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A model of phenotypic state dynamics initiates a promising approach to
control heterogeneous malignant cell populations

Margaret P. Chapman1, Tyler T. Risom2, Anil Aswani3, Roel Dobbe1, Rosalie C. Sears2, and Claire J. Tomlin1

Abstract— A growing body of experimental evidence indi-
cates a strong link between intratumoral heterogeneity and
therapeutic resistance in cancer. In particular, tumor cells
may survive therapy by switching their phenotypic identities
to more resistant, drug-tolerant states. Computational mod-
els of phenotypic plasticity in response to cytotoxic therapy
are needed: (1) to strengthen understanding of the interplay
between phenotypic heterogeneity and therapeutic resistance,
and (2) to identify potential strategies in silico that weaken
resistance prior to in vitro testing. This work presents a linear
time-invariant model of phenotypic state dynamics to deduce
subpopulation-level behavior likely to affect temporal pheno-
typic composition and thus drug resistance. The model was
identified under different therapeutic conditions with authentic
biological data from a breast cancer cell line. Subsequent
analysis suggested drug-induced effects on phenotypic state
switching that could not be deduced directly from empirical ob-
servations. A bootstrap algorithm was implemented to identify
statistically significant results: reduction in cell division under
each therapeutic condition versus control. Further, Monte Carlo
simulation was used to evaluate quality of model fit for two-
way switching and net switching on synthetically generated
data to determine the limitations of the latter assumption
for subsequent modeling. Most importantly, the simple model
structure initiated a control-theoretic approach for identifying
promising combination treatments in silico to guide future
laboratory testing.

I. INTRODUCTION

There is a growing appreciation of the role of intra-
tumoral heterogeneity in therapeutic resistance in cancer.
Breast tumors in particular can be heterogeneous in tumor
cell genomes and cell phenotypes, and importantly, both of
these heterogeneities promote therapeutic resistance [1][2].
Intratumoral genetic heterogeneity populates the tumor with
subclones of differing therapeutic sensitivity, which can
drive tumor resistance through a Darwinian selection pro-
cess [3][4][5]. Phenotypic heterogeneity can promote re-
sistance through two mechanisms. First, similar to genetic
heterogeneity, phenotypic subpopulations can differ in thera-
peutic sensitivity and those with innate therapeutic resistance
can be selected for throughout treatment [6][7][8]. Secondly,
tumor cell phenotypes are inherently plastic, and thus cells
can adapt to therapy by switching their phenotype to a more
resistant identity [9][10][11][12].
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Fig. 1. A schematic of the phenotypic state dynamical model is shown.
The cell types of interest are death and three phenotypic states (K14+
green, VIM+ red, and neither not). The model deduces subpopulation-
level behavior likely to affect temporal phenotypic composition. Behaviors
of interest (cell division, death, and switching) are represented via time-
invariant gains identified from empirical observations.

Numerous computational models of fitness competition
and Darwinian selection have aided our understanding of
how innate therapeutic resistance in tumor subpopulations
can drive tumor resistance [3][13][14][15]. Conversely, mod-
eling phenotypic plasticity in response to cancer therapy is
a relatively new area. More research is needed to exploit
the potential of data-driven systems-based approaches for
controlling malignant heterogeneous populations.

Prior work. We describe a sample of the existing models
of phenotypic plasticity and how our work is distinct. The
phenotypic state dynamical model from Goldman et al. is
the closest precursor to our work. They use a linear time-
invariant deterministic model in continuous time and identify
net proliferation and switching rates from experimental data
in order to test drug-induced phenotypic plasticity versus
clonal selection [9]. However, we use explicit measurements
of percent death and S-phase content to identify cell division
and death gains. Further, we analyze statistical significance,
compare two distinct switching assumptions in silico, and
explore controller design for steering the cancer system to a
more treatable state.

Moreover, a Markov model of phenotypic state switching
developed by Gupta and colleagues does not permit change
in total cell population size over time and is identified using
two time points [12]. In contrast, our model permits temporal
change in total cell population size by representing cell



division and death, and is identified using 6 time points over
a 60-hour time horizon.

Further, Almendro et al. represents spatial distribution
of phenotypes over time in addition to switching. Rates
of phenotype switching were chosen to fit the distribution
of cell types found in post-treatment tumor samples [16].
Conversely, our model is identified using linear regression
on time course data.

Contributions. Motivated by prior work, we identify a
linear time-invariant model of phenotypic state dynamics
(Fig. 1) using biological data (Sec. II). Frequencies of cell di-
vision and death in addition to switching between phenotypic
state pairs are deduced as described in Sec. III, and therapeu-
tic effects on subpopulation-level behavior relative to normal
growth are hypothesized (Sec. IV). Further, we perform
statistical analysis on the model parameters (Sec. V), evaluate
two variants of switching on synthetic data (Sec. VI), and
initiate a data-driven approach rooted in systems theory to
control heterogeneous malignant cell populations (Sec. VII).
The methods we use generally apply to any cancer system
with phenotypic heterogeneity, if sufficient time series data
of phenotypic state counts and percent death are available.

II. BIOLOGICAL BACKGROUND

We discuss the data collection procedure and how we
constructed data sets suitable for modeling below.

A. Biological experiment

Total cell count, dead cell count, phenotypic state com-
position, and S-phase content in the Triple Negative Breast
Cancer cell line, HCC1143, were measured from 4 replicate
wells every 12 hours over a 60-hour time horizon under a spe-
cific condition (4 wells × 6 time points = 24 samples). The
phenotypic states were classified as basal and mesenchymal
via detection of biological markers, cytokeratin 14 (K14+)
and vimentin (VIM+), respectively. The basal state is called
green, the mesenchymal state is called red, and the state
of left-over cells is called not. Wells are physically separate
“buckets” of cells, assumed to be independent and identically
distributed for each condition. The conditions were initial
input of a PI3K/mTOR inhibitor BEZ235, MEK inhibitor
GSK1120212, PI3K/mTORi-MEKi combination, and control
with the drug vehicle DMSO but no therapeutic agent. S-
phase content refers to DNA-synthesizing cells, and is a
proxy for cell division. Phenotypic identity and vitality of a
cell could not be detected simultaneously, so the quantity of
dead cells in each phenotypic state was unknown. However,
the total quantity of dead cells and the quantity of (dead or
alive) cells in each phenotypic state were known.

B. Construction of data sets

For each condition, the time courses were integrated into
a cohesive data set of quantities of 4 cell types: green,
red, not, and dead. Equal proportion of death was assumed
across phenotypic states in the construction, since the true
distribution was unknown a priori. For each sample (well
and time point),

1) The dead cell fraction, Fdeath = Dead cell count
Total cell count .

2) Phenotypic state composition was modified due to
death: xi = (1 − Fdeath)x̃i, such that x̃i is the mea-
sured count and xi is the modified count in phenotypic
state i (green, red, or not).

3) The dead cell count was computed: Fdeath

∑3
i=1 x̃i.

Then, dead cell counts were adjusted for each well to ensure
increasing death over time: If the dead cell count at time k+1
was less than the dead cell count at time k, the former value
was reset to the latter value to enforce constant death. Green
cell counts in the cohesive data set are shown in Fig. 2.

Fig. 2. Green cell counts, realizations of Gk in Eqn. (2), are plotted from
four replicate wells over time for each condition; each line style corresponds
to a replicate well. The counts are derived from empirical observations, as
described in Sec. II-B. These counts and those for red, not, and dead cell
types (not shown) were used to identify the dynamics for each condition.

III. MATHEMATICAL MODEL

A. Structure

We assume a linear time-invariant stochastic model to
describe phenotypic state dynamics in discrete time,

Xk+1 = AXk + εk. (1)

Xk ∈ Rn is a random vector of cell type quantities at time
k, A ∈ Rn×n is the dynamics matrix, n is the number of
cell types, and εk ∼ N (0n, σ

2In) i.i.d. with unknown σ2 ∈
R. A stochastic process generates the cell type vectors, and
realizations of this process are observed: xik is a realization
of Xk, computed from measurements in well i (Sec. II-B).
A is unknown, to be identified using the realizations.

B. Rationale

Our choice of model is justified as follows.
(1) Linear time-invariance captures what is essential for

analysis and control. Modeling constant first-order dynamics
is adequate for general analysis of drug-induced phenotypic
state division, death, and switching; this level of abstraction
sufficiently captures basic trends in system response. Further,
controlling phenotypic state dynamics using systems theory



is an open research problem. Our model is appropriate to
initiate a broad control framework that can be developed
when more data is available.

(2) A simple model is appropriate for a small data
set. 24 samples were available to identify 12 parameters
for each condition (Sec. II-A, Eqn. (3)). Cell populations
(wells of cells) were fixed manually at each time point, so
observing many wells several times daily was impractical.
Fitting a more complex model to the data (e.g., higher-order
autoregressive model) would represent abnormalities more
strongly than the dynamics of interest.

(3) Limitations of our model guide future progress, partic-
ularly in the representation of stochasticity (Sec. VIII).

C. Detailed form

The state vector is:

Xk = (Gk, Rk, Nk, Dk)T ∈ R4, (2)

where Gk, Rk, Nk, and Dk denote random quantities of
green, red, not, and dead cells at time k, respectively. The
dynamics matrix is:

A =


αG ρRG ρNG 0
ρGR αR ρNR 0
ρGN ρRN αN 0
ρGD ρRD ρND 1

 ∈ R4×4,

such that

αG = ρG − ρGR − ρGN − ρGD

αR = ρR − ρRG − ρRN − ρRD

αN = ρN − ρNG − ρNR − ρND

. (3)

Terms of the form ρij such that i 6= j, ρi, and ρiD
are phenotypic state switching, division, and death gains,
respectively. A switching gain is the proportion of cells in
a phenotypic state that switch to another phenotypic state
during a time interval (12 hours), averaged over the time
horizon (60 hours). A death gain is the proportion of cells
in a phenotypic state that die during a time interval, averaged
over the time horizon. A division gain is the ratio of cells in
a phenotypic state at the end of an interval, to those at the
start of that interval, assuming only replication may occur,
averaged over the time horizon.

Here we justify the phenotypic state dynamics equations
by example. Consider the green phenotypic state. Cell divi-
sion within the green state and transition of cells from other
phenotypes to the green state increases subpopulation size,
while cell death within the green state and transition from the
green state to other phenotypes decreases subpopulation size.
The dynamics equation for green cells is, quite naturally,

Gk+1 = αGGk + ρRGRk + ρNGNk + 0Dk.

The final term, 0D[k], indicates that dead cells stay dead
and is shown for completeness. Logic for the remaining
phenotypic state dynamics equations is equivalent.

Conversely, the dead cell dynamics equation is,

Dk+1 = ρGDGk + ρRDRk + ρNDNk +Dk.

TABLE I
CONSTANTS FOR AUTHENTIC AND SYNTHETIC DATA SETS

Symbol Description Authentic
value

Synthetic
value

n Number of cell types 4 4
T Length of time horizon 6 6
W Number of wells 4 100

TABLE II
PROPERTIES OF A ∈ A

Note: Each subscript i, j ∈ {R,G,N} corresponds to a red, green, or not
phenotypic state, respectively. Refer to (3).

Label Constraint Rationale
1 ρi ≥ 1 Cell division can only increase subpop-

ulation size of phenotypic state i.
2 ρi = ρj , i 6= j Biological evidence (S-phase content,

not shown) suggests that division may
be equivalent across phenotypic states.

3 ρij ∈ [0, 1], i 6= j ρij is the average proportion of cells in
phenotypic state i that switch to pheno-
typic state j during a time interval.

4 ρiD ∈ [0, 1] ρiD is the average proportion of cells
in phenotypic state i that die during a
time interval.

5 αi ≥ 0 Cells that exit phenotypic state i during
a time interval must be there initially.

6 Last column of A is
fixed

Dead cells accumulate over time, and
death is irreversible.

The intuition is that dead cells accumulate over time, as
cells in any phenotypic state die during each time interval.
Stacking the element-wise dynamics equations and applying
standard rules of matrix multiplication yields (3).

D. Identification

Linear least-squares was used to identify the dynamics
matrix of (1), since this method produces the maximum
likelihood estimate under the assumed error distribution
(Example 7.1 [17]),

Â = argmin
A∈A

||X+ −AX||F . (4)

F denotes the Frobenius norm, X+ and X are known matri-
ces of the same size computed from data, and A ⊂ Rn×n

is a convex set of biologically plausible dynamics matrices.
Realizations xik+1 and xik form the jth columns of matrices
X+ and X, respectively, where index j corresponds to a
unique time point k and well i pair. X+ and X belong to
Rn×(T−1)W , where n is the number of cell types, T is
the length of the time horizon, and W is the number of
wells (Table I). Justification for the properties of matrices
in A is presented in Table II. CVX software in MATLAB
was employed to solve this optimization program [18], and
MATLAB was used for all computations in this paper.

IV. BIOLOGICAL INSIGHT

A schematic of gain values identified from data for each
condition is provided in Fig. 3, and numerical values are
listed in the Appendix. Biological insights suggested by our
model are described below.



Fig. 3. A schematic of gain values identified from data. Arrow position
indicates gain type (see Fig. 1), and arrow style depicts gain magnitude,
rounded to two decimal places. Study of control-vs.-therapy subfigures illu-
minates cytotoxic effect on phenotypic state division, death, and switching.

The green subpopulation increases in size under the MEK
inhibitor over time and surpasses the green cell count of the
control condition by time 60 hours (Fig. 2). The identified
gains suggest that more switching from not to green subpop-
ulations under MEKi (vs. control) may explain this effect.
Observe Fig. 3: Under MEKi, the arrow from not to green
phenotypic states is thick and no reverse arrow is present;
but, in the control, the arrow from not to green phenotypic
states is thin and a thick arrow is present in reverse.

Further, the green subpopulation is observed to decrease
in size and remains below the green cell count of the
control condition over time under PI3K/mTORi (Fig. 2).
Less switching from not to green subpopulations and less
cell division under PI3K/mTORi (vs. control) may drive this
effect, according to the identified gains. Observe Fig. 3: No
arrow from not to green phenotypic states is present under
PI3K/mTORi; but, an arrow is present from not to green
phenotypic states under the control.

Brief comparison of the control condition and MEKi (or
PI3K/mTORi) in Fig. 3 indicates that the single-agent ther-
apy exhibits little influence on death. The values of any death
gain under the control and MEKi (or PI3K/mTORi) differ
by no more than approximately 0.02 (Table IV). Conversely,
the values of some switching gains exhibit relatively large
differences between the control and the single-agent thera-
pies; for example, see ρGN under MEKi vs. control and ρGR

under PI3K/mTORi vs. control (Table V). Also, substantially
less division occurs under each therapy compared to control
(a statistically significant reduction, to be shown in Sec. V)
(Table IV). Together, these model-based findings suggest that
MEKi and PI3K/mTORi exhibit greater effects on switching
and division relative to death. However, the combination

therapy appears to induce some death (see ρND, combination
vs. control, Table IV). A concept for empirical validation of
our hypotheses is discussed in future work (Sec. VIII).

V. STATISTICAL ANALYSIS

The analysis in this section provides an indication
of parameter variation due to process noise. Wild boot-
strap [19][20] was implemented to identify statistically sig-
nificant differences between therapeutic and control condi-
tions. This flavor of bootstrap was chosen because it has been
designed to provide improved results with smaller sample
sizes when the data displays heteroskedasticity [19][20],
which is the case for this data because variance of each cell
type vector depends on its magnitude. Our implementation
assumes independent error among cell types for a fixed time
point and a fixed well. These steps were executed for each
condition:

1) Identify the dynamics matrix, Â, via (4) using data
from all observations (4 wells), called authentic data.

2) Fit authentic data to Â. Set x̂ik+1 = Âxik, such that xik
and x̂ik are authentic data and fitted data at time k in
well i, respectively, and x̂i0 = xi0 for each well i.

3) Compute a set of bootstrap samples. Calculate absolute
values of the residuals between authentic data and
fitted data, |rit,k| = |xit,k − x̂it,k| for all times k, wells
i, and cell types t. Initialize the bootstrap set to the
fitted set, zik = x̂ik ∈ Rn for all times k and wells i.
For each well i such that k > 0,

a) Fix a cell type t.
b) Select random sign St = st, such that St = −1

or St = 1 with equal probability.
c) Set zit,k = zit,k + st|rit,k|.
d) Repeat for all cell types, t = 1, . . . , n.

4) Identify the dynamics of the bootstrap set via (4).
5) Repeat steps 3-4 several times (we chose 200). Com-

pute a 95% confidence interval for each gain. Non-
overlapping intervals of two distinct conditions for the
same gain indicate a statistically significant difference.

Less frequent cell division under each therapeutic condition
(vs. control) was found to be statistically significant (Fig. 4).
This is an intuitive finding since cancer drugs are expected
to suppress proliferation.

VI. MONTE CARLO EVALUATION OF SWITCHING TYPE

Here we study two distinct model assumptions: two-
way switching and net switching. In a two-way switching
model, there exists two bidirectional switching gains between
each phenotypic state pair. Some cells may switch from
phenotypic state i to j, while other cells may switch from j
to i, during the same time interval. Two-way switching, an
abstraction that reflects plasticity of cancer systems [21][22],
is assumed in the proposed model (1), and is defined formally
in constraint 3 of Table II. Conversely, in a net switching
model, there exists one switching gain that represents the
primary switching direction for each phenotypic state pair.
For example, if switching occurs from green to red pheno-
typic states, then it cannot occur from red to green states. Net



Fig. 4. A 95% confidence interval for each gain, computed via wild
bootstrap [19][20], is labeled by x-axis index for each condition. See
Tables IV and V for numerical intervals. Recall that division gains for a
fixed condition were forced to be equal (Table II). Confidence intervals
of division gains under the control condition do not overlap those of any
therapeutic condition, indicating a statistically significant effect.

switching imposes a non-convex constraint on non-diagonal
terms of the dynamics matrix, A ∈ Rn×n,

(Ai,j ∈ [0, 1] ∧Aj,i = 0) ∨ (Aj,i ∈ [0, 1] ∧Ai,j = 0) (5)

for all i 6= j, i 6= n, j 6= n. We denote the non-convex set
that satisfies (5) and constraints 1-2, 4-6 of Table II, ANet.

While two-way switching is more natural, the parameter
analysis can be quite complex, especially if many phenotypic
states are modeled. Thus, net switching may be desirable
to assume in future work. To understand its limitations,
we evaluated the quality of model fit for net switching
versus two-way switching on synthetically generated data
(Table I). A Monte Carlo method was used to assess how
the “best” net switching model represented “biologically
plausible” data (see Steps 2 and 3 below). The focus was on
the best-case scenario to reveal limitations that arise under
perfect information; these limitations would only become
more severe in practice under imperfect information. The
subsequent steps were implemented for each condition:

1) Let the dynamics identified from data via (1) be the
synthetic truth for two-way switching, A∗Two-way ∈ A.

2) Identify the “best” net switching dynamics matrix
using data and a brute force search through the net
switching options, A∗Net ∈ ANet.

3) Generate “biologically plausible” synthetic data as-
suming two-way switching.

a) Compute the sample mean, x̄0, and the sample
covariance, Σ0, of authentic data at time 0.

b) Let x̄0 be the synthetic initial condition.
c) Set σ2 = 1

4r

∑4
i=1 Σ0,ii, average of the initial

variances for each cell type, scaled by 1
r . (We

chose r = 50 by trial and error, so simulated tra-
jectories displayed clear trends with some noise.)

d) Let X0 = x̄0, Xk+1 = A∗Two-wayXk+εk, and εk =
σνk, such that νk ∼ N (0n, In) i.i.d. Generate a
realized time-trajectory for each synthetic well i,
{xik}

T−1
k=0 , using MATLAB function randn(n, 1).

e) Adjust dead cell counts to enforce increasing
death over time.

4) Separate synthetic data into train and test sets with 67
and 33 wells, respectively.

5) Estimate the two-way switching dynamics via (4) using
synthetic train data, ÂTwo-way.

6) Fit synthetic test data to ÂTwo-way. x̂ik+1,Two-way =

ÂTwo-wayx
i
k, where x̂ik,Two-way and xik are the fitted and

synthetic test realizations, respectively, at time k in
well i. x̂i0,Two-way = xi0 for all i.

7) Compute the generalization error for two-way switch-
ing, ETwo-way. Let XTwo-way and X̂Two-way be matrices of
synthetic test data, {xik}, and fitted data, {x̂ik,Two-way},
respectively. ETwo-way = ||X̂Two-way − XTwo-way||F ,
where F denotes the Frobenius norm.

8) Fit synthetic test data to A∗Net. x̂
i
k+1,Net = A∗Netx

i
k,

where x̂ik,Net and xik are the fitted and synthetic test
realizations, respectively, at time k in well i. x̂i0,Net =
xi0 for all i.

9) Compute the generalization error for net switching,
ENet = ||X̂Net − XTwo-way||F . X̂Net is a matrix of fitted
data, {x̂ik,Net}, and XTwo-way was defined earlier.

10) Repeat steps 3-9 for several trials (we chose 10).
Synthetic test data and fitted data for two-way and net

switching are shown in Fig. 5 from a trial in a sample
execution of the code. The maximum generalization error for
two-way switching (Step 7) and for net switching (Step 9)
over all trials in a sample execution are provided in Table III.
As expected, two-way switching achieves a closer fit to the
test data compared to net switching for every condition,
evident by better qualitative matching (Fig. 5) and lower error
(Table III). Interestingly, fitted data of net switching and two-
way switching may differ in derivative magnitude (estimated
visually), but generally not in derivative sign, for a given
condition, state, and interval (Fig. 5). That is, these fitted data
generally increase (or decrease) over the same intervals, but
possibly at different time-varying rates, for a given condition
and state (Fig. 5). Consequently, the net switching model
may be used, if accurate rates of change in subpopulation
size are not imperative. However, net switching is generally
more expensive than two-way switching due to the non-
convex constraints (5) that characterize the former model.
A less costly alternative to the bootstrap algorithm of Sec. V
may be required to assess parameter variation due to process
noise, if net switching is adopted in future work.

VII. INITIAL STEPS FOR CONTROLLER DESIGN

The long-term goal of this work is to improve the trial-
and-error paradigm used in the laboratory to test anti-
cancer drugs. Fortunately, the simple structure of our model



TABLE III
MAXIMUM GENERALIZATION ERROR (SAMPLE EXECUTION)

Condition Two-way switching Net switching
Control 154 673
MEKi 153 371
PI3K/mTORi 157 1180
Combination 157 467

Fig. 5. Synthetic test data and fitted data for two-way switching (left)
and net switching (right) are shown for each condition from a sample trial.
Trajectories from all 33 synthetic wells are plotted to illuminate the assumed
error distribution. Black lines are synthetic test data, called “original” in the
legend, and red starred lines are fitted data. The net and two-way switching
fitted data generally increase (or decrease) over the same intervals, but
possibly at different time-varying rates, for a given condition and state.

naturally motivates a control-theoretic approach to identify
potential combination treatments in silico to guide future
experiments. Specifically, the control input is the drug per-
turbation, and the quantities of cells in each type (green,
red, not, and dead) need to be controlled. Matrix A of (1)
represents the phenotypic state dynamics of the cancer sys-
tem subject to the control input, as the drug-induced system
response was used to identify these dynamics. Further, a
finite composition of dynamics matrices, each associated
with a drug perturbation, represents the phenotypic state
dynamics subject to a sequence of control inputs over time.
This motivates the goal to identify a therapeutic schedule that
is projected to weaken resistance of malignant populations
in silico. One way to weaken resistance may be to drive the
cancer system to a more homogeneous composition, in which
one phenotypic state with special properties (e.g., particular
drug sensitivity) is dominant. The questions of interest are:

• Using available data, how can we identify a finite
sequence of drugs that drives subpopulation sizes of all
but one phenotypic state sufficiently close to zero?

• More generally, what mathematical conditions guaran-
tee existence of such a sequence?

An initial step for controller design is to examine the
eigenvectors and eigenvalues of the dynamics matrices iden-
tified for each therapeutic condition via (4). For example,
consider the dynamics matrix identified for MEKi and
the eigenvector-eigenvalue pairs of the phenotypic states.
Only one phenotypic state eigenvalue is unstable (out-
side the unit circle), and its corresponding eigenvector is
(0.94, 0.21, 0.12, 0.25)T , rounded to two decimal places.
Notice that the first element of the eigenvector is much larger
than the second and third elements. Hence, the phenotypic
state associated with the first element (green) will tend to
dominate the remaining states. This motivates a potential
therapeutic schedule: first, apply MEKi daily for many days
to expand the green subpopulation; then, apply a drug that se-
lectively kills green cells. For example, applying MEKi once
per day for ten days from a plausible initial condition (the
median of all available realizations at time 0) produces the
composition (3300, 800, 480, 550)T , in which roughly 64%
of the cell population belongs to the green state. Among other
challenges, sufficient time horizon length and existence of a
drug that selects green cells are unknown. Yet, we show that
our data-driven systems-based framework has the potential
to identify new temporal treatments computationally in order
to direct future in vitro cancer studies.

VIII. FUTURE WORK

Model extension. The current model predicts cytotoxic ef-
fect on subpopulation-level behavior and facilitates a natural
framework to control populations of any cancer with high
phenotypic state heterogeneity. However, the representation
of stochasticity could be improved by introducing parame-
ters that signify cell-type-specific variance of process noise.
Strong evidence for the prominence of noise in biological
systems [23][24][25][26] motivates this extension.



TABLE IV
CELL DIVISION AND DEATH GAINS: IDENTIFIED VALUES AND CIS

Division ρGD ρRD ρND

Control 1.34;
[1.30, 1.39]

0.05;
[0, 0.14]

0;
[0, 0.08]

0.04;
[0, 0.10]

MEKi 1.14;
[1.09, 1.18]

0.03;
[0, 0.06]

0;
[0, 0.04]

0.02;
[0, 0.12]

PI3K/mTORi 1.08;
[1.00, 1.07]

0.07;
[0, 0.16]

0.02;
[0, 0.06]

0.02;
[0, 0.09]

Combination 1.00;
[1.00, 1.00]

0;
[0, 0.21]

0.01;
[0, 0.13]

0.13;
[0, 0.18]

TABLE V
SWITCHING GAINS: IDENTIFED VALUES AND CIS

ρGR ρGN ρRG ρRN ρNG ρNR

Ctrl. 0.29;
[.04, 1]

0.99;
[0, 1]

0.28;
[0, .48]

0.39;
[.21; .91]

0.46;
[.20, .59]

0.52;
[.27, .72]

MEKi 0.06;
[0, .20]

0;
[0, .20]

0;
[0, .61]

0.56;
[.06, .66]

0.53;
[0, .81]

0.42;
[.13, .77]

PI3K. 0;
[0, .97]

0.55;
[.01, .94]

0.16;
[0, .30]

0.57;
[.17, .66]

0;
[0, .40]

0.98;
[.20, .94]

Comb. 0.10;
[0, .84]

0.85;
[0, .88]

0.38;
[.07, .50]

0.39;
[.18, .74]

0.22;
[.05, .49]

0.65;
[.12, .64]

Statistical analysis. Values of the identified gains can
fall outside the bootstrap intervals (e.g., see Table V-
PI3K/mTORi-ρNR). To mitigate this, we may implement
bias-corrected bootstrap in subsequent work.

Data quality and quantity. Since phenotypic state dynam-
ics are hard to quantify using modern empirical tools, our
data set has reduced quality and size compared to those
typically used in systems research, and our model was not
validated on real data. Fortunately, time series data from
more replicate wells will be available in the future.

More phenotypic states. In this paper, cells expressing both
basal and mesenchymal markers were improperly classified
in both green and red states. A larger data set may enable
including more states in the model to correct this issue.

Experimental validation. Potentially, a fluorescent reporter
system, which would enable cells to fluoresce different colors
based on phenotypic expression, could facilitate real-time
tracking of single-cell state-specific switching and death.
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APPENDIX

Numerical values of identified gains (Fig. 3) and con-
fidence intervals (CIs) (Fig. 4) are provided in Tables IV
and V, rounded to two decimal places.
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