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Particle-based Gaussian process optimization for input design in
nonlinear dynamical models

Patricio E. Valenzuela, Johan Dahlin, Cristian R. Rojas andThomas B. Schön

Abstract— We propose a novel approach to input design for
identification of nonlinear state space models. The optimalinput
sequence is obtained by maximizing a scalar cost function ofthe
Fisher information matrix. Since the Fisher information matrix
is unavailable in closed form, it is estimated using particle
methods. In addition, we make use of Gaussian process opti-
mization to find the optimal input and to mitigate the problem
of a large computational cost incurred by the particle filter,
as the method reduces the number of functional evaluations.
Numerical examples are provided to illustrate the performance
of the resulting algorithm.

Index Terms— System identification, input design, Gaussian
process optimization.

I. I NTRODUCTION

Input design concerns the maximization of the information
retrieved from an experiment. Some of the first contributions
in this area have been introduced in [1], [2]. Since then, sev-
eral approaches to experiment design have been developed
(see e.g. [3] and the references therein).

Recently, the problem of input design for the identification
of nonlinear dynamical models has gained interest. One
of the main difficulties in this case is that a closed form
expression for the Fisher information matrix is typically not
be available. In addition, the frequency domain techniques
employed in the linear case [4] are no longer valid, which
implies that other formulations are required. Contributions
in this field consider nonlinear FIR models [5], multilevel
excitation [6], [7], [8], and nonlinear state space models [9],
among others.

As the Fisher information matrix is unavailable in closed
form, we need to rely on estimates. However, such estimates
are always subject to uncertainty, which results in difficulties
when implementing traditional optimization methods.

In this work, we explore the reduction of the computational
complexity when calculating the objective function used
in input design for identification of nonlinear dynamical
models. To this end, a Gaussian process optimization (GPO)
based algorithm is presented. By assuming that the scalar
function of the Fisher information matrix is a realization
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from a Gaussian process (GP), we can compute its predictive
posterior distribution given a set of samples over the feasible
set. The predictive posterior distribution acts as a surrogate
of the intractable objective function, and is employed to
compute the next sample over the feasible set by using
an acquisition rule. This technique recursively explores the
feasible set to determine the element maximizing a surrogate
function. The advantage of this approach when compared
with existing techniques is that it can handle uncertainty
in the estimates of the objective function, and it drives the
exploration of the input space towards those regions where
an improvement of the objective function is expected.

As with most approaches in experiment design, we rely on
prior information about the system for computing an optimal
design. This assumption can be overcome by implementing
an adaptive scheme [10], or by using a robust input design
scheme on top of it [11]. However, this is beyond the scope
of this paper.

II. PROBLEM FORMULATION

Consider the discrete time, nonlinear state space model
(SSM) defined for allt ≥ 1 by

xt|xt−1 ∼ fθ(xt|xt−1, ut−1), (1a)

yt|xt ∼ gθ(yt|xt, ut), (1b)

x0 ∼ µθ(x0), (1c)

wherefθ, gθ, andµθ are known probability density functions
(pdf) parameterized by the unknown parameterθ ∈ Θ ⊂
R

nθ . Here,ut ∈ C ⊆ R
nu denotes the input signal,xt ∈ R

nx

are the (unobserved/latent) internal states, andyt ∈ R
ny are

the measured outputs. In the following, we assume that there
exists aθ0 ∈ Θ such that the pdfs in (1) describe the true pdfs
of the system whenθ = θ0, i.e., there is no undermodelling
[3].

The objective is to designu1:T := (u1, . . . , uT ) ∈ CT ,
such that the parameterθ in the model (1) can be identified
with maximum accuracy as defined by a scalar function of
the Fisher information matrixIθ0

F [2], given by

Iθ0
F (u1:T ) := E

{
S(θ0)S⊤(θ0)|u1:T

}
, (2)

with S(θ0) denoting the score function, i.e.,

S(θ0) := ∇ ℓθ(y1:T )|θ=θ0
. (3)

Here,ℓθ(y1:T ) denotes the log-likelihood function

ℓθ(y1:T ) := log pθ(y1:T |u1:T ) . (4)

http://arxiv.org/abs/1603.05445v1


We note that the expected value in (2) is with respect to the
stochastic processes in (1).

In the following, we consideru1:T as a realization of a
stationary process. Hence, we will be interested in theper-
sample Fisher information matrix, given by

Iθ0,av
F (u1:T ) :=

1

T
Eu

{
Iθ0
F (u1:T )

}
. (5)

The input u1:T optimizes a scalar function of (5). We
define this scalar function ash : R

m×m → R, assumed to
be a matrix nondecreasing function [12, p. 108].

The problem presented here can be summarized as
Problem 1: Find an input signaluopt

1:T ∈ CT as

uopt
1:T := arg max

u1:T∈CT
h(Iθ0,av

F (u1:T )) , (6)

whereh : R
m×m → R is a matrix nondecreasing function,

andIθ0,av
F (u1:T ) is given in (5). �

III. G AUSSIAN PROCESS OPTIMIZATION IN INPUT DESIGN

Problem 1 is difficult to solve. One of the main challenges
is the characterization ofh(Iθ0,av

F (u1:T )) for all u1:T ∈ CT .
Unless assumptions on the model structure (1) and the
input properties are made, the expressionh(Iθ0,av

F (u1:T ))
is often unavailable, and we need to rely on approximations.
Moreover, even if an estimate ofh(Iθ0,av

F (u1:T )) is available,
part of the existing optimization methods are difficult to
implement, since the uncertainty of the estimate is not taken
into account.

Instead, we employ the iterative procedure discussed in
[13] to solve Problem 1. The procedure generates a sequence
of iterates{u(k)

1:T}k≥0 for the input excitation. Each iteration
consists of three steps:

(i) Given u
(k)
1:T , compute an estimate of the objective func-

tion h(Iθ0,av
F (u

(k)
1:T )), denoted bŷhk.

(ii) Given the collection of tuples{u(j)
1:T , ĥj}kj=0, cre-

ate a model of the (unavailable) objective function
h(Iθ0,av

F (u1:T )).
(iii) Use the model as a surrogate forh(Iθ0,av

F (u1:T )) to
generate a new iterateu(k+1)

1:T .

The procedure only requires one estimate ofh(Iθ0,av
F (u1:T ))

at each iteration, hence keeping the number of estimates as
low as possible. Moreover, it requires fewer iterations than a
random search, since it focuses on regions ofCT where an
improvement is expected.

For step (i), we employ particle methods to estimate
h(Iθ0,av

F (u
(k)
1:T )). This is discussed in Section III-A.

For steps (ii) and (iii) we use the GPO framework [14],
[15]. We first compute a surrogate of the objective function
by modelling it as a Gaussian process, and computing the
predictive posterior distribution based on{u(j)

1:T , ĥj}kj=0.
This is discussed in Section III-B.

Then we make use of a heuristic, referred to as the
acquisition rule (presented in Section III-C), to compute
u
(k+1)
1:T based on the GP model. The acquisition rule favours

values ofu1:T for which the model predicts a large value of
the objective function and/or where there is high uncertainty.

This establishes a trade-off between exploration and exploita-
tion of the input set. Finally, to employ the GPO framework
in input design, we need tractable parameterizations ofCT ,
which are discussed in Subsection III-D.

A. Estimating the Fisher information matrix

Given u
(k)
1:T ∈ CT , we need to approximate (5). To this

end, we consider the estimator in [16], which is based on
one estimate ofS(θ0) (provided a sufficiently largeT ) to
approximate (5) by [17]

Îθ0,av
F :=

1

T

[
T∑

t=1

Ŝt(θ0)(Ŝt(θ0))
⊤ − 1

T
Ŝ(θ0)(Ŝ(θ0))⊤

]
,

(7)
where the Fisher identity [18] can be used to write1

S(θ′) =
T∑

t=1

St(θ
′) , (8)

St(θ
′) :=

∫
∇ ξθ(xt−1:t)|θ=θ′pθ′(xt−1:t|y,u)dxt−1:t ,

with

ξθ(xt−1:t) := log fθ(xt|xt−1, ut−1) + log gθ(yt|xt, ut) ,

andxt−1:t := {xt−1, xt}. As we can see from (7), we require
an estimate for (8), which we obtain from particle methods
[19].

To estimate the score function in (8), we require the
two-step smoothing distributionpθ(xt−1:t|y,u), which is
not available analytically for a general SSM. Instead, we
approximate it using an empirical distribution

p̂θ(dxt−1:t|y,u) :=
N∑

i=1

w
(i)
t δ

x
(i)
t−1:t

(dxt−1:t), (9)

where x
(i)
t and w

(i)
t denote particlei and its normalized

weight at timet. Here,{x(i)
t , w

(i)
t }Tt=1 denotes theparticle

systemgenerated by a particle filter andδx′ denotes the Dirac
measure located atx = x′.

Following [16], here we use the bootstrap particle filter
(bPF), see Algorithm 1 [21]. However, the estimator (9)
based only on the bPF often suffers from poor accuracy due
to particle degeneracy, see e.g. [19]. To mitigate this problem,
we use a particle smoother that introduces a backward
sweep after the forward run of the bPF. Here, we use the
forward-filtering backwards simulator (FFBSi) with rejection
sampling and early stopping [20].

Algorithm 2 presents the pseudo-code for the FFBSi.
Here,Multi({p(i)}Ni=1) andUniform([a, b]) denote the multi-
nomial distribution overN elements, withp(i) being the
probability of choosing thei-th element, and the uniform
distribution with support[a, b], respectively. We note that
the parameterρ required by Algorithm 2 is chosen such
that fθ(xt|xt−1, ut−1) ≤ ρ for all t ∈ {1, . . . , T }. The
computational complexity of FFBSi is of orderO(NMT ),

1For conciseness, we writev := v1:T for any vectorv1:T . In addition,
we remove the dependence onk of the input, state, and measurements.



Algorithm 1 Bootstrap particle filter (bPF)
INPUTS: An SSM (1),y (observations),u (inputs),N ∈ N (no.
particles).
OUTPUT: {x(i)

t , w
(i)
t }

N
i=1, t = 1, . . . , T .

1: Samplex(i)
0 ∼ µθ(x0) and setw(i)

0 = 1/N .
2: for t = 1 to T do
3: for i, j = 1 to N do
4: (Resampling) Samplea(i)

t from a multinomial distribu-
tion with P

(
a
(i)
t = j

)
= w

(j)
t−1.

5: (Propagation) Samplex(i)
t ∼ fθ

(
x
(i)
t

∣∣∣xa
(i)
t

t−1 , ut

)
.

6: Setx(i)
0:t =

{
x
a
(i)
t

0:t−1, x
(i)
t

}
.

7: (Weighting) Calculatew̃(i)
t = gθ

(
yt

∣∣∣x(i)
t , ut

)
.

8: Normalizew̃(i)
t (over i) to obtainw(i)

t .
9: end for

10: end for

Algorithm 2 Fast forward-filtering backward-simulator
with early stopping (fFFBSi-ES)
INPUTS: Inputs to Algorithm 1,M ∈ N (no. backward trajectories),
Nlimit ∈ N (limit for when to stop using rejection sampling),ρ > 0.
OUTPUT: Îθ0,avF (u) (estimate of the Fisher information matrix).

1: Run Algorithm 1 to obtain the particle system
{
x
(i)
t , w

(i)
t

}N

i=1
for t = 1, . . . , T .

2: Sample
{
bT (j)

}M

j=1
∼ Multi

(
{w(i)

T }
N
i=1

)
.

3: Set x̃(j)
T = x

bT (j)
T for j = 1, . . . ,M .

4: for t = T − 1 to 1 do
5: L← 1, . . . ,M .
6: {Rejection sampling untilNlimit trajectories remain.}
7: while |L| ≥ Nlimit do
8: n← Multi

(
{1/|L|}|L|

i=1

)
.

9: δ ← ∅.
10: Sample

{
I(k)

}n

k=1
∼ Multi

(
{w(i)

t }
N
i=1

)
.

11: Sample
{
U(k)

}n

k=1
∼ Uniform([0, 1]).

12: for k = 1 to n do
13: if U(k) ≤ f

(
x̃
L(k)
t+1 |x

I(k)
t

)
/ρ then

14: bt(L(k))← I(k).
15: δ ← δ ∪ {L(k)}.
16: end if
17: end for
18: L← L \ δ.
19: end while
20: {Use standard FFBSi for the remaining trajectories [20].}
21: for j ∈ L do
22: Computew̃(i,j)

t|T ∝ w
(i)
t f

(
x̃
(j)
t+1|x

(i)
t

)
for i = 1, . . . , N .

23: Normalize the smoothing weights
{
w̃

(i,j)
t|T

}N

i=1
.

24: Draw bt(j) ∼ Multi

({
w̃

(i,j)

t|T

}N

i=1

)
.

25: end for
26: Set x̃(j)

t:T =
{
x
bt(j)
t , x̃

(j)
t+1:T

}
for j = 1, . . . ,M .

27: Calculate
Ŝ(k)
t (θ) =

1

M

M∑

j=1

∇ξθ
(
x̃
(j)
t:t+1

)
.

28: end for
29: ComputeÎθ0,avF (u1:T ) using (7).

whereN andM denote the number of filter and smoother
particles, respectively. We refer to [20] for more details on
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Fig. 1. Left: Histogram ofν and plot of the scaled pdf of anN (0, 12)
distribution (continuous line), Example 1. Right: Quantile-quantile plot of
the samples ofν and theN (0, 12) distribution, Example 1.

the effects ofN , M andT in the accuracy of the estimator.

B. Modelling the objective function

We explore the use of a GP to model the objective
function h(Iθ0,av

F (u1:T )) [22]. GPs can be understood as a
generalization of the multivariate Gaussian distributionand
are commonly used as priors over functions [23]. In this
perspective, the posterior obtained by conditioning on the
observations corresponds to the functions that could have
generated the observations.

In the following, we model the functionh(Iθ0,av
F (·)) as

being a priori distributed according to a GP. That is

h(Iθ0,av
F (·)) ∼ GP (m(·), κ(·, ·)) , (10)

where the process is fully described by the mean function
m(·) and the covariance functionκ(·, ·). Examples of these
functions are a constant form and a Matérns/2 function
for κ [22, p.84].

To simplify the discussion, we will focus on a specific
iterationk of the proposed procedure. LetDk := {u(k)

1:T , ĥk}
denote a set of iterates, whereu(k)

1:T and ĥk denote matrices
obtained by stacking input realizations and estimates of the
objective function up to iterationk, respectively. In addition,
we will assume that

ĥk = h(Iθ0,av
F (u

(k)
1:T )) + z , (11)

where z ∼ N (0, σ2
z), and σz > 0. We note thatσz is

unknown a priori, and it needs to be estimated usingDk. The
assumption (11) seems strict, but the continuous mapping
theorem [24, Theorem 2.7] shows that the central limit
theorem also applies to the estimateĥk, as it is satisfied
by (4) asymptotically in the number of particles.

Example 1:Consider

xt+1|xt ∼ N
(
φxt + ut, 0.1

2
)
, (12a)

yt|xt ∼ N
(
αxt, 0.1

2
)
, (12b)

where the parameters areθ = {φ, α}. We generateT = 103

observations from (12) withθ0 = {0.8, 1}.
We are interested in estimatingh(Iθ0,av

F (u1:T )) =

log det(Iθ0,av
F (u1:T )), whereu1:T is a binary white noise

process with values{−1, 1}.
The estimate of the Fisher information matrix is obtained

using Algorithms 1-2, withN = 2.5·103 particles,M = 100



backward trajectories andNlimit =
√
N in the fFFBSi

smoother. Figure 1 shows the histogram based on103

realizations of the random variable

ν :=

√
M(ĥ− h)

σ√
Mĥ

, (13)

where ĥ := h(Îθ0,av
F (u1:T )), and h, σ2√

Mĥ
are the sam-

ple mean ofĥ and variance of
√
M ĥ, respectively. As a

comparison, we also present the scaled pdf of anN (0, 12)
distribution. We can see that the histogram follows the shape
of the pdf of aN (0, 12) distribution. This is also confirmed
by the quantile-quantile (QQ) plot in Figure 1, where the
quantiles ofν coincides with those given by anN (0, 12)
distribution. �

Based on (11), it follows that the predictive posterior
distribution is

h(Iθ0,av
F (u1:T ))|Dk ∼ N

(
µ(u1:T |Dk), σ

2(u1:T |Dk) + σ2
z

)
,

(14)
where µ(u1:T |Dk) and σ2(u1:T |Dk) denote the posterior
mean and variance givenDk. From standard results for the
Gaussian distribution, we have

µ(u1:T |Dk) = m(u1:T )

+ κ(u1:T , u
(k)
1:T )Γ

−1
{
ĥk −m(u1:T )

}
,

(15a)

σ2(u1:T |Dk) = κ(u1:T , u1:T )

− κ(u1:T , u
(k)
1:T )Γ

−1κ(u
(k)
1:T , u1:T ) , (15b)

with Γ := κ(u
(k)
1:T , u

(k)
1:T )+σ2

zIk, whereIk denotes thek×k-
identity matrix.

In the GP model introduced here, we use mean and
covariance functions that possibly depend on some unknown
hyperparameters. In addition, we also need to estimateσz

characterizing the random variablez in (11). To estimate
these quantities, we adopt the empirical Bayes procedure,
where the marginal likelihood of the data is numerically
optimized with respect to the hyperparameters [25].

C. Acquisition rules

To implement step (iii), we need to generateu
(k+1)
1:T ∈ CT .

One option is to perform a random walk overCT , which
works well provided that the parameterization ofu1:T is of
small dimension. However, this approach is inefficient as the
dimension of the parameterization foru1:T increases.

Instead, we make use of acquisition rules that balance
exploration and exploitation of the parameter space and
employ the posterior distribution obtained from the GP. Here,
we use the expected improvement (EI) technique [26].

Consider thepredicted improvement

I(u1:T ) := max
{
0, h(Iθ0,av

F (u1:T ))− µmax − ξ
}
, (16)

whereξ is a user defined coefficient balancing exploration
and exploitation, and

µmax := max
u1:T∈u

(k)
1:T

µ(u1:T |Dk) , (17)

the expected peak ofh(Iθ0,av
F (u1:T )) at iterationk.

By using the posterior distribution obtained from the GP,
we define the EI as2

E {I(u1:T )} = σ(u1:T ) {Z(u1:T )Φ(Z(u1:T ))

−φ(Z(u1:T ))} , (18a)

Z(u1:T ) := σ−1(u1:T ) {µ(u1:T )− µmax − ξ} , (18b)

with Φ andφ denoting the cumulative distribution function
and the pdf of the standard Gaussian distribution, respec-
tively. Then, an acquisition rule is

u
(k+1)
1:T = arg max

u1:T∈CT
E {I(u1:T ) |Dk } , (19)

i.e., the element maximizing the EI. From (18) we see that
the EI assigns a large value when both the varianceσ(u1:T )
and the mean differenceµ(u1:T ) − µmax are large, in line
with the desired behavior of an acquisition function, as it is
explained at the beginning of Section III.

D. Parameterizing the input

To implement the GPO for solving the input design
problem, we need a parameterization ofCT . Here we briefly
explain two options:

1) Stationary Markov processes:If we restrict C to be
finite andu1:T to be a realization from ann-dimensional
stationary Markov process of a given order, then the parame-
terization employed in [8] can be used. The parameterization
of the input is given by the stationary distribution of the
Markov process, which is constrained to

PC :=

{
pu : Cn → R

∣∣∣∣ pu(x) ≥ 0, ∀x ∈ Cn;

∑

x∈Cn

pu(x) = 1;

∑

v∈C
pu(v, z) =

∑

v∈C
pu(z, v) , ∀z ∈ Cn−1

}
. (20)

Following [8], we parameterize (20) as the convex hull
of its extreme points, which are computed using graph
theoretical techniques. Therefore, the decision variablein
this case corresponds to the weighting vector of the extreme
points describing an element inPC . Assuming thatPC
has nV extreme points, then the weighting vectorα :=
[α1 . . . αnV

]⊤ ∈ R
nV is used to computep ∈ PC as

p =

nV∑

i=1

αip
(i) , (21)

with α satisfying

αi ≥ 0 , for all i ∈ {1 , . . . , nV} , (22a)
nV∑

i=1

αi = 1 . (22b)

In (21), {p(i)}nV

i=1 corresponds to the probability mass
functions (pmf) that are the extreme points ofPC .

2For simplicity, the dependence onDk is dropped from the notation.



Algorithm 3 GPO for input design

INPUTS: Algorithm 2, K (no. iterations) andu(0)
1:T ∈ C

T (initial
excitation).
OUTPUT: {x(i)

t , w
(i)
t }

N
i=1, t = 1, . . . , T .

1: Sampleu(0)
1:T ∈ C

T .
2: for k = 0 to K do
3: Use Algorithm 2 to computêhk := h(Îθ0 ,avF (u

(k)
1:T )).

4: Compute (14)-(15) to obtainh(Iθ0 ,avF (u1:T ))|Dk.
5: Compute (17) to obtainµmax.
6: Compute (19) to obtaiñu(k+1)

1:T .
7: Computeu(k+1)

1:T as a realization of a random walk centered
at ũ(k+1)

1:T .
8: end for
9: Compute the maximizer ofµ(u1:T |DK) to obtainuopt

1:T .

Once a new sampleα ∈ R
nV satisfying3 (22) is generated,

we compute the associated pmfp ∈ PC by (21), and we
generateu1:T by running a Markov chain with stationary
distributionp.

2) Stationary AR processes:We can restrictu1:T to be a
filtered white noise process, as it is proposed in [27]. In this
case, the decision variables are the filter coefficients, andthe
properties of the white noise. For example, we can assume
that u1:T is a realization from a stationary AR process

A(q)ut = et , (23)

where{et} is Gaussian white noise, with varianceσ2
e , and

A(q) :=

na∑

i=0

ai q
−i , (24)

with na > 0 given, ai ∈ R for all i ∈ {1, . . . , na}, and
a0 = 1. For this example, the decision variables areσe > 0,
and{ai}na

i=1, such thatA(q) has all its zeros strictly inside
the complex unit disc4.

E. The final procedure

Algorithm 3 presents the resulting procedure for input
design using Gaussian process optimization. We note that
line 7 introduces a random walk centered at (19) to promote
exploration around the expected improvement. We also note
that only one functional evaluation is required per iteration,
reducing the computational effort when optimizing overCT .

IV. N UMERICAL EXAMPLES

Example 2:Consider the linear Gaussian state space
model in Example 1. We are interested in maximizing
h(Iθ0,av

F (u1:T )) = log det(Iθ0,av
F (u1:T )), whereu1:T (T =

103) is a realization of a stationary Markov process (see
Section III-D), withnm = 1 andC = {−1, 1}.

For Algorithm 3, we useK = 500, ξ = 0.01, and a
random walk centered around the current parametrization

3This can be achieved by samplingα satisfying (22a), and then normal-
izing the entries ofα to satisfy (22b).

4This can be guaranteed by factorizingA(q) into first and second order
polynomials inq, and imposing the constraint on each of these factors.

of ũ
(k+1)
1:T , uniformly distributed on[−0.01, 0.01]. The es-

timate of the Fisher information matrix is obtained using
Algorithms 1-2, which are implemented as in Example 1.
For the prior distribution ofh(Iθ0,av

F (u1:T )), we consider a
constant mean function, and a covariance function composed
of a Matérns/2 structure and a constant. The Matérns/2
structure is chosen in this example as it contains information
about the smoothness ofh(Iθ0,av

F (u1:T )). Other choices for
the covariance function are also possible and we refer to [22,
Chapter 4] for more details.

Algorithm 3 is implemented in Matlab using the
fmincon command for (19) and theGPML toolbox [28]
to infer the hyperparameters and estimate the predictive
posterior distribution ofh(Iθ0,av

F (u1:T )).
The solution obtained from Algorithm 3 isut = 1 for all

t ≥ 0. In this example, a nonzero constant input introduces a
nonzero offset in the measurements, which helps to estimate
θ in the presence of process disturbance and measurement
noise. As a reference, we drawu1:T as a realization from a
binary white noise process with values{−1, 1}. The results
are h(Iθ0,av

F (uopt
1:T )) = 14.57 for the optimal input and

h(Iθ0,av
F (u1:T )) = 10.18 for the binary white noise process.

�

Example 3:Consider the system

xt+1|xt ∼ N
( 1

γ + x2
t

+ ut, 0.1
2
)
, (25a)

yt|xt ∼ N
(
βx2

t , 1
2
)
, (25b)

where the parameters areθ = {γ, β}. We generateT = 103

observations from the model withθ0 = {2, 0.8}. We note
that estimatingγ in (25) is inherently difficult, since two
different values ofxt can explainyt equally well.

We consider the same setting and functionh as in Exam-
ple 2, but we consider three cases forC:

• Case 1:C = {−1, 1}.
• Case 2:C = {−1, 0, 1}.
• Case 3:C = {−1,−1/3, 1/3, 1}.

Table I presents the value ofhopt := h(Îθ0,av
F (uopt

1:T ))
for each case, whereuopt

1:T corresponds to the optimal input
obtained from Algorithm 3. As comparison, we also compute
the value ofh(Îθ0,av

F (u1:T )), with {ut} binary distributed
white noise with values{−1, 1} (Binary in Table I). We
see that the binary white noise process seems to be optimal
whenC = {−1, 1}, as it is confirmed by the value ofhopt

for Case 1. We also note that adding intermediate values to
the input alphabet increases the amount of information in the
data, ashopt is greater in Cases 2 and 3 than in Case 1.
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Fig. 2. Optimal inputuopt
1:T for Case 3 in Example 3.



0 20 40 60 80 100
0

1

2

3

4

5

Iteration k

h
(Î
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Fig. 3. Value ofĥk andµmax at iterationk for Case 3 in Example 3.

TABLE I

hopt FOR DIFFERENT INPUT REALIZATIONS, EXAMPLE 3.

Input Binary opt. Case 1 opt. Case 2 opt. Case 3
hopt 4.11 4.11 4.15 4.44

Figure 2 presents the optimal input obtained for Case 3.
We note that the optimal input includes a nonzero offset to
improve the accuracy of the parameter estimates.

To illustrate the evolution of̂hk, we present in Figure 3 the
samples{ĥk}100k=1, together with the value ofµmax at every
iteration. The first 20 samples are drawn at random from
CT to provide an initial estimate of the hyperparameters in
the GP prior. We note that some of the samples in{ĥk}20k=1

are not close to the optimal cost, which is expected due to
random sampling. However, once Algorithm 3 is executed
from iteration 21 onwards, we observe that the samples are
close toµmax, which implies that the spaceCT is explored
only in those regions whereh can only increase with respect
to the current estimates. Hence, the proposed technique
drives the parameter search towards those regions where an
improvement in the objective function is expected. �

V. CONCLUSIONS

A Gaussian process optimization algorithm for input de-
sign for the identification of nonlinear dynamical models
has been introduced. The method maximizes a scalar cost
function of the Fisher information matrix over the parameter
set for the input sequence. Since the objective function is
unavailable in closed form, a Gaussian process approach is
employed to compute a surrogate function. Numerical exam-
ples show that the algorithm can provide a good alternative
to solve the input design problem.

Future work on this subject will consider a better estima-
tor of the Fisher information matrix with a better particle
smoother, and alternative parameterizations of{ut}.
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