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Dynamic observation-prediction for LTI systems with a time-varying delay
in the input

V. Léchappé, E. Moulay and F. Plestan

Abstract— A predictive-based controller is proposed to con-
trol LTI systems in presence of time-varying delay in the
input. The control method is based on the computation of an
approximated (or asymptotic) prediction thanks to a dynamic
system. Then, this prediction is “plugged” into any Lipschitz
controller that stabilizes the delay-free system. Explicit condi-
tions that guarantee the closed-loop stability are given thanks
to a Lyapunov-Krasovskii analysis. A qualitative analysis of
these conditions is performed and the results are illustrated in
simulation.

Index Terms— Prediction-based control, time-varying delay,
dynamic prediction, Lyapunov-Krasovskii functional

I. I NTRODUCTION

Input delay systems are a subclass of time delay systems
(TDS). The reader can refer to survey papers [1] and [2] for
a general review on TDS. An input can be delayed because
of a large computation time or because of latencies during
communications. The latter example is particularly common
for remote controlled devices such as UAVs, satellites or in
Networked Control Systems (NCS).

There exist two different approaches to control input
delay systems: memoryless (or memory free) and memory
controllers. The advantage of memory free controllers is that
they do not require the computation of an integral. See for
example [3] for bounded control, [4] for adaptive control, [5]
for a truncated predictor and [6] for sliding mode techniques.
The drawback is that they usually cannot guarantee a good
level of performance for unstable systems with large delays.

In this case, memory controllers can be designed. For
systems with a single delay in the input (as those considered
in this work), a memory controller is often a controller based
on the computation of a prediction. It has been highlighted
in [7] that state prediction is a fundamental concept for
delay systems, much like state observation is for systems
with incomplete state measurements. The most well-known
method to control dead time systems is probably the Smith
predictor. This frequency approach was introduced by Smith
at the end of the 1950s in [8]. At the end of the 1970s and
the beginning of the 1980s, the result of Smith has been
extended to state-space representation and unstable systems
by [9], [10] and [11].
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The inconvenient of these methods is that they usually
require the discretization of an integral. For open-loop stable
systems, the integral term can be computed without dis-
cretizing the integral [12]. However, for open-loop unstable
systems, the integral has to be discretized in a finite number
of points. This step has to be done very carefully since it can
destabilize the system as pointed out in [13]. A prediction
approach based on an approximated prediction computed
thanks to a dynamic system has been proposed for the first
time in [14] for the control of input delay systems. The
advantage is that no discretization is required to compute the
prediction. The idea has also been used for the observation
of systems with delayed output [15], [16], [17]. Recently,
some works have used the same idea of dynamic prediction
for control purposes: [18] with full state knowledge, [19] and
[20] considering sample and hold phenomena.

However, the works mentioned above consider a constant
delay. In this article, the time-varying delay-case is treated by
adding an extra term in the Lyapunov-Krasovskii functionals.
The exponential stability is proven for a large class of
controllers and observers. In addition, explicit conditions for
stability are given and analyzed.

The paper is organized as follows. The different assump-
tions and the problem are stated in Section II. In Section
III, the dynamic observer-predictor is presented along with a
convergence proof and a qualitative analysis of the stability
conditions. This result is extended to the case of various
sub observers-predictors in Section IV. In Section V, sim-
ulations support previous theoretical results. Finally, some
perspectives are given in Section VI.

II. PROBLEM STATEMENT

The class of systems considered in this work is the
following

{

ẋ(t) = Ax(t) +Bu(t− h(t))
y(t) = Cx(t)

(1)

whereh(t) is a known and time-varying delay. The objective
is to design prediction-based controllers without the need
of computing the exact prediction. Indeed, the discretization
is delicate process that often requires a large computing
power that may restrict the application range of predictive
methods in practice. In addition, for a time-varying delay,
future values of the delay have to be known in advance to
compute the exact prediction [21], [22]. In this article, only
the value ofh has to be known at instantt. The controller
is designed for the delay-free system and then the prediction



is “plugged” in it. As a consequence, throughout this paper
it is assumed that

Assumption 1: There exists a time differentiable and
globally Lipschitz controlleru : x 7→ u(x), that guarantees
the existence a functionVu : Rn → R

Vu(x) = xTPx (2)

with P an×n symmetric matrix that satisfies the inequalities






c||x||2 ≤ Vu(x) ≤ c̄||x||2,
V̇u(x(t)) ≤ −cu||x(t)||2,
∥

∥

dVu

dx

∥

∥ ≤ c||x||,
(3)

with c, c̄, cu, c > 0.
Remark 2.1: Note that the argument “t” in u(x(t)) will be

omitted for clarity. Furthermore, the notationsu(t) or u(x)
will be used indifferently when no confusion is possible.
Assumption 1 implies that the controlleru(x) globally ex-
ponentially stabilizes delay-free system. Note that Theorem
4.14 in [23] guarantees the existence of a Lyapunov function
that verifies (3) for a general class of exponentially stable
nonlinear systems. However, here a special form (but classic)
of the Lyapunov function (Vu = xTPx) is assumed. Remark
that differentiatingVu along the trajectories of the delay-free
system and using inequalities (3), one gets

xT [ATP + PA]x+ uTBTPx+ xTPBu ≤ −cu||x||2. (4)

In addition, sinceu : x 7→ u(x) is globally Lipschitz, there
existslu > 0 such that

||u(x)|| ≤ lu||x|| (5)

for all x ∈ R
n. It is also assumed that an estimationx̂ of

the statex can be computed thanks to an observer:

˙̂x(t) = Ax̂(t) +Bu(t− h(t)) + g(Cx̂(t)− y(t)) (6)

where the correction termg is such that
Assumption 2: There exists a globally Lipschitz function

g that guarantees the existence of a functionVg : Rn → R

Vg(e) = eTQe (7)

with e = x̂−x andQ an×n symmetric matrix that satisfies
the inequalities











m||e||2 ≤ Vg(e) ≤ m̄||e||2,
V̇g(e(t)) ≤ −mg||e(t)||2,
∥

∥

∥

dVg

de

∥

∥

∥
≤ m||e||,

(8)

with m, m̄,mu,m > 0 .
Remark 2.2: By a slight abuse of notation,g(Ce) will be

sometimes denotedg(e) to underline that it depends on the
observation errore.
Assumption 2 implies that the functiong globally exponen-
tially stabilizes the observation error

ė(t) = Ae(t) + g(Ce(t)). (9)

Similarly to (4), one gets

eT [ATQ+QA]e+ gT (Ce)Qe+ eTQg(Ce) ≤ −mg||e||2.
(10)

In addition, sinceg is globally Lipschitz, there existslg > 0
such that

||g(Ce)|| ≤ lg||Ce|| (11)

for all e ∈ R
n. Some assumptions are also made to

characterize the time-varying delayh(t):
Assumption 3: The time-varying delayh(t) is upper and

lower bounded by strictly positive constants.
Assumption 4: The delay is differentiable and its dynam-

ics is bounded.
In the next section, the dynamic observation-prediction
method is presented.

III. D YNAMIC OBSERVATION AND PREDICTION METHOD

The observation and the prediction are computed by a
single dynamic system

ż(t) = Az(t) +Bu(t) + g(Cz(t− h(t)) − y(t)]) (12)

with g a correction term verifying Assumption 2.
Remark 3.1: Note that to computez(t), the initial condi-

tion z(t) = φz(t) for t ∈ [−hmax, 0] with φz a continuous
function, is required. The predictionz will be continuous
in t = h(t). Also remark that the variablez(t) has to be
stored on[t−hmax, t] which imposes constraints on practical
implementations.
Then, a predictive feedbacku(z) with u that verifies As-
sumption 1 can be applied to stabilize (1). Notice that the
non-delayed inputu(t) enters system (12) and that the cor-
rection term involves the delayed estimation statez(t−h(t)),
that is whyz(t) is an approximation ofx(t+ h(t)).

In order to state the next result, the prediction error is
denoted by

ep(t) = z(t− h(t))− x(t). (13)

It is now possible to introduce the following theorem.
Theorem 1: Consider system (1), whereh(t) is known

and complies with Assumptions 3 and 4, and assume that
there exist a controlleru and the correction termg satisfying
Assumptions 1 and 2 respectively. Suppose that system (1)
is controlled byu(z) with z computed by observer-predictor
(12) and define

Υ(t) = ||x(t)||2+ sup
s∈[t−hmax,t]

||z(s)||2+ sup
s∈[t−hmax,t]

||ėp(s)||2.
(14)

Then, there existς, ̺, h∗, δ∗ > 0 such that, provided

h(t) < h∗ and |ḣ(t)| < δ∗,

one has
Υ(t) ≤ ςΥ(0)e−̺t ∀t ≥ 0 (15)

therefore lim
t→+∞

||x(t)|| = 0.

Proof: Note that the delayh(t) (respectivelyḣ(t)) will
be denotedh (respectivelyḣ) in the proof to facilitate the
reading. First, denotingep(t) = z(t− h(t))− x(t), equation
(12) becomes

ż(t) = Az(t) +Bu(t) + g(Cep(t)). (16)



The dynamics ofep(t) reads as

ėp(t) = Aep(t) + g(Cep(t− h))

−ḣ[Az(t− h) +Bu(t− h) + g(Cep(t− h))]
(17)

and can be rewritten as follows

ėp(t) = Aep(t) + g(Cep(t))−
Cep(t)
∫

Cep(t−h)

dg
ds
(s)ds

−ḣ[Az(t− h) +Bu(t− h) + g(Cep(t− h))].
(18)

Since the delay is bounded from Assumption 3, there exist
hmin, hmax > 0 such that

hmin ≤ h(t) ≤ hmax. (19)

The following Lyapunov-Krasovskii functional candidate is
proposed

V (t) = γV1(t) + V2(t) + V3(t) + V4(t) (20)

where
V1(t) = zT (t)Pz(t), (21)

with P defined in (2),

V2(t) = eTp (t)Qep(t), (22)

with Q defined in (7),

V3(t) =

t
∫

t−hmax

(hmax + s− t)||ėp(s)||2ds, (23)

V4(t) =

t
∫

t−h

(hmax + hmin + s− t)(||z(s)||2 + ||ep(s)||2)ds

(24)
andγ > 0. Sinceg is globally Lipschitz and from (4), the
time derivatives ofV1 satisfies

V̇1(t) ≤ −cu||z(t)||2 +R||z(t)|| ||ep(t)|| (25)

with R = 2lg||P || ||C||. Moreover, by substitution one gets
∥

∥

∥

∥

∥

∥

∥

Cep(t)
∫

Cep(t−h(t))

dg

ds
(s)ds

∥

∥

∥

∥

∥

∥

∥

≤ lg||C||
t
∫

t−h(t)

||ėp(s)||ds, (26)

so using (10), it follows that

V̇2(t) ≤ −mg||ep(t)||2 +R′||ep(t)|| ||m(t)||
+|ḣ|M ||ep(t)|| ||z(t−h)||
+|ḣ|R′ ||ep(t)|| ||ep(t−h)||

(27)

with R′ = 2lg||Q|| ||C||, M = 2||P || (||A|| + lu||B||)
and ||m(t)|| =

t
∫

t−h

||ėp(s)||ds. Furthermore, using Leibniz

differentiation rule, one gets

V̇3(t) = hmax||ėp(t)||2 −
t
∫

t−hmax

||ėp(s)||2ds (28)

so, reminding that

−
t
∫

t−hmax

||ėp(s)||2ds ≤ −
t
∫

t−h(t)

||ėp(s)||2ds

≤ − 1
hmax

(

t
∫

t−h(t)

||ėp(s)||ds
)2

,

(29)
it follows that

V̇3(t) ≤ hmax||ėp(t)||2 − 1
2hmax

||m(t)||2

− 1
2

t
∫

t−hmax

||ėp(s)||2ds.
(30)

In addition, sinceu and g are globally Lipschitz and using
(26) and Hölder’s inequality, it can be deduced from (18)
that

||ėp||2 ≤ c1||ep||2 + c2||m||2 + c3|ḣ|2||z(t− h)||2
+c2|ḣ|2||ep(t− h)||2

(31)
with c1 = 4(||A||+ lg||C||)2, c2 = 4l2g||C||2, c3 = 4(||A||+
lu||B||)2 so

V̇3(t) ≤ hmax[c1||ep||2 + c2||m||2 + c3|ḣ|2||z(t− h)||2
+c2|ḣ|2||ep(t− h)||2]− 1

2hmax
||m(t)||2

− 1
2

t
∫

t−hmax

||ėp(s)||2ds.
(32)

Finally,

V̇4(t) ≤ (hmax + hmin)(||z(t)||2 + ||ep(t)||2)
−hmin(1 − |ḣ|)(||z(t− h)||2 + ||ep(t− h)||2)

−
t
∫

t−h

(||z(s)||2 + ||e(s)||2)ds.
(33)

Thus, using Young’s inequality, the “completing the square”
method and Assumptions 1 and 2, the following inequality
is obtained

V̇ +εV≤−
[

γcu
2 − 2hmax − γεc̄

]

||z(t)||2

−
[

1
2hmax

− R′2

2mg
− hmaxc2

]

||m(t)||2

−
[mg

2 − γR2

2cu
− hmax(2 + c1)

−|ḣ|(M/2 +R′/2)− εm̄
]

||ep(t)||2
−
[

hmin−|ḣ|(hmin+|ḣ|hmaxc3+M/2)
]

||z(t−h)||2

−
[

hmin−|ḣ|(hmin+|ḣ|hmaxc2+R′/2)
]

||ep(t−h)||2

−
[

1
2 − εhmax

]

t
∫

t−hmax

||ėp(s)||2ds

−[1− 2εhmax]
t
∫

t−h

(||z(s)||2 + ||ep(s)||2)ds.
(34)

with ε > 0. To make V̇ (t) + εV (t) ≤ 0, it is sufficient
to have the coefficients pre-multiplying the quadratic terms



negative. It leads to the following conditions


























































































γcu
2

− 2hmax − γεc̄ > 0,

1

2hmax

− R′2

2mg

− hmaxc2 > 0,

[mg

2
− γR2

2cu
− hmax(2 + c1)

−|ḣ|(M/2 +R′/2)− εm̄
]

> 0,

hmin − |ḣ|(hmin + |ḣ|hmaxc3 +M/2) > 0,

hmin − |ḣ|(hmin + |ḣ|hmaxc2 +R′/2) > 0,

1

2
− εhmax > 0,

1− 2εhmax > 0.

(35)

(36)

(37)

(38)

(39)

(40)

(41)

First, (35), (40) and (41) can be reformulated as follows:
hmax < h1 andhmax < h2 andhmax < h3 with

h1 =
γ

2

[cu
2

− εc̄
]

and h2 =
1

2ε
. (42)

Besides, (36) can be rewritten in the following form

hmax <

√

(

R′2

2mg

)2

+ 2c2 −
(

R′2

2mg

)

2c2
< h3 (43)

with
h3 =

1√
2c2

. (44)

Conditions (38)-(39) depend simultaneously onhmax and
|ḣ|. From Assumption 4, there existsδ > 0 such that|ḣ(t)| <
δ. Thus, rearranging the terms giveshmax < h4 andhmax <
h5 with

h4 =
1

c3δ2
[hmin − δ(hmin +M/2)] (45)

and
h5 =

1

c2δ2
[hmin − δ(hmin +R′/2)] . (46)

Similarly condition (37) depends simultaneously onhmax

andδ and can be reformulated as followshmax < h6 with

h6 =
1

2 + c1

(

mg

2
− γR2

2cu
− δ(M/2 +R′/2)− εm̄

)

.

(47)
In order to haveh4, h5 and h6 positive, δ has to comply
with the condition below

δ < δ∗ = min(δ1, δ2, δ3) (48)

with

δ1 =
hmin

hmin +M/2
, δ2 =

hmin

hmin +R′/2
, (49)

and

δ3 =
2

(M +R′)

(

mg

2
− γR2

2cu
− εm̄

)

. (50)

Choosingε andγ sufficiently small guarantees thath1 and
δ3 are positive. In that case, taking

h(t) < hmax < h∗ = min(h1, h2, h3, h4, h5, h6) (51)

and |ḣ(t)| < δ < δ∗ ensures that

V̇ (t) ≤ −εV (t). (52)

Finally, equation (15) can be deduced from (52) by lengthy
but straightforward computations that are omitted here.

Remark 3.2: From (15), it can be said that the closed-
loop system is exponentially stable in terms of the normΥ
and that the convergence of||x|| to zero is exponential.
This theorem shows that a predictive feedback computed
from observer-predictor (12) can stabilize system (1) pro-
vided that the delay and its variation are sufficiently small.
The Lyapunov analysis that has been done to prove the
stability allows to find explicit bounds forh and ḣ. A
qualitative analysis of these boundsh∗ and δ∗ is given
below. It is reminded thatlu (respectivelylg) is the Lipschitz
constant associated to the functionu (respectivelyg) and is
defined in (5) (respectively (11)).

• For a small value ofε, then h1, h2 and h6 increase
which means that a slow convergence rate of the closed-
loop system allows larger value of the delay.

• Similarly, for a small value ofε, thenδ3 increases which
means that the delay dynamics can be faster for a slow
convergence rate of the close-loop system.

• For a large value oflg (that appears throughc1 and
c2), thenh3, h5 andh6 decrease which means that the
admissible delay is smaller for a fast observer.

• For a large value oflu (that appears throughc3), then
h4 decreases which means that the admissible delay is
smaller for a fast controller.

• For a large value ofδ, then δ1 and δ2 increase which
means that the delay dynamics can be faster for a small
delay interval.

• For a small value ofδ, then h4, h5 and h6 increase
which means that a slow-varying delay can have a larger
amplitude.

Simulations show that for stable systems (A Hurwitz), the
real valuesh∗ and δ∗ can be large. On the contrary, for
unstable systems, these bounds become very small. However,
the use of sequential sub observers-predictors is a solution
to relax this constraint. This method is presented in the next
section.

IV. SUB OBSERVERS-PREDICTORS

The idea is similar to the one presented in [14] and [18].
However, it is extended to the time-varying delay case. In
addition, the exponential stability (only asymptotic stability
was proved in [18]) is proved for a larger class of observers
and controllers. The technique is to design various cascaded
observers-predictors; Each observer-predictor will predict the
state for a fraction of the delay denotedh̄. This time-varying
prediction horizon is equal to

h̄(t) =
h(t)

r
, r ∈ N

∗. (53)



The equations of the cascaded sub observers-predictors are
given below






















































ż1(t) = Az1(t) +Bu(t− (r − 1)h̄(t))
+g1([Cz1(t− h̄(t))− y(t)])

...
żi(t) = Azi(t) +Bu(t− (r − i)h̄(t))

+gi(C[zi(t− h̄(t))− zi−1(t)])
...

żr(t) = Azr(t) +Bu(t)
+gr(C[zr(t− h̄(t)) − zr−1(t)])

(54)

wherezi ∈ R
n, i = 1, ..., r. A predictive output feedback

u(zr) that verifies Assumption 1 can be applied to stabilize
system (1).

In order to the state the next theorem, we define the sub
prediction errors

ep1
= z1(t− h̄(t))− x(t) (55)

and
epi

(t) = zi(t− h̄(t))− zi−1(t) (56)

for all i = 2, ..., r. The advantage of the sequential structure
is to relax the condition on the maximum delay value that is
mentioned in Theorem 1.

Theorem 2: Consider system (1), whereh(t) is known
and complies with Assumptions 3 and 4, and assume that
there exist a controlleru and gainsgi satisfying Assumptions
1 and 2 respectively. Suppose that system (1) is controlled by
u(zr) with zr computed by sequential observers-predictors
(54). Then, there existr∗ ∈ N

∗ and δ∗ > 0 such that,
provided r > r∗ and |ḣ| < δ∗, ||x(t)|| exponentially
converges to zero.
The proof, omitted for space limitations, consists of a re-
cursive analysis combined with similar computation as in
Theorem 1.

Remark 4.1: In previous theorem, the exponential stabil-
ity in the sense of the normΥ was shown. Here, only the
exponential convergence of||x(t)|| is proven because of the
induction proof.

Theorem 2 shows that the condition on the delay sizeh∗

in Theorem 1 can be overcame by the use of sub observers-
predictors. There is still a condition on the delay rate but this
condition cannot be removed without any knowledge of the
future values ofh. The minimum number of sub observer-
predictor has to be chosen such thath̄(t) < h∗ whereh∗ is
defined in Theorem 1.

The result of Theorem 2 (and 1) holds for any given con-
troller u and a given correction termg. In practice, choosing
a “slower” controller and a “slower” correction term allows
to reduce the number of sub observers-predictors.

Above results are illustrated by simulation in the next
section.

V. SIMULATION

An unstable second order system is used to illustrate above
results

ẋ(t) = Ax(t) +Bu(t− h(t)) (57)

whereA =

[

0 1
0.1 0.1

]

andB =

[

0
1

]

.

Remark 5.1: Since system (57) is unstable, memoryless
predictive technique involving saturated input [3] can notbe
applied to stabilize this system.
The controller

u(t) = Kz(t) (58)

where the gainK = [−2.1,−3.1] is tuned in order to place
the eigenvalues of the delay-free system to−1 and−2. A
Luenberger observer has been chosen to observe and predict
the state of the system so

g(Ce) = LCe

with

L = [−1.6,−0.76]T . (59)

The eigenvalues ofA + LC are −0.5 and−1. Unlike for
a simple observer, the gainL can not be chosen arbitrarily
large to impose a faster dynamics of the observer-predictor
than of the close-loop system. Remark that controller (58)
and the correction termLCe comply with Assumptions 1 and
2 respectively. Different delays will be introduced and the
results 1, 2 or 3 sub observers-predictors will be compared.

First, the performances of the method are checked with
constant delays. On Figure 1, the effect on stability of an
increasing constant delayh is illustrated. Note that the delays
applied in simulation have the same order of magnitude as
the dynamics of the closed loop system. It can be observed on
Figure 1a forh = 0.5 s that the system can be stabilized for
1, 2 or 3 sub observers-predictors. However, when the delay
is increased toh = 1 s on Figure 1b, the single observer-
predictor does not guarantee the stability anymore. This is
in accordance with Theorem 1 that states that there exists
a maximum bound on the delay to preserve the stability.
Finally, increasing again the delay toh = 1.7 s makes the
2 sub observers-predictors become unstable. However, it can
be seen that the stability is maintained using 3 sub observers-
predictors. This is illustrates Theorem 2 that states that there
exists a minimum number of sub observers-predictors to
guarantee stability.

On Figure 2, a time-varying delay affects the input of
system (57). One can see that the system is stabilized using
2 sub observers-predictors.

VI. CONCLUSION

It has been shown that a single dynamic system can
estimate and predict (approximately) the future state of
the system for a sufficiently slow time-varying delay. The
advantage of this method is that it does not require an integral
discretization. Using sequential observers-predictors allows
to stabilize the system for an arbitrarily long delay provided
it is sufficiently slow-varying. The exponential stabilityin
terms of a particular norm is proven and explicit bounds are
provided. The extension to nonlinear systems is considered
for future developments.
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Fig. 1: Influence of the number of sub-predictors with
constant delays
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