of the
CRE solutions. With respect to previous contributions on the
subject the proposed framework encompasses the static case,
when the body is motionless and at least two source points are
needed to recover its position, and the non-static case, when
body motion and a single source are sufficient. Simple and
explicit observability conditions under which uniform expo-
nential stability is achieved are also worked out for each case.
Simulation results illustrate the performance of the proposed
observers.

I. INTRODUCTION

The general problem of estimating the position, or the
complete pose (position and orientation), of a body relatively
to a certain spatial frame is central for a multitude of
applications. This is common knowledge. Among all sensing
modalities that can be used to acquire the necessary infor-
mation, source points direction (or bearing) measurements
has early motivated many studies, in particular for pose
estimation when body and source points are motionless in the
frame of interest, a problem referred to as the Perspective-
n-Point (PnP) problem in the dedicated literature [1]. The
present paper focuses on the sole estimation of the body
position. This corresponds to applications for which the
body’s attitude is either of lesser importance or is estimated
by using other sensing modalities. In this case, iterative and
recursive methods using ongoing measurements information,
by opposition to non-iterative ones based on the algebraic
resolution of a finite set of constraint equations, are all the
more interesting that their domain of convergence can be
global. The reason is that, without the compact group of
rotations being involved, this simplified problem is amenable
to exact linearisation and can be associated with globally
convex cost functions, as shown further in the paper. Another
advantage of iterative methods is that they are naturally
suited to handle the non-static case, i.e. when either the body
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or the point source(s) move(s), by using on-line the extra
data and information resulting from motion. In particular,
the observation of a single point source may be sufficient
in this case, provided that the body motion regularly grants
a sufficient amount of ”observability”. This possibility has
been studied recently in [2] where the problem is linearised
by considering an augmented state vector. Another solution,
not resorting on state augmentation, is proposed in [3]. The
present paper offers a generalization of previous studies on
this subject that encompasses the static and non-static cases
with an arbitrary number of source points.

For five decades, Kalman filters [4] for linear systems, and
their extensions to non-linear systems known as Extended
Kalman Filters (EKF) [5], have consistently grown in popu-
larity near engineers with various backgrounds (signal pro-
cessing, artificial vision, robotics,...) to address a multitude of
iterative state estimation problems involving additive ”noise”
upon the state and/or the measurements. The optimality of
these filters in a stochastic framework under specific noise
conditions and assumptions, and their direct applicability
to Linear Time-Varying (LTV) systems, have undoubtedly
contributed to this popularity. It is however important to
keep in mind, or to recall, that the stability and robustness
properties associated with them, i.e. features that supersede
conditional stochastic optimality in practice, are not related
to stochastic issues. They result from properties of the
associated deterministic continuous-time (or discrete-time,
depending on the chosen computational framework) Riccati
equation that underlies a (locally) convex estimation error
index (or Lyapunov function) and a way of forming recursive
estimation algorithms that uniformly decrease this index ex-
ponentially (under adequate observability conditions). With
this perspective, Kalman filters belong to the (slightly) larger
set of Riccati observers that we intentionally derive here in
a deterministic framework, knowing that a complementary
stochastic interpretation may be useful to subsequently tune
the Riccati equation parameters and observer gains. We
also believe that, by contrast with standard Kalman filter
derivations, this approach allows one to better comprehend
how the system observability properties are related to the
good conditioning of the Riccati equation solutions and to the
observer’s performance (the rate of convergence to zero of
the estimation errors, in particular) via a Lyapunov analysis.

The paper is organized along five sections. Following the
present introduction, Section II specifies some of the notation
used throughout the paper, recalls the equations of a generic
Riccati observer associated with a LTV system, as well as a
few central properties of the corresponding CRE, and states



complementary technical results tailored for the design and
analysis of the observers here proposed. Position estima-
tion from direction measurements in n (≥ 2)-dimensional
Euclidean space is specifically treated in Sections III. A
single source point is first considered, with stability and
convergence of the observer relying on persistent excitation
properties associated with the body motion. Solutions are
then generalized to the case of multiple source points, with
the augmentation of the number of these points reflecting in
the gradual weakening of the body motion conditions needed
to ensure uniform exponential stability. While measuring the
body velocity is central to estimate the position, we show
how to modify the observers via state augmentation when ve-
locity measurement are biased by a constant vector. We also
show that uniform exponential stability is preserved under the
same observability conditions. Illustrative simulation results
are presented in Section IV, followed by a short section V
of concluding remarks.

II. RICCATI OBSERVERS

Throughout the paper the following notation is used:
• A(t), B(t), C(t) are finite-dimensional matrix-valued

functions depending on time. They are continuous and
bounded.

• The abbreviation p.s.d. (resp. p.d.) is used to denote
semipositive (resp. positive) square matrices that are
also symmetric. Square null matrices are p.s.d. matrices
and identity matrices, denoted as Id independently of
their dimensions, are p.d. matrices.

• Q(t) and V (t) are p.s.d. finite-dimensional matrix-
valued functions of time. They are also continuous and
bounded. When no specific indication is provided in the
text these matrix-valued functions are chosen strictly
positive and greater than εId with ε > 0.

• The infimum (resp. supremum) over time of the smallest
(resp. largest) eigenvalue of a p.s.d matrix-valued func-
tion P (t) is denoted as pm (resp. pM ). For the matrix-
valued function V (t) these infimum and supremum
values are accordingly denoted as vm and vM .

A. Riccati observers

Consider a generic linear time-varying (LTV) system{
ẋ = A(t)x+B(t)u
y = C(t)x

(1)

with x ∈ Rn the system state vector, u ∈ Rs the system
input vector, and y ∈ Rm the system output vector. We here
call Riccati observer any observer of System (1) of the form

˙̂x = A(t)x̂+B(t)u+K(t)(y − C(t)x̂) ; x̂(0) ∈ Rn (2)

with the observer gain given by

K(t) = k(t)P (t)C>(t)Q(t) ; k(t) ≥ 0.5 (3)

where P (t) is the solution to the so-called Continuous
Riccati Equation (CRE)

Ṗ = A(t)P + PA>(t)− PC>(t)Q(t)C(t)P + V (t) (4)

with P (0) any p.d. matrix and Q(t), V (t) p.s.d. matrices that
have to be specified. Note that the optimal Kalman gain in
the stochastic setting where the matrices V (t) and Q−1(t)
are p.d. matrices and interpreted as covariance matrices of
additive noise on the system state and output is obtained by
taking k(t) = 1.

Let us now quickly recall how the stability and conver-
gence properties of a Riccati observer is directly related to
the properties of the solution P (t) to the CRE. Define the
estimation error x̃ := x − x̂, from (1) and (2) one obtains
the error equation

˙̃x = (A(t)−K(t)C(t))x̃ (5)

Assume (for the time being) that P (t), which is a symmetric
matrix by construction, is well defined on R+ and is p.d.,
so that its inverse is also well defined and p.d., and consider
the candidate Lyapunov function V(t) = x̃>(t)P−1(t)x̃(t).
Then, using the fact that Ṗ−1 = −P−1ṖP−1, the time-
derivative of P−1 satisfies the equation

Ṗ−1 = −P−1A(t)−A>(t)P−1+C>(t)Q(t)C(t)−P−1V (t)P−1

(6)
and, using (3) and (5), one easily verifies that the time-

derivative of V(t) is given by

V̇ = −x̃>
(
(2k(t)− 1)C>(t)Q(t)C(t) + P−1V (t)P−1

)
x̃

≤ −x̃>P−1V (t)P−1x̃

≤ − p2m
pM

vmV (≤ 0)
(7)

so that V(t) ≤ V(0)exp(− p2m
pM
vmt). To conclude that x̃ = 0

is globally uniformly exponentially stable it thus suffices to
choose V (t) > vmId with vm > 0 and to show that P (t) i) is
always well-defined, ii) that it is p.d., and –most importantly–
iii) that it is well conditioned in the sense that pm is strictly
positive and pM is finite so that the ratio PM

p2m
is bounded. The

central issue of boundedness and good conditioning of P (t)
brings us to recall classical, and also point out less known,
results concerning the CRE.

B. Properties of the Continuous Riccati Equation

The first results concerns the existence of the solutions to
the CRE for t ∈ [0,+∞).

Lemma 2.1: If P (0) is p.d. and Q(t) and V (t) are p.s.d,
then P (t) is p.d. and well defined on [0,+∞).
The proof is given in the appendix A.

Now, to ensure boundedness and good-conditioning of the
solution P (t) to the CRE one has to impose other conditions
upon the terms entering the equation. Sufficient conditions
are pointed out in the next lemma.

Lemma 2.2: Define:

WV (t, t+ δ) :=
1

δ

∫ t+δ

t

Φ(t, s)V (s)Φ>(t, s)ds (8)

and

WQ(t, t+ δ) :=
1

δ

∫ t+δ

t

Φ>(s, t)C>(s)Q(s)C(s)Φ(s, t)ds

(9)
with Φ(t, s) denoting the transition matrix associated with
A(t), i.e. such that d

dtΦ(t, s) = A(t)Φ(t, s) with Φ(t, t) =



Id. If there exist (strictly) positive numbers δ, µv , and µq
such that WV (t, t + δ) ≥ µvId and WQ(t, t + δ) ≥ µqId,
∀t, then the solution P (t) to the CRE (4) is bounded and
well-conditioned in the sense that 0 < pm ≤ pM <∞.

A proof of this result is, for instance, given in [6] where
lower and upper bounds of P (t) are also derived. In this
reference the matrix Q(t) is in fact assumed p.d. because the
inverse of Q is (for technical convenience) used in the proof.
However, it is simple to verify that the proposed bounds for
P (t) do not depend on the smallest eigenvalue of Q(t), so
that these bounds are also valid when Q(t) is only p.s.d.

From now on, and by analogy with the classical observ-
ability Grammian

W (t, t+ δ) :=
1

δ

∫ t+δ

t

Φ>(s, t)C>(s)C(s)Φ(s, t)ds

WQ is called Riccati observability Grammian. It coincides
with W when Q(t) = Id. Note that if Q(t) ≥ εId > 0 and
the observability Grammian W is positive then the Riccati
observability Grammian WQ is also positive. This is just a
consequence of that WQ(t, t+ δ) ≥ λmin(Q(t))W (t, t+ δ).
Also, when the output matrix C(t) varies with the the state
trajectory x(t), sup(µq) may be interpreted as a measure
of persistent excitation (p.e.) associated with this trajectory
and with respect to which, given V (t) and Q(t), the lower
bound of the observer’s exponential convergence rate given
by (7) varies monotically. The larger this number, the faster
the observer’s rate of convergence. This relation can be
important for practical purposes when one has the possibility
of modifying the state trajectory.

Define the p.s.d. projection matrix operator Πy(t) :=
Id − y(t)y>(t) with y(t) ∈ Rn and such that |y(t)| = 1
(i.e. y(t) ∈ Sn−1). This operator plays a central role for
the design of the observers proposed in the next section.
In particular, when a single source point is used and the
body velocity is measured with no bias, we will see that
a possible modelling of the system’s equations involves the
matrices (A,C(t)) = (0n×n,Πy(t)) with y(t) denoting the
unit vector along the direction between a source point and
the body. Then Φ(s, t) = Id and the positivity condition
upon the Riccati observability Gramian is satisfied provided
that Q(t) is chosen larger than an arbitrarily small positive
matrix and there exist positive numbers δ and ε such that

∀t :
1

δ

∫ t+δ

t

Πy(s)ds ≥ εId > 0 (10)

In this case it suffices to choose V (t) larger than an arbitrar-
ily small positive matrix to ensure that the solution P (t) to
the CRE is bounded and well conditioned. Note that if u(t)
is differentiable and |u̇(t)| is bounded then (10) is satisfied
provided that |ẏ(t)| is regularly larger than some positive
number. Note also that the constant matrix P = Id is a
solution to the CRE when choosing V (t) = Πy(t)Q(t)Πy(t)

(which is only p.s.d). Although this particular solution holds
independently of the persistent excitation condition (10), in
view of (5) and (7) the exponential stability of the corre-

sponding Riccati observer still depends on the satisfaction
of this condition.

The extension of these results to the biased velocity case
involves the following technical lemma.

Lemma 2.3: If

1) A =

[
0n×n Id
0n×n 0n×n

]
2) C>(t)Q(t)C(t) =

[
∆(t) 0n×n
0n×n 0n×n

]
with ∆(t) a

p.s.d bounded matrix-valued function such that, for
some δ > 0 and µ > 0: 1

δ

∫ t+δ
t

∆(s)ds > µId (∀t)
then there exist δ̄ > 0 and ε > 0 such that WQ(t, t+δ̄) > εId
(∀t).
The proof is given in the appendix B.

III. OBSERVERS FOR POSITION ESTIMATION FROM
DIRECTION MEASUREMENTS

In the case of a single source point that may arbitrarily be
taken as the origin of a fixed frame, the problem consists
in estimating the position x of a body (or object) with
respect to (w.r.t.) this frame given its velocity u and the
measurement of the direction x/|x| between the source point
and the body, knowing that the measured velocity may be
biased by an unknown constant vector a. A situation that
may, for instance, explain such a bias is when the body
is a vehicle (ship, submarine, aeroplane,...) whose velocity
is measured w.r.t. the ambient fluid (water or air), itself
moving with a constant unknown velocity (sea-current or
wind) w.r.t. an inertial frame. In practice, x will be a two-
dimensional vector of coordinates (in the 2D, or planar, case)
or a three-dimensional vector of coordinates (in the 3D, or
spatial, case). For the sake of generality, we assume here that
x ∈ Rn, with n ≥ 2. The corresponding modelling equations
are

ẋ = u+ a
ȧ = 0
0 = Πy(t)x

(11)

with y(t) := x(t)/|x(t)|. Let us distinguish two cases,
depending on whether the velocity measurement is unbiased,
i.e. a = 0, or is biased by an unknown constant vector a.

A. The unbiased velocity case

In this case the modelling equations can also be written
as

ẋ = Ax+ u
0 = C(t)x

(12)

with A = 0n×n –the (n × n)-dimensional null matrix–
and C(t) = Πy(t). This system can be associated with the
following Riccati-like observer

˙̂x = Ax̂+ u+K(t)(0− C(t)x̂) (13)

with the observer gain K(t) calculated as in relation (3) from
the solution to the CRE (4). The resulting observer writes as

˙̂x = u−K(t)Πy(t)x̂ (14)



with K(t) = k(t)P (t)Πy(t)Q(t) and P (t) the solution to the
CRE

Ṗ = −PΠy(t)Q(t)Πy(t)P + V (t)

Since ˙̃x = (A − K(t)C(t))x̃ the Lyapunov analysis of
section II-A applies, and global uniform exponential stability
of x̃ = 0 is obtained provided that P (t) is bounded and
well-conditioned. From explanations given in the previous
section such is the case if Q(t) and V (t) are chosen positive
(and larger than an arbitrarily small positive matrix) or if
V (t) is equal to Πy(t)Q(t)Πy(t) and, most importantly, if
the p.e. condition (10) is satisfied. A loose interpretation of
this condition is that the body must keep moving and not
always in the direction of the source point. Note that, in the
case where V (t) = kvΠy(t) and Q(t) = kqId, choosing the
constant solution P = (kv/kq)

0.5Id simplifies the observer
equation to ˙̂x = u− k(t)

√
kqkvΠy(t)x̂, so that one recovers

the solution proposed in [3].

B. The biased velocity case

In this more difficult case the velocity bias a has to be
estimated as well. The modelling equations (11) can be
written in the state form as

Ẋ = AX + ū
0 = C(t)X

(15)

with X := [x>, a>]> the 2n-dimensional extended state
vector, ū := [u>, 01×n]>, and

A =

[
0n×n Id
0n×n 0n×n

]
, C(t) =

[
Πy(t) 0n×n

]
Consider now the CRE

Ṗ = AP + PA> − PC>(t)Q(t)C(t)P + V (t) (16)

with P (0) a p.d. matrix, V (t) larger than some arbitrarily
small positive matrix, and Q(t) a p.d. matrix-valued function
larger than an arbitrarily small positive matrix. By applica-
tion of Lemma 2.3, using the fact that

C>(t)Q(t)C(t) =

[
∆(t) 0n×n
0n×n 0n×n

]
with ∆(t) := Πy(t)Q(t)Πy(t), the solution P (t) to this
CRE is bounded and well-conditioned provided that the p.e.
condition (10) is satisfied. Denoting the estimate of X as X̂
and the estimation error as X̃ := X−X̂ , this in turn implies
that the following Riccati observer

˙̂
X = AX̂ + ū+K(t)(0− C(t)X̂) (17)

with X̂ := [x̂>, â>]> and K(t) = k(t)P (t)C>(t)Q(t)
(k(t) ≥ 0.5), globally uniformly exponentially stabilizes
X̃ = 0 provided that the p.e. condition (10) is satisfied.
This observer can also be written as{

˙̂x = u+ â− k(t)P11(t)Πy(t)Q(t)x̂
˙̂a = −k(t)P21(t)Πy(t)Q(t)x̂

(18)

with Pij (i, j ∈ {1, 2}) denoting the block components of P
with adequate dimensions.

C. Extension to multiple direction measurements

We consider now the problem of estimating a vector x
from l direction measurements yi = x−zi

|x−zi| , i ∈ {1, . . . , l}
with x denoting the vector of coordinates of the position of
a body w.r.t. an inertial frame, and zi the known vector of
coordinates of the ith source point.
Setting X := [x>, a>]>, ū := [u>, 01×n]>, and y =
[(Πy1(t)z1)>, . . . , (Πyl(t)zl)

>]>, one obtains the system

Ẋ = AX + ū
y = C(t)X

(19)

with

A =

[
0n×n Id
0n×n 0n×n

]
and

C(t) =

 Πy1(t) 0n×n
...

...
Πyl(t) 0n×n


Consider now the CRE

Ṗ = AP + PA> − PC>(t)Q(t)C(t)P + V (t)

with P (0) a p.d. matrix, V (t) larger than an arbitrarily small
positive matrix, and

Q(t) =


Q11(t) 0n×n . . . 0n×n
0n×n Q22(t) . . . 0n×n

...
...

...
0n×n 0n×n . . . Qll(t)


with Qii(t) (i = 1, . . . , l) p.d. matrix-valued functions larger
than an arbitrarily small positive matrix. The solution P (t)
to this equation is bounded and well conditioned provided
that the corresponding Riccati observation Grammian WQ is
positive. Using the fact that

C>(t)Q(t)C(t) =

[
∆(t) 0n×n
0n×n 0n×n

]
with ∆(t) :=

∑l
i=1 Πyi(t)Qii(t)Πyi(t), this condition is

again satisfied by application of Lemma 2.3 provided that,
for some δ > 0 and for all t > 0, 1

δ

∫ t+δ
t

∆̄(s)ds, with
∆̄(t) :=

∑l
i=1 Πyi(t), is greater than an arbitrarily small p.d.

matrix. This p.e. condition clearly points out the interest of
using multiple direction measurements in order to weaken, or
even remove, conditions upon x and its time-variations. For
instance, in the 3D case (n = 3), if l ≥ 2 this p.e. condition
is satisfied provided that the body is periodically not aligned
with all the source points. If three or more source points
are not aligned, then this condition is automatically satisfied
independently of x and its time-variations.
A Riccati observer associated with this system is

˙̂
X = AX̂ + ū+K(t)(y − C(t)X̂) (20)

with X̂ := [x̂>, â>]> and K(t) = k(t)P (t)C>(t)Q(t)
(k(t) ≥ 0.5). One easily verifies that this observer can also



be written as{
˙̂x = u+ â− k(t)P11(t)(

∑l
i=1 Πyi(t)Qii(t)(x̂− zi))

˙̂a = −k(t)P21(t)(
∑l
i=1 Πyi(t)Qii(t)(x̂− zi))

(21)
From what precedes this observer globally exponentially
stabilizes X̃ = 0 if the previously evoked p.e. condition is
satisfied.

Remarks:
• In the 3D-case, if l ≥ 2 and the matrix ∆̄(t) is positive,
and if the body moves with a constant unknown velocity, the
above observer provides also an estimation of this velocity.
To this aim it suffices to set u = 0 in the algorithm. The
term â is then an estimate of the body velocity that is equal
to a in this case.
• In the unbiased case where a = 0 and the body velocity
u is measured, the calculation of â is superfluous and the
above observer reduces to

˙̂x = u− k(t)P (t)(

l∑
i=1

Πyi(t)Qii(t)(x̂− zi))

with P (t) the solution to the CRE

Ṗ = −P∆(t)P + V (t)

A particular solution to this latter equation, obtained by
choosing V (t) = P (0)∆(t)P (0), is any constant p.d. matrix.

IV. SIMULATIONS

We estimate the position of a possibly moving body from
one or two sources. Two scenarios are considered with a min-
imal number of source points ensuring uniform observability.
In the first scenario the body oscillates along a line segment
with its position given by x(t) = (20 cos t − 15, 0, 4)>.
In this case a single source point, here chosen at the origin
of the inertial frame, suffices to grant uniform observability.
In the second scenario the body is motionless and located
at x = (5, 0, 4)>. In this case a second source point, here
chosen with coordinates (3, 3, 0)> in the inertial frame, is
required to grant uniform observability. For both scenarios
the body velocity measurement is corrupted by the constant
bias a = (0.33, 0.66, 0.99)>. Initial state estimates are
x̂(0) = (4, 6, 12)> and â(0) = (0, 0, 0)>. The scalar
gain k(t) involved in the CRE is set to one, as for a
Kalman filter, and the solution to the CRE is initialized
with P (0) = 100I6. Simulations are first carried out with
noise-free measurements, to validate theoretical exponential
stability results, then with measurements corrupted by noise,
to illustrate the resulting (and inevitable) slight degradation
of the observers following the transient phase when the
estimation errors become small but no longer converge to
zero. Concerning the body velocity measurement, additive
and independent zero mean Gaussian noise components with
standard deviations equal to 0.1m/s are used. As for the
direction measurements, they are calculated from the body
position corrupted by additive and independent zero mean
Gaussian noise components with standard deviations equal

to 0.05m/s. The matrix V (i.e. the state noise variance in the
Kalman filtering terminology) involved in the CRE is chosen
equal to 0.01diag{1, 1, 1, 0, 0, 0}+ εvI6, with εv = 0.001 to
ensure that the matrix is positive definite. As for the matrix
Q, i.e. the inverse of the output noise variance in the Kalman
filtering terminology, we have used Qii = 1.5I3, ∀i = 1 . . . l
with l denoting the number of source points.

Figures 1(a)-1(c) and Figures 2(a)-2(c) illustrate the per-
formance of the observer in the ideal noise-free case for
scenarios 1 and 2 respectively. Sub-figures (a) show the
time-evolution of the logarithm of the Lyapunov function
associated with the observer. The mean slope of the curve
is proportional to the rate of exponential convergence of
this function to zero. Sub-figures (b) and (c) show the
time-evolution of the estimation errors and their exponential
convergence to zero. The last figures 1(d)-1(e) and 2(d)-2(e)
show the time-evolution of these errors in the case of noisy
measurements.

V. CONCLUDING REMARKS

Riccati observers for the estimation of a body position
from direction measurements and the knowledge of the body
velocity have been derived. Even when the body velocity is
biased by an unknown constant vector, these observers ensure
global exponential stability of zero estimation errors under
uniform observability conditions that have been worked out
in relation to the number of source points and the body
motion. A logical prolongation of this work is the derivation
of Riccati observers for the estimation of the complete body
pose (position and orientation). However, due to the specific
structure of the group of rotations, exact linearisation of the
problem is then no longer possible and globally convex cost
functions do not exist. As a consequence Riccati observers
for pose estimation, and corresponding Extended Kalman
Filters (EKF), have to be derived from linear approximations
of the system state and output equations. This also implies
that only local exponential stability of zero estimation errors
can be achieved. An important complementary issue, also
in the prolongation of the present work, is the charac-
terisation of uniform observability conditions under which
this latter property is granted. We foresee several other
possible extensions. Let us just mention position estimation
from range measurements, in relation to the recent works
of Batista et al. [7], [8] for the non-static case, vision-
based robotic applications involving the control of the body
position from estimates provided by Riccati observers, and
a deterministic approach to Simultaneous Localication and
Mapping (SLAM) that could usefully complement existing
studies on the subject.
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APPENDIX

A. Proof of lemma 2.1

Recall that, as long as P (t) is defined and p.d., its trace is
the sum of its eigenvalues. Accordingly, since the eigenvalues
of P−1(t) are the inverse of the ones of P (t), the trace of
P−1(t) is the sum of the inverse of the eigenvalues of P (t).
To prove that P (t) is well-defined for t ∈ [0,+∞) and is p.d.
it suffices to show that neither the trace of P (t) nor the trace
of P−1(t), which are initially positive (since P (0) is p.d. by
assumption), can tend to infinity in finite time. Indeed, this
implies that none of the eigenvalues of P (t) can either reach
zero or tend to infinity in finite time. To this aim, it suffices
to show that neither tr(P (t) nor tr(P−1(t)) can grow faster
than exponentially, so that divergence in finite time is not
possible.

Let us set x = tr(P ). In view of (4), and since
tr(P (t)C>(t)Q(t)C(t)P (t)) ≥ 0, one has

ẋ ≤ tr(AP ) + tr(PA>) + tr(V )

Let |A(t)| denote the spectral norm of A(t). By assump-
tion it is bounded by some positive number ka. Similarly,
tr(V (t)) is bounded by a positive number v. Since P is
p.s.d., |tr(AP )| = |tr(PA>)| ≤ |A|tr(P ) and the previous
inequality yields

ẋ ≤ 2kax+ v

This inequality in turn implies that x(t) ≤ (x(0) +
v

2ka
)exp(2kat)− v

2ka
, ∀t ≥ 0.

Similar arguments applied to y = tr(P−1) yield

ẏ ≤ |tr(P−1A)|+ |tr(A>P−1) + tr(C>QC)
≤ 2kay + µ̄q

with µ̄q denoting the supremum of tr(C>(t)Q(t)C(t)).
Therefore, y(t) ≤ (y(0) +

µ̄q

2ka
)exp(2kat)− µ̄q

2ka
, ∀t ≥ 0.

B. Proof of lemma 2.3

From the expression of the matrix A one has

Φ(s, t) = exp(A(s− t)) =

[
In×n (s− t)In×n
0n×n In×n

]
so that

WQ(t, t+ δ̄) := 1
δ̄

∫ t+δ̄
t

Φ>(s, t)C>(s)Q(s)C(s)Φ(s, t)ds

= 1
δ̄

∫ t+δ̄
t

[
∆(s) (s− t)∆(s)

(s− t)∆(s) (s− t)2∆(s)

]
ds

Let us make a proof by contradiction and assume that ∀ε > 0,
∀δ̄ > 0, ∃x ∈ S2n−1 such that x>WQ(t, t+ δ̄)x < ε. Then,
in view of the above expression of WQ(t, t+ δ̄)

x>WQ(t, t+ δ̄)x =
1
δ̄

∫ t+δ̄
t

(x1 + (s− t)x2)>∆(s)(x1 + (s− t)x2)ds < ε

with x = [x>1 , x
>
2 ]>. It is clear that x2 6= 0 since otherwise,

the above integral is equal to 1
δ̄

∫ t+δ̄
t

x>1 ∆(s)x1ds > µ with

δ̄ = δ. Moreover, since ∆(s) is a p.s.d. matrix, x>WQ(t, t+
δ̄)x is larger than

γ(t, δ, δ̄) := 1
δ̄

∫ t+δ̄
t+δ̄−δ(x1 + (s− t)x2)>∆(s)(x1 + (s− t)x2)ds

= 1
δ̄

∫ δ̄
δ̄−δ s

2(x1
s

+ x2)>∆(t+ s)(x1
s

+ x2)ds

when δ̄ > δ. From the latter equality we also have

γ(t, δ, δ̄) ≥ (δ̄ − δ)2

δ̄

∫ δ̄

δ̄−δ
(
x1

s
+ x2)>∆(t+ s)(

x1

s
+ x2)ds

which, using the assumptions upon ∆(t), in turn implies
that γ(t, δ, δ̄) grows to infinity when δ̄ tends to infinity.
In particular there exists δ̄0 > 0 such that γ(t, δ, δ̄) > ε
when δ̄ > δ̄0. This contradicts our initial assumption since
x>WQ(t, t+ δ̄)x ≥ γ(t, δ, δ̄).
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