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Power System State Estimation with Line Measurements

Yu Zhang, Ramtin Madani, and Javad Lavaei

Abstract— This paper deals with the power flow (PF) and
power system state estimation (PSSE) problems, which play a
central role in the analysis and operation of electric power
networks. The objective is to find the complex voltage at
each bus of a network based on a given set of noiseless or
noisy measurements. In this paper, it is assumed that at least
two groups of measurements are available: (i) nodal voltage
magnitudes, and (ii) one active flow per line for a subset
of lines covering a spanning tree of the network. The PF
feasibility problem is first cast as an optimization problem
by adding a suitable quadratic objective function. Then, the
semidefinite programming (SDP) relaxation technique is used
to handle the inherent non-convexity of the PF problem. It
is shown that as long as voltage angle differences across the
lines of the network are not too large (e.g., less than 90◦

for lossless networks), the SDP problem finds the correct PF
solution. By capitalizing on this result, a penalized convex
problem is designed to solve the PSSE problem. In addition
to a linear term inherited from the SDP relaxation of the PF
problem, a cost based on the weighted least absolute value is
incorporated in the objective for fitting noisy measurements.
The optimal solution of the penalized convex problem is shown
to feature a dominant rank-one component formed by lifting
the true state of the system. An upper bound on the estimation
error is also derived, which depends on the noise power. It
is shown that the estimation error reduces as the number
of measurements increases. Numerical results for the 1354-
bus European system are reported to corroborate the merits
of the proposed convexification framework. The mathematical
framework developed in this work can be used to study the
PSSE problem with other types of measurements.

I. INTRODUCTION

Electrical grid is an automated power system for delivering
electricity from suppliers to consumers via interconnected
transmission and distribution networks. Accurately determin-
ing the operating point and estimating the underlying state
of the system are of paramount importance for reliable and
economic operations of power networks. Power flow study
and power system state estimation play a central role in
monitoring the grid, whose solutions are used for major
power optimization problems such as unit commitment,
security-constrained optimal power flow (OPF), and network
reconfiguration.

A. Power Flow Study

The power flow (PF) problem, also known as load flow
problem, is a numerical analysis of the electrical power flows
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at steady state. PF is arguably one of the most important
computations in power system analysis, and serves as a
necessary prerequisite for determining the best operation
of existing systems, as well as for future system planning.
Specifically, having measured the voltage magnitudes and
injected active/reactive powers at certain buses of a network,
the classical PF problem aims to find the unknown voltage
magnitude and phase angle at each bus. Using the network
impedances and the obtained complex voltages, line power
flows can then be determined for the entire system.

The calculation of power flows is essentially equivalent
to solving a set of quadratic equations obeying the laws of
physics. Finding the solution to a system of nonlinear poly-
nomial equations is NP-hard in general. Beźout’s theorem
asserts that a well-behaved system can have exponentially
many solutions [1]. When it comes to the feasibility of AC
power flows, it is known that this problem is NP-hard for
both transmission and distribution networks [2], [3].

For solving the PF problem, many iterative algorithms
have been proposed and extensively studied over the last
few decades [4]. The notable representative is the Newton’s
method, which features quadratic convergence when the
initial point is sufficiently near the solution [5]. For the full
Newton’s method, the Jacobian matrix has to be recalculated
at every iteration, which causes a heavy computational bur-
den. Being valid in most transmission networks, a fast decou-
pled load flow (FDLF) method was proposed to reduce such a
computational cost by means of a decoupling approximation,
i.e., neglecting the off-diagonal blocks of the Jacobian [6].
Nevertheless, a fundamental drawback of various Newton-
based algorithms is that there is no convergence guarantee.
By leveraging advanced techniques in complex analysis and
algebraic geometry, sophisticated tools have been developed
for solving PF, including holomorphic embedding load flow
(HELF) and numerical polynomial homotopy continuation
(NPHC) [7], [8]. However, these approaches involve costly
computations, and are generally not suitable for large-scale
power systems. A review on recent advances in computa-
tional methods for the PF equations can be found in [9].

Facing the inherent challenge of non-convexity, convex
relaxation techniques have been recently developed for find-
ing the PF solutions [10]. In particular, a class of convex
programs has been proposed to solve the PF problem when-
ever the solution belongs to a recovery region that contains
voltage vectors with small angles. The proposed convex pro-
grams are in the form of semidefinite programming (SDP),
where a suitable linear objective is designed as a surrogate
of the rank-one constraint to guarantee the exactness of the
SDP relaxation.
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In contrast to the classical PF problem with standard
specifications at PV, PQ and slack buses, one objective of
this paper is to study the effect of branch flow measurements
on reducing the complexity of the PF solution. Motivated by
the work [10], we contrive an SDP problem for solving the
PF equations. It is shown that the proposed convex program
is always exact if: (i) the specifications of nodal voltage
magnitude at each bus and line active power flows over a
spanning tree of the power network are available, and (ii)
the line phase voltage differences are not too large (e.g., less
than 90◦ for lossless networks). By building upon this result,
we then address the power system state estimation problem.

B. Power System State Estimation

Closely related to the PF problem, the power system state
estimation (PSSE) problem plays an indispensable role in
grid monitoring. System measurements are acquired through
the supervisory control and data acquisition (SCADA) sys-
tems, as well as increasingly pervasive phasor measurement
units (PMUs). Given these measurements, the PSSE task
aims at estimating complex voltages at all buses and de-
termining the system’s operating condition. As a nonlinear
least-squares (LS) problem, PSSE is commonly solved by the
Gauss-Newton method in practice [11]. The Gauss-Newton
method is based on a linear approximation of the residuals in
the LS objective, the sum of squares of which is minimized
to yield a descent direction at each iteration. However, the
iterations may only converge to a stationary point rather than
a global optimum. Moreover, it is not easy to quantify the
distance of the obtained solution from the true state as a
function of noise power.

Based on the convexification technique proposed in this
work for the PF problem, we develop a penalized convex
problem for solving PSSE. In addition to an `1 norm penalty
that is robust to outliers in the data, the objective function of
the penalized convex problem features a linear regularization
term whose coefficient matrix can be systematically designed
according to the meter placements. We present a theoretical
result regarding the quality of the optimal solution of the
convex program. It is shown that the obtained optimal
solution has a dominant rank-one matrix component, which
is formed by lifting the true state vector of the system.
The distance between the solution of the penalized convex
problem and the correct rank-one component is quantified
as a function of the noises. An upper bound for the tail
probability of this distance is also derived, which shows the
correlation between the number of measurements and the
quality of the state estimation.

The focus of this paper is mainly on nodal voltage magni-
tude and line flow measurements. However, the mathematical
framework developed here can be used to study the PSSE
problem with other types of measurements.

C. Related Work

Intensive studies of the SDP relaxation technique for
solving fundamental problems in power networks have been
springing up due to the pioneering papers [12] and [13].

The work [13] develops an SDP relaxation for finding a
global optimum of the OPF problem. A necessary and
sufficient condition is derived to guarantee a zero duality
gap, which is satisfied by many IEEE benchmark systems.
From the perspective of physics of power systems, the
follow-up papers [14] and [15] present insights into the SDP
relaxation’s success in handling the non-convexity of the
PF equations. The work [16] shows that a global solution
of the OPF problem for certain classes of mesh power
networks can also be obtained by the SDP relaxation without
using transformers. The works [16] and [17] develop a
graph-theoretic SDP framework when the traditional SDP
relaxation fails to work. The loss over problematic lines is
penalized in the SDP’s objective, which is instrumental in
finding a near-global solution of the OPF problem.

The SDP relaxation has also been utilized for solving the
PSSE problem [18], [19]. Using the Lagrangian dual method
and alternating direction method of multipliers, distributed
implementations are further carried out in [20], [21]. To deal
with possible bad data and topology errors, a data fitting
cost of weighted least absolute value (WLAV) along with a
nuclear norm regularizer has been considered in [22]. Note
that when the optimal solution of the SDP relaxation is
not rank one, a rank-one approximation (e.g., eigenvalue
decomposition) is used to recover an approximate solution
for the complex voltages. The quality of the SDP’s optimal
solution, namely the rank-one approximation error, has not
been theoretically studied in previous papers. This intriguing
open problem will be studied in the present work.
D. Notations

Boldface lower (upper) case letters represent column vec-
tors (matrices); calligraphic letters stand for sets. The sym-
bols R and C denote the sets of real and complex numbers,
respectively. Rn and Cn denote the spaces of n-dimensional
real and complex vectors, respectively. Sn and Hn stand
for the spaces of n × n complex symmetric and Hermitian
matrices, respectively. The symbols (·)> and (·)∗ denote
the transpose and conjugate transpose of a vector/matrix.
Re(·), Im(·), rank(·), Tr(·), and null(·) denote the real
part, imaginary part, rank, trace, and null space of a given
scalar or matrix. ‖a‖2 and ‖A‖F denote the Euclidean norm
of the vector a and the Frobenius norm of the matrix A,
respectively. The relation X � 0 means that the matrix X
is Hermitian positive semidefinite. The (i, j) entry of X is
shown as Xij . In denotes the n × n identity matrix. The
symbol diag(x) denotes a diagonal matrix whose diagonal
entries are given by the vector x, while diag(X) forms a
column vector by extracting the diagonal entries of the matrix
X. The expectation operator and imaginary unit are denoted
by E(·) and j, respectively. P(·) denotes the probability
function. The notations ]x and |x| denote the angle and
magnitude of a complex number x.

II. PRELIMINARIES

A. System Modeling
Consider an electric power network represented by a graph

G = (N ,L), where N := {1, . . . , n} and L := {1, . . . , L}
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denote the sets of buses and branches, respectively. Let vk ∈
C denote the nodal complex voltage at bus k ∈ N , whose
magnitude and phase are shown as |vk| and ]vk. The net
injected complex power at bus k is denoted as sk = pk +
qkj. Define slf = plf + qlf j and slt = plt + qltj as the
complex power injections at the from and to ends of branch
l ∈ L. Moreover, define the vectors v := [v1, . . . , vn]> ∈
Cn, p := [p1, . . . , pn]> ∈ Rn and q := [q1, . . . , qn]> ∈ Rn,
which collet nodal voltages, net injected active and reactive
powers, respectively. Vector i ∈ Cn collects the complex
nodal current injections, whereas if ∈ CL and it ∈ CL
denote the complex currents at the from and to ends of all
branches. Denote the admittance of each branch (s, t) of the
network as yst, which is assumed to have a positive real part
and negative imaginary part due to the passivity of real-world
transmission lines. The Ohm’s law dictates that

i = Yv, if = Yfv, and it = Ytv, (1)

where Y = G + Bj ∈ Sn is the nodal admittance matrix
with the conductance G and susceptance B as its real and
imaginary parts. Furthermore, Yf ∈ CL×n and Yt ∈ CL×n
represent the from and to branch admittance matrices. The
injected complex power can thus be expressed as p + qj =
diag(vv∗Y∗). Let {e1, . . . , en} denote the canonical vectors
in Rn. Define

Ek := eke
>
k , Yk,p :=

1

2
(Y∗Ek + EkY),

Yk,q :=
j

2
(EkY −Y∗Ek).

(2)

For every k ∈ N , the quantities |vk|2, pk and qk can be
written as

|vk|2 = Tr(Ekvv∗), pk = Tr(Yk,pvv∗), qk = Tr(Yk,qvv∗).
(3)

Similarly, the branch active and reactive powers for each line
l ∈ L can be expressed as

pl,f = Tr(Yl,pfvv∗), pl,t = Tr(Yl,ptvv∗)

ql,f = Tr(Yl,qfvv∗), ql,t = Tr(Yl,qtvv∗).
(4)

The coefficient matrices Yl,pf ,Yl,pt ,Yl,qf ,Yl,qt ∈ Hn are
defined over the l-th branch from node i to node j as follows:

Yl,pf :=
1

2
(Y∗fdle

∗
i + eid

∗
lYf ) (5a)

Yl,pt :=
1

2
(Y∗tdle

∗
j + ejd

∗
lYt) (5b)

Yl,qf :=
j

2
(eid

∗
lYf −Y∗fdle

∗
i ) (5c)

Yl,qt :=
j

2
(ejd

∗
lYt −Y∗tdle

∗
j ), (5d)

where {d1, . . . ,dL} are the canonical vectors in RL.
So far, all measurements of interest have been expressed as

quadratic functions of the complex voltage v. The problem
formulations for the PF and PSSE will be presented next.

B. Convex Relaxation of Power Flows

The task of the PSSE problem is to estimate the complex
voltages v based on m real measurements:

zj = v∗Mjv + ηj , ∀j ∈M := {1, 2, . . . ,m}, (6)

where {ηj}j∈M are the measurement noises with possibly
known statistical information. The measurement matrices
{Mj}j∈M are arbitrary and could be any subset of the
Hermitian matrices defined in (2) and (5). The PF problem is
a noiseless version of the PSSE problem. More specifically,
given a total of m noiseless specifications zj for j =
1, 2, . . . ,m, the goal of PF is to find the nodal complex volt-
age vector v satisfying all quadratic measurement equations.
That is

find v ∈ Cn (7a)
subject to v∗Mjv = zj , ∀j ∈M. (7b)

After setting the phase of the voltage at the slack bus to
zero, there are m power flow equations with 2n−1 unknown
parameters. The classical PF problem corresponds to the case
m = 2n− 1. An SDP relaxation of (7) can be obtained as

minimize
X�0

Tr(M0X) (8a)

subject to Tr(MjX) = zj , ∀j ∈M. (8b)

This relaxation correctly solves (7) if and only if it has a
unique rank-1 solution Xopt, in which case v can be recov-
ered via the decomposition Xopt = vv∗. The above problem
is referred to as the SDP relaxation problem with the input
vector z := [z1, . . . , zm]> collecting all the measurements.
The dual of (8) can be derived as

maximize
µ∈Rm

− z>µ (9a)

subject to H(µ) � 0, (9b)

where µ = [µ1, . . . , µm]>Rm is the Lagrangian multiplier
vector associated with the linear equality constraints (8b).
The dual matrix function H : Rm → Hn is equal to

H(µ) := M0 +

m∑
j=1

µjMj . (10)

If strong duality holds and the primal and dual problems both
attain their solutions, then every pair of optimal primal-dual
solutions (Xopt,µopt) satisfies the relation H(µopt)Xopt =
0, due to the complementary slackness. Hence, the inequality
rank(Xopt) ≤ 1 is guaranteed to hold if rank(H(µopt)) =
n−1. In this case, the SDP relaxation can recover the solution
of the PF problem.

Definition 1. It is said that the SDP relaxation problem (8)
recovers the voltage vector v ∈ Cn if X = vv∗ is its unique
solution for some input z ∈ Rm.

Definition 2. A vector µ ∈ Rm is regarded as a dual SDP
certificate for the voltage vector v ∈ Cn if it satisfies the
following three properties:

H(µ) � 0, H(µ)v = 0, rank(H(µ)) = n− 1. (11)
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Denote the set of all dual SDP certificates for the voltage
vector v as D(v).

III. EXACT RECOVERY OF POWER FLOW SOLUTION

The objective of this section is to show that with appro-
priate nodal and branch noiseless measurements, the SDP
relaxation (8) is exact and the correct complex voltage
vector v can then be recovered. Consider a graph T with
the vertex set N and the edge set LT such that T is a
connected subgraph of G. Throughout the rest of this paper,
we assume that the available measurements consist of: (i)
voltage magnitudes at all buses, (ii) active power flow at the
“from” end of each branch of T , and (iii) arbitrary additional
measurements. In this case, the SDP relaxation of PF can be
expressed as

minimize
X�0

Tr(M0X) (12a)

subject to Xkk = |vk|2, k ∈ N (12b)
Tr(Yl,pfX) = pl,f , l ∈ LT (12c)
Tr(MjX) = zj , j ∈M′, (12d)

where M′ is the index set for additional measurements.

Definition 3. The sparsity graph of a matrix W ∈ Hn is a
simple graph with n vertices whose edges are specified by
the locations of the nonzero off-diagonal entries of W. In
other words, two arbitrary vertices i and j are connected if
Wij is nonzero.

Assumption 1. The edge set of the sparsity graph of M0

coincides with LT and in addition,

−180◦ < ]M0;st − ]yst < 0, ∀(s, t) ∈ LT , (13)

where M0;st denotes the (s, t) entry of M0. Moreover, the
solution v being sought satisfies the relations:

0 < (]vs − ]vt)− ]yst < 180◦, ∀(s, t) ∈ LT
(14a)

(]vs − ]vt)− ]M0;st 6= 0 or 180◦, ∀(s, t) ∈ LT .
(14b)

For real-world transmission systems, ]yst is close to −90◦

(to reduce transmission losses), whereas |]vs−]vt| is small
due to thermal and stability limits. Hence, the angle condition
(14a) is expected to hold. For lossless networks, (14a)
requires each line voltage angle difference to be between
−90◦ and 90◦. Regarding the matrix M0, its entry M0;st

can be chosen as a complex number with negative real and
imaginary parts to meet the conditions (13) and (14b).

Lemma 1. Under Assumption 1, there exists a dual SDP
certificate for the voltage vector v ∈ Cn.

Proof. Due to space restrictions, a sketch of the proof will
be provided here only for the case where T is a spanning
tree. Let µ1, . . . , µn ∈ R and µn+1, . . . , µ2n−1 ∈ R be the
Lagrange multipliers associated with the constraints (12b)
and (12c), respectively.

Let {ẽ1, . . . , ẽm} denote the canonical vectors in Rm. To
design one vector µ̂ ∈ D(v), for every l = (s, t) ∈ LT
define a dual matrix

H(l) := M
(l)
0 + µ(l)

s Es + µ
(l)
t Et + µ

(l)
n+lYl,pf , (15)

where

M
(l)
0 := M0;stese

>
t +M0;tsete

>
s (16)

and

µ(l) := −
|vt|2Im(M0;sty

∗
st) + 2Re(yst)Im(vsv

∗
tM
∗
0;st)

Im(vsv∗t y
∗
st)

ẽs

− |vs|
2Im(M0;sty

∗
st)

Im(vsv∗t y
∗
st)

ẽt + 2×
Im(vsv

∗
tM
∗
0;st)

Im(vsv∗t y
∗
st)

ẽn+l. (17)

Note that matrix Yl,pf has only three possible nonzero
entries:

Yl,pf (s, t) = Y∗l,pf (t, s) = −yst
2
, Yl,pf (s, s) = Re(yst).

Under Assumption 1, it can be verified that

H(l)v = 0 and H(l) � 0, (18)

for every l ∈ LT . Now, set µ̂ as

µ̂ := µ(1) + · · ·+ µ(n−1). (19)

Therefore, we have H(µ̂) = H(1) + · · · + H(n−1), which
satisfies the first two properties in (11). Moreover, the
sparsity graph of H(µ̂) is the same as T , which guarantees
that rank(H(µ̂)) = n− 1.

Theorem 1. Under Assumption 1, the SDP relaxation prob-
lem (8) recovers the voltage vector v ∈ Cn.

Proof. By choosing sufficiently large values for the Lagrange
multipliers associated with the voltage magnitude measure-
ments (12b), a strictly feasible point can be obtained for the
dual problem (9). Therefore, strong duality holds between
the primal and dual SDP problems.

According to Lemma 1, there exists a dual SDP certificate
µ̂ ∈ D(v) that satisfies (11). Therefore,

Tr(H(µ̂)vv∗) = 0 and H(µ̂) � 0. (20)

This certifies the optimality of the point X = vv∗ for the
SDP relaxation problem (8). In addition, the property

rank(H(µ̂)) = n− 1 (21)

proves the uniqueness of the primal SDP solution.

To be able to recover a large set of voltage vectors,
Theorem 1 states that there are infinitely many choices for
the objective function of the SDP relaxation.
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A. Effect of Reactive Power Line Measurements

In the preceding section, the exactness of the SDP re-
laxation was studied in the case with the measurement of
active power line flows. In what follows, it will be shown that
reactive power line flows do not offer the same benefits as
active power measurements. Assume that the reactive power
flow at the “from” end of each branch of T is measured as
opposed to the active power flow. Moreover, suppose that
the index set M′ for the arbitrary additional measurements
is empty. In this case, Theorem 1 still holds if the conditions
provided in Assumption 1 are replaced by:

Re(M0;sty
∗
st) 6= 0, Im(vsv

∗
tM
∗
0;st) 6= 0 (22a)

Re(vsv
∗
t y
∗
st)Re(M0;sty

∗
st) ≤ 0. (22b)

The following two different scenarios must be considered for
condition (22b):
(i) If 90◦ < (]vs − ]vt) − ]yst ≤ 180◦, then

Re(vsv
∗
t y
∗
st) < 0 and Re(M0;sty

∗
st) > 0, which imply

that −90◦ ≤ ]M0;st − ]yst ≤ 90◦.
(ii) If 0 ≤ (]vs−]vt)−]yst < 90◦, then Re(vsv

∗
t y
∗
st) >

0 and Re(M0;sty
∗
st) < 0, which imply that 90◦ ≤

]M0;st − ]yst ≤ 270◦.

As a result, ]M0;st must belong to one of the two comple-
mentary intervals []yst + 90◦,]yst + 270◦] and []yst −
90◦,]yst + 90◦], depending on the value of ]vs − ]vt.
Therefore, it is impossible to design the matrix M0 without
the knowledge of the phase difference ]vs − ]vt.

B. Three-Bus Example

Consider the 3-bus power system shown in Figure 1.
Suppose that the measured signals consist of two active
power line flow p12 and p23, as well as the squared voltage
magnitudes |v1|2, |v2|2 and |v3|2. Theorem 1 states that the
SDP relaxation problem (8) is able to find the unknown
voltage vector v, using an appropriately designed coefficient
matrix M0. It turns out that the vector v can also be found
through a direct calculation. More precisely, one can write

p12 = Re(v1(v1 − v2)∗y∗12) = |v1|2Re(y12)

− |v1||v2||y12| cos(]v1 − ]v2 − ]y12) (23a)

p23 = Re(v2(v2 − v3)∗y∗23) = |v2|2Re(y23)

− |v2||v3||y23| cos(]v2 − ]v3 − ]y23), (23b)

which yields that

]v1 − ]v2 = arccos

(
p12 − |v1|2Re(y12)

|v1||v2||y12|

)
+ ]y12

(24a)

]v2 − ]v3 = arccos

(
p23 − |v2|2Re(y23)

|v2||v3||y23|

)
+ ]y23.

(24b)

Each phase difference ]v1−]v2 or ]v2−]v3 can have two
possible solutions, but only one of them satisfies the angle
condition (14a). Hence, all voltage phases {]vi}i∈{1,2,3} can
be easily recovered. This argument applies to all power sys-
tems. In other words, the PF problem considered in this paper

G1 G3

G2

2

31

P23

|v1|

P12

|v2|

|v3|

Fig. 1: A 3-bus power system with two active power line
measurements p12 and p23, as well as three nodal voltage
magnitude measurements |v1|, |v2|, and |v3|.

can be solved by a direct calculation of the phase angles,
without having to solve the SDP relaxation (8). Nevertheless,
as soon as the measurements are noisy, the equations (24)
cannot be used (because quantities p12, p23, |v1|2, |v2|2, |v3|2
are no longer available as they are corrupted by noise).
In contrast, the proposed SDP relaxation works in both
noiseless and noisy cases. This will be elaborated in the next
section.

IV. CONVEXIFICATION OF STATE ESTIMATION

Consider the PSSE problem with noisy measurements.
It is desirable to find a solution that optimally fits the
measurements under a given criterion. For instance, the opti-
mality criterion can be maximum likelihood (ML), weighted
least-squares (WLS) or maximum a posteriori (MAP). This
amounts to an optimization problem of the form

minimize
v∈Cn, ν∈Rm

f(ν) (25a)

subject to zj − v∗Mjv = νj , ∀j ∈M, (25b)

where ν := [ν1, . . . , νm]> and the function f(·) quantifies
the estimation criterion. Common choices of f(·) are the
weighted `1 and `2 norm functions:

fWLAV(ν) = ‖ν‖
1,Σ− 1

2
=

m∑
j=1

|νj |/σj , (26)

fWLS(ν) = ‖ν‖2,Σ−1 =

m∑
j=1

ν2j /σ
2
j , (27)

where Σ is a constant diagonal matrix with the diagonal
entries σ2

1 , ..., σ
2
m. The above functions correspond to the

weighted least absolute value (WLAV) and WLS estimators,
respectively. Note that the latter estimator is equivalent to
the ML estimator if the noise η := [η1, . . . , ηm]> is normal
distributed with zero mean and the covariance matrix Σ.

Due to the inherent quadratic relationship between the
voltage v and the measured quantities {|vi|2,p,q,pl,ql},
the quadratic equality constraints (25b) make the problem
(25) nonconvex and NP-hard in general. To remedy this
drawback, consider the penalized convex problem

minimize
X�0, ν∈Rm

ρf(ν) + Tr(M0X) (28a)

subject to Tr(MjX) + νj = zj , ∀j ∈M, (28b)
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where ρ > 0 is a pre-selected coefficient that balances
the data fitting cost f(ν) against the regularization term
Tr(M0X) that is inherited from the SDP relaxation of the
PF problem.

In this paper, we assume that f(x) = ‖x‖
1,Σ− 1

2
, and de-

velop strong theoretical results on the estimation error. Note
that the penalized convex problem (28) can be expressed as

min
X�0

Tr(M0X)+ρ

m∑
j=1

σ−1j |Tr (Mj(X−vv∗))−ηj | . (29)

A. Bounded Estimation Error

In this section, we aim to show that the solution of the
penalized convex problem estimates the true solution of
PSSE, where the estimation error is a function of the noise
power.

Theorem 2. Assume that the solution v of the PSSE problem
and the matrix M0 satisfy Assumption 1. Consider an
arbitrary dual SDP certificate µ̂ ∈ D(v). Let (Xopt,νopt)
denote an optimal solution of the penalized convex program
(28) for a coefficient ρ satisfying the inequality

ρ ≥ max
j∈M

|σjµ̂j |. (30)

There exists a scalar β > 0 such that

‖Xopt−βvv∗‖F ≤ 2

√
ρ×fWLAV(η)×Tr(Xopt)

λ
, (31)

where λ is the second smallest eigenvalue of the matrix
H(µ̂).

Proof. Observe that

Tr(M0X
opt)+ρ

m∑
j=1

σ−1j
∣∣Tr
(
Mj(X

opt−vv∗)
)∣∣−ρfWLAV(η)

(a)

≤ Tr(M0X
opt)+ρ

m∑
j=1

σ−1j
∣∣Tr
(
Mj(X

opt−vv∗)
)
−ηj

∣∣
(b)

≤ Tr(M0vv∗) + ρfWLAV(η), (32)

where the relation (a) follows from a triangle inequality and
the inequality (b) is obtained by evaluating the objective of
(29) at the feasible point vv∗. Therefore, we have

Tr
(
M0(Xopt − vv∗)

)
+ ρ

m∑
j=1

σ−1j
∣∣Tr
(
Mj(X

opt − vv∗)
)∣∣

≤ 2ρfWLAV(η) . (33)

Recall that M0 = H(µ̂)−
∑m
j=1 µ̂jMj and H(µ̂)v = 0 (cf.

(10) and (20)). Upon defining ϑj := Tr (Mj(X
opt − vv∗)),

one can write
m∑
j=1

(ρσ−1j |ϑj | − µ̂jϑj)+Tr(H(µ̂)Xopt)≤2ρfWLAV(η).

(34)

Hence, it follows from (30) that

Tr(H(µ̂)Xopt) ≤ 2ρfWLAV(η). (35)

Now, consider the eigenvalue decomposition of H(µ̂) =
UΛU∗, where Λ = diag(λ1, . . . , λn) collects the eigen-
values of H(µ̂), which are sorted in descending order.
The matrix U is a unitary matrix whose columns are the
corresponding eigenvectors. Define

X̌ :=

[
X̃ x̃
x̃∗ α

]
= U∗XoptU, (36)

where X̃ ∈ Hn−1+ is the (n − 1)-th order leading principal
submatrix of X̌. It can be concluded from (35) that

2ρfWLAV(η) ≥ Tr(H(µ̂)Xopt) = Tr(ΛX̌) ≥ λTr(X̃),

where the last inequality follows from the equation
rank(H(µ̂)) = n − 1. Therefore, an upper bound for the
trace and Frobenius norm of the matrix X̃ can be obtained
as

‖X̃‖F ≤ Tr(X̃) ≤ 2ρ

λ
fWLAV(η).

By defining ṽ = v/‖v‖2, the matrix Xopt can be decom-
posed as follows:

Xopt = UX̌U∗ =
[
Ũ ṽ

] [X̃ x̃
x̃∗ α

] [
Ũ∗

ṽ∗

]
= ŨX̃Ũ∗ + ṽx̃∗Ũ∗ + Ũx̃ṽ∗ + αṽṽ∗. (37)

Since X̌ is positive semidefinite, the Schur complement
dictates the relation X̃ − α−1x̃x̃∗ � 0. Using the fact that
α = Tr(Xopt)− Tr(X̃), one can write

‖x̃‖22 ≤ αTr(X̃) = Tr(Xopt)Tr(X̃)− Tr2(X̃). (38)

Therefore,

‖Xopt − αṽṽ∗‖2F = ‖ŨX̃Ũ∗‖2F + 2‖ṽx̃∗Ũ∗‖2F (39a)

= ‖X̃‖2F + 2‖x̃‖22 (39b)

≤ ‖X̃‖2F − 2Tr2(X̃) + 2Tr(Xopt)Tr(X̃) (39c)

≤ 2Tr(Xopt)Tr(X̃) (39d)

≤ 4ρfWLAV(η)

λ
Tr(Xopt), (39e)

where (39a) follows from the fact that Ũ∗ṽ = 0, (39b) is due
to Ũ∗Ũ = In−1, and (39d) is in light of ‖X̃‖F ≤ Tr(X̃).
The proof is completed by choosing β as α/‖v‖22.

Theorem 2 bounds the estimation error as a function of
the noise vector η. In particular, the error is zero if η = 0.
Define

ζ :=
‖Xopt−βvv∗‖F√
n× Tr(Xopt)

. (40)

Since Tr(Xopt) ≈ n holds for the PF problem, the denom-
inator of the above equation is expected to be around n.
Hence, the quantity ζ acts as a root-mean-square estimation
error. Observe that the estimation error ζ is a random quantity
that depends on the realization of the measurements z. Using
Theorem 2, we bound the tail probability of ζ below. To this
end, define κ as m

n . If m were the number of lines in the
network, κ was between 1.5 and 2 for most real-world power
networks [23].
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Corollary 1. Under the assumptions of Theorem 2, the tail
probability of the root-mean-square estimation error ζ is
upper bounded as

P(ζ > t) ≤ e−γm (41)

for every t > 0, where γ = t4λ2

32κ2ρ2 − ln 2.

Proof. Define η̃i := ηi/σi for i = 1, . . . ,m. Then, η̃ is a
standard normal random vector, and

fWLAV(η) = ‖η̃‖1 . (42)

Applying the Chernoff’s bound [24] to η̃ yields that

P(‖η̃‖1 > t) ≤ e−ψtE eψ‖η̃‖1 = e−ψt(E eψ|η̃1|)m

= e−ψt
(

e
ψ2

2 erfc

(
−ψ√

2

))m
≤ 2me(mψ

2−2ψt)/2 , (43)

which holds for every ψ > 0. Note that the complementary
error function erfc(a) := 2√

π

∫∞
a

e−x
2

dx ≤ 2 holds for
all a ∈ R. The minimization of the upper bound (43) with
respect to ψ gives the optimal solution ψopt = t

m . Now, it
follows from Theorem 2 that

P(ζ > t) ≤ P

(
2

√
ρ‖η̃‖1
nλ

> t

)
= P

(
‖η̃‖1 >

t2nλ

4ρ

)
≤ exp

(
m ln 2− t4n2λ2

32mρ2

)
. (44)

The proof is completed by substituting n = m
κ into (44).

Recall that the measurements used for solving the PSSE
problem include one active power flow per each line of the
subgraph T . The graph T could be as small as a spanning
tree of G or as large as the entire graph G. Although the
results developed in this paper work in all these cases,
the number of measurements could vary a lot for different
choices of T . A question arises as to whether more measure-
ments reduce the estimation error. To address this problem,
notice that if it is known that some measurements are
corrupted with high values of noise, it is obviously preferable
to discard such bad measurements. Now, assume that we
have two sets of measurements with similar noise levels. It
is aimed to show that the set with a higher cardinality would
lead to a better estimation error.

Definition 4. Define ω(T ) as the minimum of 2
√

ρ
nλ over all

dual SDP certificates µ̂ ∈ D(v), where ρ = maxj∈M |σj µ̂j |
and λ is the second smallest eigenvalue of H(µ̂).

In light of Theorem 2, the root-mean-square estimation
error ζ satisfies the inequality ζ ≤ ω(T )

√
fWLAV(η) if

an optimal coefficient ρ is used. The term
√
fWLAV(η) is

related to the noise power. If this term is kept constant, then
the estimation error is a function of ω(T ).

Theorem 3. Consider two choices of the graph T , denoted
as T1 and T2, such that T1 is a subgraph of T2. Then, the
relation ω(T2) ≤ ω(T1) holds.

Proof. The proof follows from the fact that the feasible set
for the dual certificate µ̂ is bigger for T = T2 than T =
T1.

Fig. 2: The root-mean-square error (RMSE) of the estimated
voltages obtained by solving problem (28) with different
objective functions. The level of noise is set to c = 0.01.

(a)

(b)

Fig. 3: The RMSE of the estimated voltages obtained by
solving problem (28) with different objective functions. The
level of noise is set to (a): c = 0.01 and (b): c = 0.02.

V. SIMULATIONS

Recently, it has been shown that certain SDP relaxation
based approaches outperform the Newton’s method for solv-
ing the PSSE [18]–[22]. Those algorithms are special cases
of our proposed convex problem (28), where ρ = +∞. In this
section, we conduct large-scale simulations on the PEGASE
1354-bus system [25] to show the merits of the penalized
convex problem with a finite coefficient ρ. More precisely,
we compare the performance of four objective functions:

g1(X,ν) := ρ fWLS(ν) + Tr(M0X) (45a)
g2(X,ν) := ρ fWLAV(ν) + Tr(M0X) (45b)
g3(X,ν) := fWLS(ν) (45c)
g4(X,ν) := fWLAV(ν), (45d)

where M0 is a randomly generated real symmetric matrix
with negative values at entries corresponding to the line flow
measurements and zero values elsewhere.

In all simulations, we assume at least two groups of
measurements are available: (i) nodal voltage magnitudes,
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and (ii) one active flow per line for a subset of lines of
the network covering a spanning tree. All measurements are
subject to zero-mean Gaussian noises. For squared voltage
magnitudes {|vk|2}k∈N , the standard deviations of the noises
are chosen c times the noiseless values of {|vk|2}k∈N , where
c > 0 is a pre-selected constant. Likewise, the standard
deviations for nodal active/reactive power and line flow
measurements are 1.5c and 2c times the corresponding noise-
less values, respectively. When the optimal solution of the
penalized SDP is not rank one, the rank-one approximation
algorithm in [17] is adopted to recover an estimate solution
v̂. Furthermore, we exploit the sparsity structure of the
problem to reduce the computational complexity of the SDP.
Specifically, through a graph-theoretic algorithm [17], we
choose a small subset of the entries of the matrix variable X,
and formulate an equivalent reduced-order SDP with respect
to those entries.

In Figure 2, the root-mean-square error ‖v̂ − v‖/
√
n is

plotted for 20 realizations of randomly generated noises,
where we show the performance of two objective functions
g1 and g2. The errors corresponding to the functions g3 and
g4 are so high that they are not plotted in this figure. The
parameter ρ is set to 0.5 and the measurements are corrupted
by Gaussian noises with c = 0.01.

In Figures 3, the effect of the number of measurements
on the quality of the estimation is shown for two instances
of randomly generated noise values corresponding to (a)
c = 0.01 and (b) c = 0.02, respectively. All four objective
functions in (45) are considered. In this experiment, different
numbers of additional active power injections are included.
The estimation accuracy for each objective function is de-
picted as a curve with respect to the percentage of nodes
with measured active power injections. When the number of
measurements is close to the number of unknown parameters,
the objective functions g3 and g4 produce very high errors
that are out of the ranges of the above plots.

VI. CONCLUSIONS

In this paper, a convex optimization framework is devel-
oped for the power flow (PF) and power system state esti-
mation (PSSE) problems with nodal and line measurements.
The quadratic power flow equations are lifted into a higher-
dimensional space, which enables their formulation as linear
functions of a rank-one positive semidefinite matrix variable.
By adding a meticulously-designed linear objective, the PF
feasibility problem is relaxed into a convex minimization
program. It is shown that as long as voltage angle differences
across the lines of the network are not too large (e.g., less
than 90◦ for lossless networks), the designed convex problem
finds the correct solution of the PF problem. This result
along with the proposed framework is then extended to the
PSSE problem. Aside from the well-designed linear term, a
weighted least absolute value loss is added as the data fitting
cost for the noisy and possible bad measurements. This leads
to a penalized convex problem. The distance between the
optimal solution of the SDP and the true state of the system
is quantified in terms of the noise power, and shown to decay

as the number of measurements increases. Simulation results
on a benchmark test system corroborate the merits of the
proposed approach.
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