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Particle-based Gaussian process optimization for input dggn in
nonlinear dynamical models

Patricio E. Valenzuela, Johan Dahlin, Cristian R. Rojas @hdmas B. Schon

Abstract— We propose a novel approach to input design for from a Gaussian process (GP), we can compute its predictive
identification of nonlinear state space models. The optimahput  posterior distribution given a set of samples over the feasi
sequence is obtained by maximizing a scalar cost function tfie set. The predictive posterior distribution acts as a swteg

Fisher information matrix. Since the Fisher information matrix f the intractabl biective f i di | d t
is unavailable in closed form, it is estimated using partie ©' N€ Intractable objeclive function, and 1S employed to

methods. In addition, we make use of Gaussian process opti- compute the next sample over the feasible set by using

mization to find the optimal input and to mitigate the problem  an acquisition rule. This technique recursively explotes t

of a large computational cost incurred by the particle filter,  feasible set to determine the element maximizing a sureogat

as the.method reduces the number. of functional evaluations. function. The advantage of this approach when compared

Numerical examples are provided to illustrate the performance . L . . . .

of the resulting algorithm. ywth eX|st_|ng techniques is th_at it can handle_unc_ertalnty
Index Terms— System identification, input design, Gaussian N the estimates of the objective function, and it drives the

process optimization. exploration of the input space towards those regions where

an improvement of the objective function is expected.

|. INTRODUCTION As with most approaches in experiment design, we rely on

Input design concerns the maximization of the informatioRrior information about the system for computing an optimal
retrieved from an experiment. Some of the first contribugiondesign. This assumption can be overcome by implementing
in this area have been introduced in [1], [2]. Since then; se@n adaptive scheme [10], or by using a robust input design
eral approaches to experiment design have been develog&fieme on top of it [11]. However, this is beyond the scope
(see e.g. [3] and the references therein). of this paper.

Recently, the problem of input design for the identification
of nonlinear dynamical models has gained interest. One
of the main difficulties in this case is that a closed form Consider the discrete time, nonlinear state space model
expression for the Fisher information matrix is typicallgtn (SSM) defined for alk > 1 by
be available. In addition, the frequency domain techniques
employed in the linear case [4] are no longer valid, which we|zi—1 ~ fo(ze|wi—1,ui-1), (1a)
implies that other formulations are required. Contribngio yelze ~ go(ye|ze, ut), (1b)
in this field consider nonlinear FIR models [5], multilevel
excitation [6], [7], [8], and nonlinear state space modéls [
among others. where fy, gg, andpuy are known probability density functions

As the Fisher information matrix is unavailable in closeqpdf) parameterized by the unknown parametee © C
form, we need to rely on estimates. However, such estimat@s. Here,u; € C C R™+ denotes the input signat, € R"=
are always subject to uncertainty, which results in diffiesl are the (unobserved/latent) internal states, and R are
when implementing traditional optimization methods. the measured outputs. In the following, we assume that there

In this work, we explore the reduction of the computationaéxists &, € © such that the pdfs ifi{1) describe the true pdfs
complexity when calculating the objective function usedf the system whell = 6, i.e., there is no undermodelling
in input design for identification of nonlinear dynamical[3].
models. To this end, a Gaussian process optimization (GPO)The objective is to design;.7 := (uy, ..., ur) € CT,
based algorithm is presented. By assuming that the scalaich that the parametérin the model[(ll) can be identified
function of the Fisher information matrix is a realizationwith maximum accuracy as defined by a scalar function of
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Il. PROBLEM FORMULATION

xo ~ (o), (1c)
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We note that the expected value [ (2) is with respect to thEhis establishes a trade-off between exploration and @=plo
stochastic processes il (1). tion of the input set. Finally, to employ the GPO framework
In the following, we consider:;.; as a realization of a in input design, we need tractable parameterization§’qf

stationary process. Hence, we will be interested inghe  which are discussed in Subsectlon TlI-D.
sample Fisher information matrigiven by

L
T
The inputu,. optimizes a scalar function of](5). We

define this scalar function as: R™*™ — R, assumed to
be a matrix nondecreasing function [12, p. 108].

A. Estimating the Fisher information matrix

E, {IZO(ULT)} : %) Given u!"). € €T, we need to approximat&l(5). To this
end, we consider the estimator in [16], which is based on
one estimate ofS(6y) (provided a sufficiently largd”) to
approximate[(b) by [17]

Ile;vo,av(ul:T) =

The problem presented here can be summarized as ~00.av 1[N - . + 14 N -
Problem 1: Find an input signak{®;. € CT as g™ = T ZSf(HO)(St(QO)) - TS(GO)(S(GO)) ’
t=1
opt . 0o ,av (7)
usy = arg max h(Z ui.T)), 6 ] ) ) )
LT gul:TecT 7" (wir)) ©) where the Fisher identity [18] can be used to Wite
whereh: R™*™ — R is a matrix nondecreasing function, T
and 2% (u,.7) is given in [B). ] S0 =>_"81(0), (8)
t=1

[1l. GAUSSIAN PROCESS OPTIMIZATION IN INPUT DESIGN
A

Problent1 is difficult to solve. One of the main challenges Si(0') == /V €o(ze—1:t)lo=o'Dor (Te— 12y, 0) et
is the characterization df(Ifr“’a"(ulzT)) for all uy.7 € CT. with
Unless assumptions on the model structdre (1) and the
input properties are made, the expressk(ii%“’av(ulgp)) Eo(T4_1.4) := log fo(xe|ze_1,ui—1) + log go(ye|me, ur)
is often unavailable, and we need to rely on approximations. .
Moreover, even if an estimate 627" (u1,7)) is available, 2Nd7t—1:t 1= {Z¢—1,2¢}. AS we can see fronll]7), we require
part of the existing optimization methods are difficult to®" estimate forl(8), which we obtain from particle methods

implement, since the uncertainty of the estimate is notrtake[19 : ) ) ) )
into account. To estimate the score function ifi] (8), we require the

Instead, we employ the iterative procedure discussed HO-Step smoothing distributiopy (w;—1.[y, u), which is
[13] to solve Problerfil1. The procedure generates a sequet@ available analytically for a general SSM. Instead, we
of iterates{uglf%}kzo for the input excitation. Each iteration approximate it using an empirical distribution
consists of three steps: R N ”

(i) Given ugk:)p compute an estimate of the objective func- Po(dzi—1:]y, ) := Z W 6m£21:t (dre1a),  (9)
tion A(Z5* (u'").)), denoted byhy. =t

(i) Given the collection of tuples{ugﬁp, ﬁj}é?zo, cre- where :vf) and w,@ denote particlei and its normalized

ate a model of the (unavailable) objective functionveight at timet. Here,{:cff),wgi)}tT:1 denotes theparticle

W7 ™ (urr)). systengenerated by a particle filter adgl denotes the Dirac
(iii) Use the model as a surrogate fMI%O’aV(ul:T)) to measure located at= z'.

generate a new iteratei’fjfl). Following [16], here we use the bootstrap particle filter

(bPF), see Algorithnf]1 [21]. However, the estimatbf (9)
hased only on the bPF often suffers from poor accuracy due
to particle degeneracy, see e.g. [19]. To mitigate this lgrab

6o ,av

The procedure only requires one estimaté@f """ (u1.7))
at each iteration, hence keeping the number of estimates

low as possible. Moreover, it requires fewer iterationsitha k A
random search, since it focuses on region€Bfwhere an W€ Use a particle smoother that introduces a backward
improvement is expected. sweep after the forward run of the bPF. Here, we use the

For step (i), we employ particle methods to es‘timat(f’\orwar.d—filtering backward§ simulator (FFBSI) with rejiect
h(If;"'a"(uglf%)). This is discussed in Section IIIHA. samplln.g and early stopping [20]. )

For steps (i) and (i) we use the GPO framework [14], Algorithm Iz(i)prj\tfesents the pseudo-code for the FFBS.
[15]. We first compute a surrogate of the objective functiof€"eMulti({p™};=,) andUniform([a, ¢]) denote the multi-

L . . ial distributi ithp® bei
by modelling it as a Gaussian process, and computing tﬁ‘@rg'aé_l‘?'t's”'fb“tr‘f” (_)ver]t\rfw gltim(Tnts, V,\[”thpd tEelng .]Ehe
predictive posterior distribution based ofu!’)., hith_g. probability of choosing tha-th element, and fhe uniform

This is discussed in SectiomTIB distribution with supporta, b], respectively. We note that
Then we make use of a heuristic, referred to as th e parametep required by Algorithmi® is chosen such

acquisition rule (presented in Sectioh 1I[IC), to compute::oa::] fﬁgiif&; ’Cigr;ql )Ieit po]:‘olrzlfl_l;lsﬁ ii 0{1‘1&&&1’)(1]1\7}]'\4?;6
uglf;l) based on the GP model. The acquisition rule favours P plextty '
values ofu,.7 for which the model predicts a large value of 1, conciseness, we write := vy.7 for any vectorvy.z. In addition,

the objective function and/or where there is high uncetyain we remove the dependence brof the input, state, and measurements.



Algorithm 1 Bootstrap particle filter (bPF)

INPUTS. An SSM 1),y (observations)u (inputs), N € N (no.

particles). _
outpuT {z\” WV t=1,...,T.

1: Samplez{” ~ pg(x0) and setw” = 1/N.
2: for t =1to 7T do
3 for¢,j=1to N do

4: (Resampling) Sampleag " from a multinomial distribu-
tion with P(ai D= j) =w.
()
5: (Propagation) Samplea: ~ f@( xgt 1,ut>
(i) RO
6: Setzy; = {a:Ot 1, %y }
7: (Weighting) Calculate~( D= =gp (yt xgi),ut).
8: Normallzewg 2 (over i) to obtalnw< ).
9: end for
10: end for

Algorithm 2 Fast forward-filtering backward-simulator

with early stopping (fFFBSI-ES)

INPUTS: Inputs to Algorithn1,M/ € N (no. backward trajectories),
Nimit € N (limit for when to stop using rejection sampling),> 0.
OUTPUT: Z%*(u) (estimate of the Fisher information matrix).

1: Run Algorithm[1 to obtain the particle syste{ngi), w
fort = 1,...,T.

2: sample{br(j)}", ~ Multi({w{}Y,).

3 Setz) =227 for j=1,..., M.

4: for t—T—ltoldo

5 L+1,...,M.

6 {Rejectlon sampling untilVimit trajectories remair.

7. while |L| > Nimit do

8 n < Multi({1/]Z[}F).
5+ 0.

10: Sample{I(k } L~ Multi ({w”}X,).
11: Sample{U(k)},_, ~ Uniform([0,1]).
12: fork=1ton

13: if Uk) < f(@ L<k)|x1(k))/p then

14: bi(L(k)) < 1(k).

15: 5§« SU{L(k)}.

16: end if

17: end for

18: L+ L\5J.

19:  end while

20: {Use standard FFBSi for the remaining trajectories [R0].

21: for j € L do

22: Compute ~(‘sz) o wi f (39, |20) fori =1,...,
23: Normalize the smoothing Welgh@uﬁ;) B

24: Draw b (5) ~ |V|U|tl({w§‘113) Z_:1>.

25 end for

26 Setzll). :{ be(3) ;cgﬁl }forj =1,....M.
27:  Calculate A(k)

Z Véo (:Et t+1)
28: end for

29: ComputeZ?°* (u1.7) using []).

t .
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Fig. 1. Left: Histogram ofv and plot of the scaled pdf of av/ (0, 12)
distribution (continuous line), Exampld 1. Right: Quaaijuantile plot of
the samples of and the\/ (0, 12) distribution, Exampl&]1.

the effects ofN, M andT in the accuracy of the estimator.

B. Modelling the objective function

We explore the use of a GP to model the objective
function h(Z%* (uy.7)) [22]. GPs can be understood as a
generallzat|0n of the multivariate Gaussian distributéord
are commonly used as priors over functions [23]. In this
perspective, the posterior obtained by conditioning on the
observations corresponds to the functions that could have
generated the observations.

In the following, we model the functioh(Z5*"(.)) as
being a priori distributed according to a GP. That is

h(ZE ™ () ~ GP (m(:), s(, ) (10)

where the process is fully described by the mean function
m(-) and the covariance functios(-, -). Examples of these
functions are a constant for. and a Matérns/2 function

for k [22, p.84].

To simplify the discussion, we will focus on a specific
iterationk of the proposed procedure. L@tC = {u1 s hk}
denote a set of iterates, whemé ) and hk denote matrices
obtained by stacking input realizations and estimates ef th
objective function up to iteratioh, respectively. In addition,
we will assume that

hi = h(Zp™ (uf))) + 2, (11)

where z ~ N(0,02), and o, > 0. We note thato, is
unknown a priori, and it needs to be estimated ugmgThe
assumption[(I1) seems strict, but the continuous mapping
theorem [24, Theorem 2.7] shows that the central limit
theorem also applies to the estimdtg, as it is satisfied
by (@) asymptotically in the number of particles.

Example 1:Consider

Typr|my ~ N(¢ Ty + Ut, 0-12)7 (12a)
Ye|ze ~ N(a T, 0.12), (12b)

where the parameters afle= {¢, a}. We generatd’ = 103
observations from(12) witll, = {0.8,1}.

We are interested in estimating(Z5™ (uy.7)) =
log det(Z T%: ¥ (uy.r)), wherewu.r is a binary white noise
process W|th value$—1,1}.

where N and M denote the number of filter and smoother The estimate of the Fisher information matrix is obtained
particles, respectively. We refer to [20] for more detaits o using Algorithmg$1=R, withV = 2.5-10 particles,M = 100



backward trajectories an@V;,i: = VN in the fFFBSi the expected peak di(IzP’aV(ul:T)) at iterationk.
smoother. Figurd]l shows the histogram based 16/ By using the posterior distribution obtained from the GP,

realizations of the random variable we define the EI &
y o YM(h—h) az B} =o(ur) {Z(un)®(Z(mr))
O /ifh —¢(Z(ur.r))} , (18a)
whereh = h(Z%™ (uy.r)), and o? - are the sam- Z(ur.r) = o Nurr) {p(urr) — pmax — £, (18b)

ple mean ofh and variance ofy/M h, respectively. As a with & and ¢ denoting the cumulative distribution function
comparison, we also present the scaled pdf of\&{,1?) and the pdf of the standard Gaussian distribution, respec-
distribution. We can see that the histogram follows the shapively. Then, an acquisition rule is
of the pdf of aN(0, 12) distribution. This is also confirmed (k1)
by the quantile-quantile (QQ) plot in Figuté 1, where the U1
quantiles ofv coincides with those given by an(0,12)
distribution.

Based on[(I1), it follows that the predictive postenor
distribution is

=arg max B {I(u1.7) |Dr } , (19)
u1.7E€C

i.e., the element maximizing the El. Frofn ]18) we see that

the El assigns a large value when both the variarea.r)

and the mean difference(u;.7) — umax are large, in line

with the desired behavior of an acquisition function, asit i

h(I%O’aV(ul:T))|Dk ~ N (p(urr|Dy), o?(u1.r|Dy) + o ) , explained at the beginning of Sectibnl IlI.

(14)
where p(ui.7|Dx) and o?(ui.r|Dx) denote the posterior
mean and variance giveR,. From standard results for the
Gaussian distribution, we have

D. Parameterizing the input

To implement the GPO for solving the input design
problem, we need a parameterizationCdf. Here we briefly
explain two options:
p(ur.r| D) = m(ui.r) 1) Stationary Markov processedf we restrictC to be

+ r(unr, ug%) {hk —m(unr)b finitg andu;.r to be a realizatiqn from am-dimensional
stationary Markov process of a given order, then the parame-
(15a) terization employed in [8] can be used. The parameterizatio
of the input is given by the stationary distribution of the

o (ur.r|Dr) = K(urr, urr)
g%)l“ H(ugk%7 urr), (15b) Markov process, which is constrained to

— k(ur.T,
i — (k) (k) 2 ;
ywth I':= k(uy.p, uy.p)+ozl;, wherel, denotes thé x & Pe = {pu: C" = R|pu(x) > 0, Vx € C";
identity matrix.
In the GP model introduced here, we use mean and L
covariance functions that possibly depend on some unknown Z PulX) =14

hyperparameters. In addition, we also need to estimate xecr

characterizing the random variablein (II). To estimate _ v n—1 20
these quantities, we adopt the empirical Bayes procedure, Zp”(v’ 2) Zp”(z’ v), ¥z €C - (20)
where the marginal likelihood of the data is numerically
optimized with respect to the hyperparameters [25].

veC
Following [8], we parameterizéd (20) as the convex hull
of its extreme points, which are computed using graph
C. Acquisition rules theoretical techniques. Therefore, the decision variable
To implement step (iii), we need to genemflg;:l c cT. this case corresponds to the weighting vector of the extreme

One option is to perform a random walk ovéf, which ~Points describing an element i®c. Assuming thatPc
works well provided that the parameterizationwgf is of hasny extreme points, then the weighting vector :=

small dimension. However, this approach is inefficient @s thl@1 - - any,]" € R™ is used to computp € Pc as
dimension of the parameterization fof. increases. .
Instead, we make use of acquisition rules that balance p= Zaip(”, (22)

exploration and exploitation of the parameter space and

employ the posterior distribution obtained from the GP.éiler with « satisfying

we use the expected improvement (El) technique [26].
Consider thepredicted improvement

I(u1.r) := max {o R(Z%™ (u1:7)) — fimax — 5} . (16) Za =1. (22b)

where¢ is a user defined coefficient balancing exploration
and exploitation, and I

a; >0, forallie{1,..., ny}, (22a)

n @0), {p”17v, corresponds to the probability mass
functions (pmf) that are the extreme points7af.

Hmax = INax p(u1.r|Dr) (17) ) o ) i
ul:TEug:% For simplicity, the dependence dp;. is dropped from the notation.



Algorithm 3 GPO for input design

INPUTS: Algorithm [2, K (no. iterations) andtg?% € CT (initial
excitation). _
output {z{? WV t=1,...,T.

1: Sampleu). € ¢,

2: for k=0to K do . .

3. Use Algorithm2 to computéy, := h(Z% ™ (u{"))).
Compute [TH)ITS) to obtaih(Z5™ (u1.7))| Dy
Compute [(I)7) to obtaiumax.

Compute [(ID) to obtaim'"; "

Computeu
at 'l

8: end for

9: Compute the maximizer ofi(ui.m|Dx) to obtainu®y.

N o aR

of aﬁ” uniformly distributed on[—0.01,0.01]. The es-

timate of the Fisher information matrix is obtained using
Algorithms[1E2, which are implemented as in Examiple 1.
For the prior distribution of,(Z%™ (uy.7)), we consider a
constant mean function, and a covariance function composed
of a Matérns/2 structure and a constant. The Matéf2
structure is chosen in this example as it contains inforonati
about the smoothness 6{Z}"* (u.7)). Other choices for

the covariance function are also possible and we refer tp [22
Chapter 4] for more details.

as a realization of a random walk centered Algorithm [§ is implemented in Matlab using the

fmincon command for [(I9) and thepML toolbox [28]
to infer the hyperparameters and estimate the predictive
posterior distribution ofu(Z2*" (uy.7)).
The solution obtained from Algorithi 3 is; = 1 for all
t > 0. In this example, a nonzero constant input introduces a

Once a new sample € R™v satisfyindl (22) is generated, nonzero offset in the measurements, which helps to estimate
we compute the assqmated pmfe Pc l_Jy QZ_H). anc_zl we ¢ in the presence of process disturbance and measurement
generateu;.7 by running a Markov chain with stationary noise. As a reference, we draw.; as a realization from a

distribution p.

2) Stationary AR processe$Ve can restricu;. to be a  gre h(z%%”@(’“)) =

binary white noise process with valu¢s-1, 1}. The results

T 14.57 for the optimal input and

filtered white noise process, as it is proposed in [27]. I8 thih(I§OaaV(ul:T)) = 10.18 for the binary white noise process.

case, the decision variables are the filter coefficients tlhad

properties of the white noise. For example, we can assumegxample 3:Consider the system

thatuy.7 is a realization from a stationary AR process
A(Q) Ut = €, (23)

where{e;} is Gaussian white noise, with varianeg, and

A=Y g, (24)
=0

with n, > 0 given,a; € R forall i € {1, ..., n,}, and
ao = 1. For this example, the decision variables are> 0,

[ |

1 2
xt-ﬁ-llxt NN(’}/—FI% +ut10'1 )a (25a)
el ~ N (3,12, (25b)

where the parameters afe= {v, 3}. We generatd’ = 10°
observations from the model withy, = {2,0.8}. We note
that estimatingy in (28) is inherently difficult, since two
different values ofr; can explainy; equally well.

We consider the same setting and functioas in Exam-

and{a;};*,, such thatd(q) has all its zeros strictly inside ple[d, but we consider three cases €or

the complex unit di

E. The final procedure

Algorithm [ presents the resulting procedure for input

o Case 1C ={-1,1}.
o Case 2C = {-1,0,1}.
o Case 3C ={-1,-1/3,1/3,1}.

. . . - . 700, t
design using Gaussian process optimization. We note thatTable[] presents the value OfPt = A(Z" (uily))

line 7 introduces a random walk centered[@i (19) to promofér each case, where, ;.

P corresponds to the optimal input

exploration around the expected improvement. We also no@®tained from AlgorithniB. As comparison, we also compute

-~

that only one functional evaluation is required per itemati the value ofh(Z;** (u1.r)), with {u;} binary distributed

reducing the computational effort when optimizing ogér.

IV. NUMERICAL EXAMPLES

white noise with value{—1,1} (Binary in Table[). We
see that the binary white noise process seems to be optimal
whenC = {-1,1}, as it is confirmed by the value df°r*
for Case 1. We also note that adding intermediate values to

Example 2:Consider the linear Gaussian state spacthe input alphabet increases the amount of informationen th
model in Example[J1. We are interested in maximizinglata, ash°P! is greater in Cases 2 and 3 than in Case 1.

R0 (ur.r)) = log det(Z6™ (u1.r)), whereuy.r (T =

103) is a realization of a stationary Markov process (see

Section1II-0), withn,,, =1 andC = {-1,1}.
For Algorithm[3, we useK = 500, £ = 0.01, and a

random walk centered around the current parametrization

3This can be achieved by samplingsatisfying [2Zh), and then normal-

izing the entries ot to satisfy [22b).

4This can be guaranteed by factorizint(q) into first and second order
polynomials ing, and imposing the constraint on each of these factors.

1
= l HI” l] H |
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Fig. 2. Optimal inputucl’f’Tt for Case 3 in ExamplE] 3.
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Bl
TABLE |

h°P® FOR DIFFERENT INPUT REALIZATIONS EXAMPLE[3.

Input || Binary [10]

ROPT || 411

opt. Case 1
4.11

opt. Case 2
4.15

opt. Case 3
4.44

Figure[2 presents the optimal input obtained for Case él.l]
We note that the optimal input includes a nonzero offset to
improve the accuracy of the parameter estimates.

To illustrate the evolution of;,, we present in Figuilel 3 the [13]
samples{h }19, together with the value ofiy,.. at every
iteration. The first 20 samples are drawn at random fro
CT to provide an initial estimate of the hyperparameters in
the GP prior. We note that some of the sample$/in}:
are not close to the optimal cost, which is expected due fo°!
random sampling. However, once Algoritith 3 is executed
from iteration 21 onwards, we observe that the samples aiié]
close t0jumayx, Which implies that the spaa@’ is explored
only in those regions wherk can only increase with respect 17
to the current estimates. Hence, the proposed technique
drives the parameter search towards those regions where an
improvement in the objective function is expected. W [1g]

V. CONCLUSIONS [19]

A Gaussian process optimization algorithm for input de-
sign for the identification of nonlinear dynamical modelgzq)
has been introduced. The method maximizes a scalar cost
function of the Fisher information matrix over the paramete, 21]
set for the input sequence. Since the objective function Is
unavailable in closed form, a Gaussian process approach is
employed to compute a surrogate function. Numerical exam;,
ples show that the algorithm can provide a good alternative
to solve the input design problem. [23]

Future work on this subject will consider a better estima-
tor of the Fisher information matrix with a better particlep4)

smoother, and alternative parameterizationg«of}.
[25]
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