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Detection of Biasing Attacks on Distributed Estimation Networks

Mohammad Deghat Valery Ugrinovskii Iman Shames Cédric Langbort

Abstract— The paper addresses the problem of detecting
attacks on distributed estimator networks that aim to inten-
tionally bias process estimates produced by the network. It
provides a sufficient condition, in terms of the feasibility of
certain linear matrix inequalities, which guarantees distributed
input attack detection using anH∞ approach.

I. I NTRODUCTION

With recent rapid developments in the area of networked
control and estimation, the security of networked systems
against input attacks and faults becomes increasingly impor-
tant. The mainstream of the results in the literature focus on
centralized attack and fault detection, however some recent
work has been done on distributed attack and fault detection
due to the fact that not all measurements might be available
at each node of the network; see [2], [9], [10], [13], [5], [3]
and the references therein.

This paper considers the problem of detection of attacks on
consensus-based distributed estimation networks. The topic
of distributed estimation has gained considerable attention
in the literature, in a bid to reduce communication bot-
tlenecks and improve reliability and fidelity of centralized
state observers. Filter cooperation and consensus ideas have
proved to be instrumental in the design of distributed state
observers [7], [15], [16]. At the same time, consensus-based
systems are particularly vulnerable to intentional attacks
since the compromised agents can interfere with the func-
tions of the entire network in a significant way [8]. Uncer-
tainty and noise represent another challenge from the attack
detection viewpoint — state observers are typically required
in applications where uncertainty and noise make accessing
the system state difficult; this may allow the attackers to
remain undetected by injecting signals compatible with the
noise statistics [9]. This motivates an increased interestin the
literature in detection of rogue behaviours of state observers.

In this paper, we consider a general framework of dis-
tributed state estimation considered, for example, in [15],
[16], [18] and assume that some of the nodes of the network
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are compromised. Mathematically, this situation is modelled
by allowing the compromised observers to be driven by
certain attack/fault inputs. The purpose of the attack under
consideration is to force the compromised node to pro-
duce biased state estimates and then exploit the consensus
mechanism within the network to propagate those estimates
across the network. Conventional false data injections into
measurements can also be included in the model as a routine
extension of our results.

From the viewpoint of fault detection/input estimation,
the system subject to attack is distributed itself. This is
similar to [13], but is different from [5], [3] which were
focused on detecting faults applied to the observed plant.
We use anH∞ fault detection approach which allows for
a broad range of uncertainty in the sensors and the plant
model, as well as a quite broad range of attack inputs.
Furthermore, to detect the attack/fault, the proposed attack
observers use the same plant measurements and the state
estimate information communicated from the neighbours as
the state observers themselves. The key idea is to use this
information, without additional communication overheads, to
determine which of the node observers’ behaviour differs
from what this information predicts.

Our idea of governing the detectors by neighbours’ state
estimates to track the attack input is similar to [12], where
integral action controllers governed by diffusive couplings
were used for averaging constant disturbances. More pre-
cisely, in [12] distributed integral action controllers were
used for averaging constant disturbances to enable all agents
in the system to synchronize to a common reference system
governed by the averaged constant disturbance. In contrast,
here we are interested in tracking individual attack inputs,
rather than tracking an averaged attack vector. Techni-
cally this required us to introduce additional dynamics into
the fault detectors. Also unlike [12], theH∞ formulation
adopted here does not restrict the attack inputs to be con-
stants.

The paper is organised as follows. In Section II, a
background on distributed consensus based estimation is
presented. Also, the idea of distributed attack estimationwith
H∞ consensus is explained and the attack detection problem
is formulated in that section. The main result is given in
Section III, where a sufficient condition in terms of coupled
linear matrix inequalities is expressed. Concluding remarks
are given in Section IV.

Notation: R
n denotes the real Euclideann-dimensional

vector space, with the norm‖x‖ = (x′x)1/2; here the
symbol ′ denotes the transpose of a matrix or a vector. The
symbol In denotes then × n identity matrix, and0m×n
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denotes the zero matrix of sizem×n. We will occasionally
use I and 0 for notational convenience if no confusion is
expected. For real symmetricn × n matricesX and Y ,
Y > X (respectively,Y ≥ X) means the matrixY − X

is positive definite (respectively, positive semidefinite). The
notationL2[0,∞) refers to the Lebesgue space ofR

n-valued
vector-functionsz(.), defined on the time interval[0,∞),
with the norm ‖z‖2 ,

(∫∞

0
‖z(t)‖2dt

)1/2
and the inner

product
∫∞

0
z′1(t)z2(t)dt.

II. FORMULATION OF THE DISTRIBUTED ATTACK

DETECTION PROBLEM

A. Network topology

Consider a filter network withN nodes and a directed
graph topologyG = (V,E) whereV and E are the set
of vertices and the set of edges (i.e, the subset of the set
V × V), respectively. Without loss of generality, we let
V = {1, 2, . . . , N}. The graphG is assumed to be directed,
reflecting the fact that while nodei receives the information
from nodej, this relation may not be reciprocal. The notation
(j, i) will denote the edge of the graph originating at node
j and ending at nodei. It is assumed that the nodes of the
graphG have no self-loops, i.e.,(i, i) 6∈ E.

For eachi ∈ V, let Vi = {j : (j, i) ∈ E} be the set of
nodes supplying information to nodei. The cardinality of
Vi, known as the in-degree of nodei, is denotedpi; i.e.,
pi is equal to the number of incoming edges for nodei.
Also, qi will denote the number of outgoing edges for node
i, known as the out-degree of nodei. Let A = [aij ] be the
adjacency matrix of the digraphG, i.e.,aij = 1 if (j, i) ∈ E,
otherwiseaij = 0. Then, pi =

∑N
j=1

aij =
∑

j∈Vi
aij ,

qi =
∑N

j=1
aji.

B. Background: distributed consensus-based H∞ estimation

A typical distributed consensus-basedH∞ estimation
problem considers a plant described by the equation

ẋ = Ax+B2ξ(t), x(0) = x0, x ∈ R
n, (1)

governed by an disturbance inputξ ∈ R
m. A network of

filters connected according to the graphG takes measure-
ments of the plant with the purpose to produce an estimate
of x. It is assumed that each filter takes measurements

yi = C2ix+D2iξ + D̄2iξi, (2)

whereξi(t) ∈ R
mi represents the measurement disturbance

at the local sensing nodei, and processes them locally using
an information communicated by its neighboursj, j ∈ Vi.
Depending on the nature of the disturbancesξ, ξi, the
processing can be done using Kalman [7] orH∞ [15], [16],
[18] filters, both using innovations in the measurements and
the neighbours’ information for feedback. To be concrete,
from now on we build the presentation around the distributed
H∞ consensus filter introduced in [16], [18], although the
approach to bias attack detection proposed in this paper is
general enough to allow extensions to other types of filters
in an obvious manner.
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Fig. 1. An auxiliary ‘input tracking’ model.

According to [16], suppose the disturbancesξ, ξi belong to
L2[0,∞); this assumption suffices to guarantee that equation
(1) has anL2-integrable solution on any finite time interval
[0, T ], even when the matrixA is unstable. Then using the
Luenberger type observer, each filter produces an estimate
x̂i of the statex

˙̂xi = Ax̂i + Li(yi(t)− C2ix̂i) +Ki

∑

j∈Vi

(x̂j − x̂i), (3)

x̂i(0) = 0,

where the matricesLi, Ki are the parameters of the filter. The
observer structure indicates that each node takes advantage of
being interconnected with other nodes in that each filter uses
its neighbours estimateŝxj , j ∈ Vi. The problem in [16] was
to determine estimator gainsLi andKi in (3) to ensure the
filter internal stability and acceptableH∞ attenuation of the
effect which disturbances have on the consensus performance
of the filter.

C. The bias attack model

The particular problem of interest in this paper is to con-
sider the situation where one or several nodes of the network
of observers described in the previous sections are subject
to bias attack. While a commonly considered situation is
when the attacker interferes with the measurements and/or
communications between the nodes, here in contrast, we
consider the situation where the attacker mounts an attack
on the observer dynamics. That is, we consider the situation
where in lieu of (3), some of the nodes generate their
estimates according to

˙̂xi = Ax̂i + Li(yi(t)− C2ix̂i) +Ki

∑

j∈Vi

(x̂j − x̂i) + fi, (4)

x̂i(0) = 0,

where fi is the attack input. From now on, our focus is
exclusively on the network of observers (4).

To present the class of admissible attack signals under
consideration in this paper, consider an auxiliary ‘input
tracking’ model shown in Fig. 1, with a stable squaren×n

transfer functionGi(s), with invertibleGi(0). SinceGi(s)
is square, then inputfi and outputηi of the system in Fig. 1
are of dimensionn.

Assumption 1: Given a stable squaren×n transfer func-
tion Gi(s), the class of admissible bias inputs under consid-
eration consists of all signalsfi(t), t ≥ 0, such that

∫ ∞

0

‖fi − ηi‖
2dt < ∞. (5)



Consider the tracking error of the system shown in Fig. 1
νi = ηi−fi. Under Assumption 1,νi is a finite energy signal.
Denoting the Laplace transforms offi and νi as fi(s) and
νi(s) respectively, and noting that

νi(s) = −(In +
1

s
Gi(s))

−1fi(s),

condition (5) is equivalent to
∫ +j∞

−j∞

‖(I +
1

s
Gi(s))

−1fi(s)‖
2ds < ∞. (6)

Note also that the invertibility ofGi(0) guarantees that
limt→∞ ‖fi(t) − ηi(t)‖ = 0 for inputsfi that have a finite
limit at ∞.

In practice, of course the transfer functionGi(s) must be
selected by the designer based on the anticipated behaviour
of the attack inputsfi(t). It remains unknown to the attacker.
For example, to capture a class of bias injection attack inputs
consisting of a steady-state component and an exponentially
decaying transient component generated by a low pass fil-
ter [14] it suffices to chooseGi(s) =

1

s+2ǫi
In, whereIn is

the n× n identity matrix, andǫi > 0 is a constant. It must
be noted that even with this choice ofGi(s), the designer
does not need to know the asymptotic steady-state value
or the shape of the transient, as all such signalsfi satisfy
condition (6). Furthermore, such signals have the property
that limt→∞ fi(t) exists and therefore we can ensure that
‖fi(t) − ηi(t)‖ → 0 as t → ∞. More generally, signals
representing a combination of constants andL2-integrable
inputs satisfy (6). In addition to bias attack policiesfi
described above,L2-integrable inputsfi are included which
represent attack inputs with limited energy resource [14].

It can be readily shown that the state-space model for the
system in Fig 1 can be written as

ω̇i = Ωiωi + Γiνi, (7)

ηi = [I 0]ωi, ωi(0) = 0,

whereνi = ηi − fi is anL2-integrable input, according to
Assumption 1. In particular, in the special caseGi(s) =

1

s+2ǫi
In, we haveωi ∈ R

2n, and

Ωi =

[

0 I

0 −2ǫiI

]

, Γi =

[

0
−I

]

. (8)

D. The proposed attack detector

The objective of the paper is to design a (distributed)
attack detection system which is capable of tracking attack
inputs satisfying Assumption 1. To this end, we consider the
following outputs which summarize the information about
the network available at nodei, and can be used by the
attack detector

ζi = yi − C2ix̂i

= C2i(x− x̂i) +D2iξ + D̄2iξi, (9)

ζ̄i =
∑

j∈Vi

(x̂j − x̂i). (10)

The idea behind introducing these outputs is as follows. If
nodei is under attack, then its predicted sensor measurement
C2ix̂i is expected to be biased, compared to the actual
measurementyi. This must lead to a significant difference
between these two signals, i.e., we must expect a large energy
in ζi. Likewise, the observer under attack is expected to
cause the system to deviate from the state of consensus,
causing the state of the observeri, x̂i to deviate from the
average estimate produced at the neighbouring nodes. Thus,
the disagreement variablēζi at nodei is expected to differ
from similar variables produced by the rest of the network.
This motivates using these outputs for detecting the attack.

Let ei = x − x̂i be the local estimation error at nodei.
Using (1) and (4), it is straightforward to verify that the local
filter errors satisfy the following equation:

ėi = (A− LiC2i)ei +Ki

∑

j∈Vi

(ej − ei)

+ (B2 − LiD2i)ξ − LiD̄2iξi − fi, ei(0) = x0.(11)

The outputs (9), (10) can be rewritten in terms of the
estimation errors as

ζi = C2iei +D2iξ + D̄2iξi, (12)

ζ̄i = −
∑

j∈Vi

(ej − ei). (13)

Hence, we can consider the collection of systems (11) as
a large-scale plant governed by the vector of attack inputs
f = [f ′

1, . . . , f
′
N ]′, and equipped with the outputs (12),

(13). It is worth stressing that these outputs can be readily
generated at the observeri, computing them only requires the
local measurementsyi, the local estimatêxi computed by the
observer at nodei and the neighbours estimatesx̂j , j ∈ Vi,
available to that observer. Therefore the outputs (12), (13)
are available for tracking the attack inputs. To achieve this,
consider the system combining the estimation error dynamics
(11) and the auxiliary input tracking model (7):

ėi = (A− LiC2i)ei +Ki

∑

j∈Vi

(ej − ei)− [I 0]ωi

+ (B2 − LiD2i)ξ − LiD̄2iξi + νi, ei(0) = x0,

ω̇i = Ωiωi + Γiνi ωi(0) = 0. (14)

The system (14) equipped with the outputs (12), (13)
is an uncertain system governed byL2-integrable inputs
ξ, ξi and νi. Each such system is interconnected with its
neighbours via inputsej , and the collection of all such
systems represents a large-scale system. We propose the
following distributedH∞ observer for this large-scale system
which utilizes the outputs (12), (13) to obtain estimates of
ei and ωi while attenuating the disturbancesξ, ξi and νi,



i = 1, . . . , N :

˙̂ei = (A− LiC2i)êi +Ki

∑

j∈Vi

(êj − êi)− [I 0]ω̂i

+ Fi(ζi − C2iêi) +Hi



ζ̄i +
∑

j∈Vi

(êj − êi)



 ,

˙̂ωi = Ωiω̂i + F
η
i (ζi − C2iêi) +H

η
i



ζ̄i +
∑

j∈Vi

(êj − êi)



 ,

êi(0) = 0, ω̂i(0) = 0. (15)

The coefficientsFi, Hi, F
η
i , Hη

i are to be found in such a
way thatη̂i : η̂i = [I 0]ω̂i tracks the outputηi of the auxiliary
system (7). Then, since according to the definition of the
auxiliary signalηi, this signal representsfi asymptotically,
we propose usinĝηi as a residual variable indicating whether
the attack is taking place.

To formalize the above idea, introduce the error vectors
zi = ei− êi, δi = ωi− ω̂i. Using the extended system model
(14) and the corresponding observer (15), the evolution of
these error vectors is governed by the following equations

żi = (A− LiC2i)zi +Ki

∑

j∈Vi

(zj − zi)− [I 0]δi

− FiC2izi +Hi

∑

j∈Vi

(zj − zi)

+ (B2 − LiD2i)ξ − LiD̄2iξi + νi

− FiD2iξ − FiD̄2iξi, zi(0) = x0,

δ̇i = Ωiδi − F
η
i C2izi +H

η
i

∑

j∈Vi

(zj − zi)

− F
η
i D2iξ − F

η
i D̄2iξi + Γiνi, δi(0) = 0. (16)

Note that we can introduce new variablesL̃i = Li + Fi,
K̃i = Ki +Hi, and re-write (16) as

żi = (A− L̃iC2i)zi + K̃i

∑

j∈Vi

(zj − zi)− [I 0]δi

+ (B2 − L̃iD2i)ξ − L̃iD̄2iξi + νi, zi(0) = x0,

δ̇i = Ωiδi − F
η
i C2izi +H

η
i

∑

j∈Vi

(zj − zi)

− F
η
i D2iξ − F

η
i D̄2iξi + Γiνi, δi(0) = 0. (17)

Problem 1 (The H∞ detector design problem): The dis-
tributed attack detection problem under consideration in this
paper is to determinẽLi, K̃i, F

η
i , Hη

i such that the following
conditions hold:

(i) The large-scale system (17) is internally stable. Equiv-
alently, the disturbance and attack-free large-scale sys-
tem

żi = (A− L̃iC2i)zi + K̃i

∑

j∈Vi

(zj − zi)− [I 0]δi,

δ̇i = Ωiδi − F
η
i C2izi +H

η
i

∑

j∈Vi

(zj − zi), (18)

zi(0) = x0, δi(0) = 0,

must be asymptotically stable.

(ii) In the presence of disturbances and attack signals, all
from the class ofL2-integrable signals, the system (17)
achieves a guaranteed level ofH∞ filtering perfor-
mance:

sup
x0,w 6=0

∫∞

0

∑N
i=1

(δ′iQiδi + z′iQ̄izi)dt

‖x0‖2P +
∑N

i=1
‖wi‖22

≤ γ2, (19)

where Qi = Q′
i > 0, Q̄i = Q̄′

i ≥ 0 are given
matrices,‖x0‖

2
P = x′

0Px0, P = P ′ > 0 is a fixed
matrix to be determined later,wi , [ξ′, ξ′i, ν

′
i]
′, w ,

[w′
1, . . . ,w

′
N ]′, andγ > 0 is a constant.

It follows from (19) that each attack detector variableω̂i

provides anH∞ estimate ofωi. We now show that provided
Assumption 1 holds, the output̂ηi = [I 0]ω̂i of the observer
(15) converges tofi, and hence it can be used as a residual
indicator of attack.

Lemma 1: Suppose Assumption 1 holds and the observer
network (4) is such that the disturbance and attack-free large-
scale system (18) is asymptotically stable, and also (19) holds
with Q̄i > 0. Then‖η̂i − fi‖ → 0 as t → ∞ for all fi that
have a finite limit at∞.

Note that (19) withQ̄i > 0 requires the observer to ensure
disturbance attenuation with respect to bothδi andzi, even
though only the variableδi captures the tracking error of
interest. WhenQ̄i = 0 and condition (19) reduces to a
weaker condition we can guarantee thatη̂i converges tofi
in L2 sense, even whenfi does not have a finite limit at∞.

Lemma 2: Suppose Assumption 1 holds and the observer
network (4) is such that the disturbance and attack-free large-
scale system (18) is asymptotically stable, and also condition
(19) holds withQ̄i = 0,

sup
x0,w 6=0

∫∞

0

∑N
i=1

δ′iQiδidt

‖x0‖2P +
∑N

i=1
‖wi‖22

≤ γ2. (20)

Then
∑N

i=1

∫∞

0
‖η̂i − fi‖

2dt < ∞.
It is worth noting that the system (15) is governed by

the outputs of the observer network (4); therefore it can
be implemented to monitor the health of the network. We
explain in the next section how to desigñLi, K̃i, F

η
i , and

H
η
i such that the above conditions hold.

III. A TTACK DETECTOR DESIGN

Problem 1 belongs to the class of distributed stabilization
by output injection problems. References [4], [16], [18]
developed a vector dissipativity approach to solve this class
of problems which will be applied here as well. For each
node i, consider a candidate storage functionVi(zi, δi) =
[z′i δ′i]Xi[z

′
i δ′i]

′, where Xi = X ′
i > 0. The following

vector dissipation inequality is instrumental in proving input
tracking properties of the distributed attack detector (15):

V̇i+2αiVi+δ′iQiδi+z′iQ̄izi ≤
∑

j∈Vj

πjVj+γ2‖wi‖
2, (21)



whereπi, πj are constants selected so that the matrix










−2α1 π2a12 . . . πNa1N

π1a21 −2α2 . . . πNa2N

...
...

. . .
...

π1aN1 π2aN2 . . . −2αN











is diagonally dominant (and therefore it is Hurwitz [11]);
here,aij is the element of the adjacency matrix of the graph
G. Indeed adding the inequalities (21) will result in

N
∑

i=1

V̇i +
N
∑

i=1

(δ′iQiδi + z′iQ̄izi)

≤max{−2α1 + q1π1, . . . ,−2αN + qNπN}

N
∑

i=1

Vi

+ γ2

N
∑

i=1

(‖ξ‖2 + ‖ξi‖
2 + ‖νi‖

2).

Selecting πi < 2αi

qi
and letting ε = min{2α1 −

q1π1, . . . , 2αN − qNπN} > 0, V =
∑N

i=1
Vi, we then have

V̇ +
N
∑

i=1

(δ′iQiδi + z′iQ̄izi) ≤

−εV + γ2

N
∑

i=1

(‖ξ‖2 + ‖ξi‖
2 + ‖νi‖

2). (22)

This implies that whenξ = 0 andfi = 0, ξi = 0 ∀i, then

V̇ < −εV,

and providedXi > 0, we havezi → 0, δi → 0 exponentially.
That is, condition (i) of Problem 1 is established.

Also, when at least one of the signalsξ, ξi or fi is not
equal to zero (the latter is equivalent toνi 6≡ 0), then it
follows from (22) that

N
∑

i=1

∫ T

0

(δ′iQiδi + z′iQ̄izi)dt ≤

N
∑

i=1

[Vi(zi(0), δi(0))

+ γ2

∫ T

0

(‖ξ‖2 + ‖ξi‖
2 + ‖νi‖

2)dt

]

.

Note thatVi(zi(0), δi(0)) = x′
0X

11
i x0, whereX11

i is the
upper left block in the partition ofXi compatible with the
dimensions ofzi and δi. Hence (19) also holds withP =
γ−2

∑N
i=1

X11
i . It follows from this discussion that condition

(21) ensures satisfaction of the conditions of Lemma 1.
Therefore, to ensure that the distributed observer (15) can
track the attack inputfi we need to determine coefficients
L̃i, K̃i, F

η
i , andHη

i for it so that (21) is satisfied.

To present conditions under which (21) holds, introduce
the notation

A
µ
i =

[

A −[I 0]
0 Ωi

]

, B
µ
1 =

[

I

Γi

]

, B
µ
2 =

[

−B2 0
0 0

]

,

D
µ
2i =

[

D2i D̄2i

]

, C
µ
2i =

[

C2i 0
]

, Hµ =
[

I 0
]

,

L
µ
i =

[

L̃i

F
η
i

]

, K
µ
i =

[

K̃i

H
η
i

]

. (23)

SupposeD2i andD̄2i satisfy the condition

E2i , D
µ
2i(D

µ
2i)

′ = D2iD
′
2i + D̄2iD̄

′
2i > 0. (24)

The above assumption onE2i is a standard assumption made
in nonsingularH∞ control problems [1].
Now let us introduce the matrix

Q
µ
i =

[

Q̄i 0
0 Qi

]

, (25)

where Qi = Q′
i > 0. Also, Q̄i = Q̄′

i is selected to be
positive definite when the aim is to design an attack observer
to achieve asymptotic tracking of attack inputs. IfL2 tracking
is acceptable, one can let̄Qi = 0. Given αi > 0, define
πi =

2αi

qi+1
, whereqi is the out-degree of the graph nodei.

Clearly πi =
2αi

qi+1
< 2αi

qi
.

Theorem 1: Suppose Assumption 1 holds and the digraph
G, the matricesQi = Q′

i > 0, Q̄i = Q̄′
i > 0, i = 1, · · · , 6

and the constantsαi > 0, i = 1, · · · , N are such that the
coupled linear matrix inequalities in (27) (on the next page)
with respect to the variablesXi = X ′

i > 0 and Mi, i =
1, · · · , N are feasible. Then choosing

K
µ
i = −X−1

i Mi,

L
µ
i = (γ2X−1

i (Cµ
2i)

′ −B
µ
2
(Dµ

2i)
′)E−1

2i

(26)

ensures that the condition (21) holds.
Combined with Lemma 1 or Lemma 2, this theorem

provides a complete result on the design of biasing attack
detectors for the distributed observer (4).

IV. CONCLUSION

The paper is concerned with the problem of distributed
attack detection is sensor networks. We consider a group
of consensus-based distributed estimators and assume that
the estimator dynamics are under attack. Then we propose
a distributedH∞ attack detector which allows for a broad
range of uncertainty in the sensors and the plant model, as
well as a quite broad range of bias attack inputs, and show
that the proposed attack detector can track individual attack
inputs at different sensors. A possible future direction isto
construct a compensator to cancel the detected attack in the
system.
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