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Abstract

We derive the explicit analytical form of the time-dependent coupling parame-
ter to an external field for perfect absorption of traveling single photon fields with
arbitrary temporal profiles by a tunable single input-output open quantum system,
which can be realized as either a single qubit or single resonator system. However, the
time-dependent coupling parameter for perfect absorption has a singularity at t = 0
and constraints on real systems prohibit a faithful physical realization of the perfect
absorber. A numerical example is included to illustrate the absorber’s performance
under practical limitations on the coupling strength.

1 Introduction

Quantum networks composed of open quantum systems as network nodes that are inter-
connected by traveling quantum optical fields are of much interest for quantum information
applications, including quantum communication and quantum computing; see, e.g., [1, 2]
and the references therein. Photons in optical fields are ideal particles for transmitting in-
formation between nodes in a quantum network as they can propagate through free space
and various physical media. Quantum systems at the nodes are typically matter systems
such as an atom, atomic ensembles, superconducting circuits, amongst many possibilities.
Each node can process or store classical or quantum information and exchange its informa-
tion content with an optical field, either to receive information contained in the field or to
transmit information into the field. Thus an important problem for quantum networks is
the problem of state transfer between an optical field impinging on a node and the matter
system at the node. That is, the transfer of the quantum state of the optical field to the
matter and vice-versa.
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The problem of state transfer in a quantum network with two nodes was first considered
in the seminal work [3]. In this work, the authors consider the perfect transfer of an
arbitrary superposition state α|0〉+ β|1〉 from a qubit on one node to a qubit on the other
via a one way optical field connecting the two nodes. Each node is a cavity QED system
that can be modelled as a qubit coupled to an optical cavity which is in turn coupled to the
optical field. It was shown that perfect transfer can be achieved by suitably modulating the
Rabi frequency and phase of a Raman laser driving the qubits at each node. They employ
the quantum filtering equation or quantum trajectory equation [4, 5] for the network and
apply the dark state principle to derive differential equations characterising the required
modulation. The dark state principle states that there should be no photon counted at the
output optical field reflected from the receiving node when a photon counting measurement
is performed on that output field.

In this paper, we are interested in the problem of the perfect transfer of a traveling
single photon field into a system that can function as a perfect single photon absorber.
The state of a travelling single photon field is characterized by a temporal wavepacket
ξ, a complex-valued function of time, that satisfies

∫∞
0
|ξ(s)|2ds = 1. The wavepacket

gives the detection probability of the single photon state, that is, the probability that the
photon will be detected (say, by registering a click in a photo detector) in a time interval
[t1, t2] (0 ≤ t1 < t2) is given by

∫ t2
t1
|ξ(s)|2ds. We are interested in a tunable single photon

absorber with a coupling parameter that can be modulated to absorb single photons of any
wavepacket shape.

In [6] it was shown how single photon fields with symmetric temporal profiles can be
mode-matched to be absorbed by a coupled cavity-oscillator system into a single photon
state of the oscillator, by suitably modulating the coupling parameter between the cavity
and oscillator modes. In the work [7], it was shown that an absorber can be implemented
with a cavity QED system composed of a three level atom coupled to an optical cavity.
Perfect absorption of a photon with an arbitrary temporal shape could be achieved by ap-
propriately modulating the amplitude of a laser beam driving a Raman transition process
in the atom, under the assumption of no spontaneous emission from the atom. The modula-
tion of the laser beam is tailored to the temporal profile of the incoming single photon field.
In this paper, we consider a different class of single photon absorbers, a single two-level
system (qubit) or, equivalently, a single resonator with a tunable coupling parameter to an
external optical field. This type of coupling has been theoretically proposed for the transfer
of state between two microwave resonators connected by a one-way travelling optical field
between the resonators [8]. Importantly, such a tunable coupling parameter has already
been demonstrated experimentally in a microwave superconducting resonator [9], where
the tunability is realized using an externally controlled variable inductance. This coupling
is analogous to a mirror with tunable transmissivity on an optical cavity. The contribu-
tion of this work is to analytically derive the exact form for the time-dependent coupling
parameter for perfect absorption of a single photon with an arbitrary wavepacket shape.
We describe the system with a QSDE and derive the optimal evolving coupling parameter
by two methods: by explicitly solving the QSDE, and by application of the zero-dynamics
principle from [10]. We note that a form of this principle had also been employed in earlier
works [6, 8, 7] without being referred to as such. That is, these works require that the
incoming field and the field reflected from the system interfere destructively, resulting in
no photon in the output field (zero output dynamics).
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This paper is organized as follows. Section 2 introduces the notation of the paper
and gives a brief overview of quantum stochastic calculus, quantum stochastic differential
equations, single photon generators, and systems driven by a single photon field. Section
3 introduces the model of the single photon absorber of interest, analytically derives the
modulating function for the coupling parameter for perfect absorption of any single photon
field, and develops a numerical example showing the effects of practical limitations on the
absorber’s performance. Finally, Section 4 draws a conclusion for the paper.

2 Preliminaries

Notation. We will use ı =
√
−1, ∗ to denote the adjoint of a linear operator as well as

the conjugate of a complex number. If A = [ajk] then A# = [a∗jk], and A† = (A#)>, where

(·)> denotes matrix transposition. <{A} = (A + A#)/2 and ={A} = 1
2ı

(A − A#). We
use R+ to denote the set of non-negative real numbers and L2(R+;C) to denote the set of
square-integrable functions on R+. 〈X〉 denotes the quantum expectation of an operator
X, and Tr(X) denotes the trace of X.

2.1 Quantum stochastic calculus and quantum stochastic differ-
ential equations

We will be working with open Markov quantum systems that are coupled to n continuous-
mode boson fields indexed by j = 1, 2, . . . ,m with annihilation field operators ηj(t) satisfy-
ing the field commutation relations [ηj(t), ηk(t

′)∗] = δjkδ(t− t′) and [ηj(t), ηk(t
′)] = 0. For

our purposes, we can focus on fields in a vacuum state. Let us introduce the integrated
field annihilation process Aj(t) =

∫ t
0
ηj(s)ds and its adjoint process, the integrated field

creation process, A∗j(t) =
∫ t
0
η∗j (s)ds. In the vacuum representation, their future-pointing

Itō increments dAj(t) = Aj(t + dt) − Aj(t) and dA∗j(t) = A∗j(t + dt) − A∗j(t) satisfy the
quantum Itō table [11, 12, 13]

× dA∗k dAk
dAj δjkdt 0
dA∗j 0 0

We may also define the counting process (or gauge process)

Λjk(t) =

∫ t

0

b∗j(r)bk(r)dr,

which may be included in the Itō table [11]. The additional non-trivial products of differ-
entials are

dΛjkdA
∗
l = δkldA

∗
j , dAjdΛkl = δjkdAl, dΛjkAΛli = δkldΛji.

Using the processesA = (A1, A2, . . . , Am)>, A# = (A∗1, A
∗
2, . . . , A

∗
m)> and Λ = [Λjk]j,k=1,...,m,

one may define quantum stochastic integrals of adapted processes on the tensor product
of the system and joint boson (symmetric) Fock space of the fields. The system is the
quantum mechanical object that is being coupled to the fields, and adapted means that
at time t the process acts trivially on the portion of the boson Fock space after time t ,
see, e.g., [11, 12, 13] for details. An adapted process commutes at time t with all of the
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future pointing differentials. The product of two adapted processes X(t) and Y (t) is again
adapted, and the increment of the product obeys the quantum Itō rule

d(X(t)Y (t)) = (dX(t))Y (t) +X(t)dY (t) + dX(t)dY (t),

Based on these quantum stochastic integrals, one may define quantum stochastic differen-
tial equations (QSDEs).

For the remainder of the paper, we will only consider a system coupled to a single
field, m = 1 and A(t) = A1(t), A

∗(t) = A∗1(t), Λ(t) = Λ11(t). An important QSDE that
describes the joint unitary evolution of an open Markov system coupled to vacuum boson
fields, common in quantum optics and related fields, is the Hudson-Parthasarathy QSDE
given by

dU(t) = (−(ıH(t) + 1/2L(t)∗L(t))dt+ dA(t)∗L(t)− L(t)∗S(t)dA(t) + (S(t)− I)dΛ(t))U(t),
(1)

with initial condition U(0) = I. We adopt a very general setting [14] where H(t) = H(t)∗

can be a general adapted process representing the time-dependent Hamiltonian of the
system, L(t) an adapted process representing the (possibly time-dependent) coupling of
the system to the creation process A∗(t), and S(t) a unitary adapted process, S(t)∗S(t) =
S(t)S(t)∗ = I, representing the (possibly time-dependent) coupling of the system to the
process Λ of the field. This QSDE has a unique solution whenever S(t), L(t), H(t) are
bounded operators for all t ≥ 0 [14]. Moreover, in that case the solution is guaranteed to
be unitary. The input field A(t) after the interaction is transformed into the output field
Y (t) = U(t)∗A(t)U(t). Let jt(X) = U(t)∗XU(t) denote the Heisenberg picture evolution
of a system operator X, then we have the following QSDEs for the Heisenberg picture
evolution of jt(X) and Y (t) [15],

djt(X) = jt(Lt(X)) + dA(t)∗jt(S(t)∗[X,L(t)]) + jt([L(t)∗, X]S(t))dA(t)

+jt(S(t)∗XS(t)−X)dΛ(t),

dY (t) = jt(L(t)) + jt(S(t))dA(t),

with

Lt(X) = 1/2L(t)∗[X,L(t)] + 1/2[X,L(t)]L(t)− ı[X,H(t)].

We will denote an input-output open quantum system G with parameters S(t), L(t), H(t)
with the notationG = (S(t), L(t), H(t)) [15]. The output of systemG1 = (S1(t), L1(t), H1(t))
can be passed as the input to a second system G2 = (S2(t), L2(t), H2(t)) forming a cascaded
system which is again an input-output open quantum system G3, the parameters of which
is given by the series product rule /,

G3 = G2 / G1 = (S2(t)S1(t), L2(t) + S2(t)L1(t), H1(t) +H2(t) + ={L2(t)
∗S2(t)L1(t)}).

We note that G1 and G2 can be subsystems of one system sharing the same Hilbert space,
see [15] for details. The series product is associative, thus if Gn = (Sn(t), Ln(t), Hn(t))
then the series product Gn / Gn−1 / . . . / G1 is unambiguously defined.
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2.2 Single photon generator

Our main interest is in systems driven by a traveling single photon field with wavepacket
ξ, defined by a continuous-mode single photon state |1ξ〉 on the boson Fock space, given by

|1ξ〉 =
∫ t
0
ξ(s)η(s)∗ds |Ω〉 =

∫ t
0
ξ(s)dA∗(s)|Ω〉 [16, 17, 18, 19], where |Ω〉 denotes the vacuum

state of the field.

In [20, 19] it has been shown that |1ξ〉 can be generated as the output of a two-level
system (qubit) that is coupled to single vacuum input field through a modulated coupling
coefficient. The generator G1 has the Hilbert space H1 = C2, where we take as basis
vectors |0〉1 = (0, 1)> and |1〉1 = (1, 0)>, and is given by G1 = (I, λ(t)σ1,−, 0), where σ1,−
is the qubit’s lowering operator,

σ1,− = |0〉1〈1| =
[

0 0
1 0

]
and λ(t) is a time-dependent complex coupling coefficient of the system to the field given
by

λ(t) =
ξ(t)√
w(t)

, (2)

with w(t) =
∫∞
t
|ξ(s)|2ds. The coupling coefficient depends on the wavepacket ξ of the

single photon field that one wishes to generate. Let U1(t) denote the unitary solution to
the generator’s QSDE. When the generator is initialized in the state |1〉1 then we have
[20, 19],

U1(t)|1〉1|Ω〉 =
√
w(t)|1〉1 ⊗ |Ω〉+ |0〉1 ⊗

∫ t

0

ξ(s)dA∗(s)|Ω〉

and so limt→∞ U1(t)|1〉|Ω〉 = |0〉 ⊗ |1ξ〉. Thus, if a photon detection measurement is per-
formed at the output of the generator at any time t ≥ 0, the probability of detecting a
photon in the interval [0, t] is exactly

∫ t
0
|ξ(s)|2ds, as expected.

2.3 Systems driven by a single photon

Systems driven by a traveling single photon field with wavepacket ξ can be viewed equiv-
alently as being driven by an ancillary generator that outputs the single photon field, as
described in the preceding subsection. Suppose that a system G2 = (S2(t), L2(t), H2(t))
on the Hilbert space H2 is driven by a single photon field with wavepacket ξ. Then the
dynamics of the system can be analyzed by studying the equivalent cascaded system

G2 / G1 = (S2(t), L2(t) + λ(t)S2(t)
∗σ1,−, H(t) + ={λ(t)L2(t)

∗S2(t)σ1,−})

that is driven by a vacuum field. The cascaded system is defined on the composite Hilbert
space C2 ⊗ H2. Note that for notational simplicity for an arbitrary operator X1 on the
generator and X2 on the system, we will often denote the ampliations X1⊗ I, I ⊗X2, and
X1 ⊗X2 simply as X1, X2, and X1X2, etc, with the tensor product being omitted.
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3 A tunable single photon absorber with time-dependent

coupling to an external field

We now describe our tunable photon absorber that can perfectly absorb a single photon
field with an arbitrary wavepacket. The Hilbert space of the absorber is that of a qubit,
but since only a single excitation will be involved (i.e., a single photon) it can actually be
implemented by a quantum harmonic oscillator with a tunable coupling parameter such as
the microwave system realized in [7]. We will say more about the physical realization of
the absorber near the end of this section.

We choose |0〉2 = (0, 1)> and |1〉2 = (1, 0)> as basis vectors for the absorber Hilbert
space H2 = C2. Our perfect single photon absorber is then a system G2 = (I, γ(t)σ2,−, 0),
with σ2,− the qubit lowering operator on H2. Note that the absorber Hamiltonian has been
set to 0, so we are implicitly working in a rotating frame with the respect to the absorber’s
original Hamiltonian. We only require that the original Hamiltonian commutes with σ2,−
or only rotates the latter in time as e−ıωtσ2,− for some real constant ω ( e−ıωt can then
be absorbed into γ(t)), but is otherwise arbitrary. In principle, the analysis to follow can
be adapted to accommodate more general Hamiltonians but we do not pursue this here.
The time-dependent parameter γ will be chosen to enable perfect absorption of any single
photon field, with γ dependent on the wavepacket ξ of the latter. Let G1 be the ancillary
generator for a single photon as given in Section 2.2 for a given ξ. The cascade of G1 onto
G2 is given by:

G2 / G1 = (I, λ(t)σ1,− + γ(t)σ2,−,={γ(t)∗λ(t)σ2,+σ1,−}), (3)

where σj,+ = σ∗j,− denotes the raising operator for the system Gj. The generator G1

is initialized in the excited state |1〉1 while the absorber G2 is initialized in the ground
state |0〉2. The field to which the cascade is coupled to is in the vacuum state |Ω〉. We
shall show that for any wavepacket ξ(t), γ(t) can always be chosen such that in the limit
t→∞, the joint system and field state converges to |0〉1|1〉2|Ω〉. That is, a single photon
is asymptotically perfectly absorbed by G2. We shall derive the form for γ explicitly in
two ways: (i) by explictly solving the QSDE for the cascaded system in Section 3.1, and
(ii) by application of the zero-dynamics principle in Section 3.2.

It will turn out that the coupling parameter γ will have a singularity at t = 0 for
any wavepacket ξ. In actual practical implementation this singularity must be truncated
to some finite value. We propose a truncation in Section 3.3 and apply it in a numerical
example for an exponentially decaying wavepacket to give an illustration of the effect of this
truncation on the absorber’s performance in capturing a single photon with this wavepacket
shape.

Coming back to the discussion at the beginning of this section, we note that since the
absorber can have no more than a single quanta of excitation when driven by a single
photon field, the dynamics of G2 when initialized at |0〉2 can be embedded in the dynamics
of an equivalent quantum harmonic oscillator system G′2 = (I, λ(t)a, 0), where a is the
annihilation operator of the oscillator, satisfying the commutation relation [a, a∗] = 1.
This is because H2 is isomorphic to span{|0〉o, |1〉o}, where |0〉o and |1〉o is the vacuum
and 1-photon Fock state of the oscillator, respectively, and σ2,− can be identified with the
restriction of a to span{|0〉o, |1〉o}. Indeed, this kind of embedding of the dynamics of a
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qubit system into a quantum harmonic oscillator under single photon driving has already
been exploited in [21].

3.1 Determining γ by solving the QSDE for G2 / G1

The wavefunction of the cascaded system (generator and absorber) and the external field is
initially |1〉|0〉|Ω〉 and at time t ≥ 0 is of the form ψ(t) = (ψ1(t), ψ2(t), ψ3(t), ψ4(t))

>⊗|Ω[t〉,
where ψ(t) is adapted on the joint cascaded system and Fock space, in the sense that ψ(t)
lives in the tensor product of the system and the portion of the Fock space up to time
t. That is, U(t)|1〉|0〉|Ω〉 = ψ(t) ⊗ |Ω[t〉, where U(t) is a solution of the QSDE (1) with
coefficients given by (3). Here |Ωt]〉 and |Ω[t〉 denote the portion of Fock vacuum from time
0 up to time t, and from time t onwards, respectively, see [11, 12]. We have that the vector
ψ(t) satisfies the QSDE:

d(ψ(t)⊗ |Ω[t〉) =


−(|λ(t)|2 + |γ(t)|2)/2 0 0 0

0 −|λ(t)|2/2 0 0
0 −γ(t)∗λ(t) −|γ(t)|2/2 0
0 0 0 0

ψ(t)⊗ |Ω[t〉dt

+


0 0 0 0
γ(t) 0 0 0
λ(t) 0 0 0

0 λ(t) γ(t) 0

ψ(t)⊗ dA(t)∗|Ω[t〉,

with initial condition ψ(0) = |1〉1|0〉2 = (0, 1, 0, 0)>. From the above equation one readily
gets that

ψ1(t) = exp

(
−1/2

∫ t

0

(|λ(s)|2 + |γ(s)|2)ds
)
ψ1(0)|Ωt]〉

= 0,

for all t ≥ 0. Using this fact and recalling from [19] (using (2)) that

exp

(
−1/2

∫ t

s

|λ(τ)|2dτ
)

=

√∫∞
t
|ξ(τ)|2dτ∫∞

s
|ξ(τ)|2dτ

,

for 0 ≤ s ≤ t, we can also solve for ψ2(t), obtaining

ψ2(t) = exp

(
−1/2

∫ t

0

|λ(τ)|2dτ
)
ψ2(0)|Ωt]〉

=

√∫ ∞
t

|ξ(τ)|2dτ |Ωt]〉.

We want that as t → ∞, ψ(t) → |0〉1|1〉2|Ω〉 = (0, 0, |Ω〉, 0)>. That is, G2 completely
absorbs the single photon emitted by G1, so that the output field state goes to the vacuum.

From the equation for ψ4(t) we have that

ψ4(t) = ψ4(0)|Ωt]〉+

∫ t

0

(λ(s)ψ2(s)dA(s)∗ + γ(t)ψ3(s)dA(s)∗)|Ωt]〉,

=

∫ t

0

(ξ(s)dA(s)∗ + γ(s)ψ3(s)dA(s)∗)|Ωt]〉,
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which we want to go to 0 as t→∞. Also, since

dψ3(t) = −1/2|γ(t)|2ψ3(t)dt− γ(t)∗λ(t)ψ2(t)dt,

we can solve this to give:

ψ3(t) = exp

(
−1/2

∫ t

0

|γ(s)|2ds
)
ψ3(0)|Ωt]〉

−
∫ t

0

exp

(
−1/2

∫ t

s

|γ(τ)|2dτ
)
γ(s)∗λ(s)ψ2(s)ds)|Ωt]〉,

= −
∫ t

0

exp

(
−1/2

∫ t

s

|γ(τ)|2dτ
)
γ(s)∗λ(s)ψ2(s)ds)|Ωt]〉,

the second line following from the fact that ψ3(0) = 0. The expressions for ψ4(t) and ψ3(t)
just given, and the form of λ(t) for the generator, suggest the following as an educated
guess for γ(t) to achieve limt→∞ ψ4(t) = 0 and limt→∞ ψ3(t) = |Ω〉,

γ(t) = −eıφ0 ξ(t)√∫ t
0
|ξ(s)|2ds

,

for some arbitrary real constant φ0. We will verify below that this form of the modulation
function γ(t) indeed achieves perfect absorption. Note that although γ is singular at t = 0,
γ(0) = −∞, it is square integrable on [s, t] for any 0 < s ≤ t ≤ ∞. Indeed, by direct
integration, ∫ t

s

|γ(τ)|2dτ =

∫ t

s

(
|ξ(τ)|2/

∫ τ

0

|ξ(y)|2dy
)
dτ,

=

∫ t

s

d

(
ln

∫ τ

0

|ξ(y)|2dy
)
,

= ln

(∫ t
0
|ξ(y)|2dy∫ s

0
|ξ(y)|2dy

)
.

Moreover, from this it follows immediately that

exp

(
−1/2

∫ t

s

|γ(τ)|2dτ
)

=


√∫ s

0 |ξ(y)|2dy∫ t
0 |ξ(y)|2dy

s > 0

0 s = 0, t > 0
1 s = t = 0

,

which is thus well-defined for any 0 ≤ s ≤ t ≤ ∞. Substituting the expression for γ(t) and
solving for ψ3(t) gives

ψ3(t) =

{
e−ıφ0 1√∫ t

0 |ξ(τ)|2dτ

∫ t
0
|ξ(s)|2ds|Ωt]〉 t > 0

0 t = 0
.
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Notice that limt→∞ ψ3(t) = |Ω〉, as desired. Substituting all of the above into the expression
for ψ4(t) gives,

ψ4(t) =

∫ t

0

(λ(s)ψ2(s)dA(s)∗ + γ(s)ψ3(s)dA(s)∗)|Ωt]〉,

=

∫ t

0

(ξ(s)dA(s)∗ − ξ(s)dA(s)∗)|Ωt]〉,

= 0,

again exactly as expected. Thus, we conclude that a two-level system of the form G =

(I, γ(t)σ−, 0) with γ(t) = −eıφ0ξ(t)/
√∫ t

0
|ξ(τ)|2dτ can perfectly absorb a single photon

with an arbitrary wavepacket ξ(t).

3.2 Determining γ by application of the zero-dynamics principle

We now show that the modulation signal γ(t) can also be found by application of the
zero-dynamics principle proposed in [10]. Recall that the cascaded generator and absorber
has the coupling operator L(t) = λ(t)σ1,− + γ(t)σ2,− and the Hamiltonian is H(t) =
={γ(t)∗λ(t)σ2,+σ1,−}. The initial state of the composite generator and absorber system is
|1〉1|0〉2. The formulation of the zero-dynamics principle given in [10] is in the Heisenberg
picture. It states that the output field Y (t) =

∫ t
0
js(L(s))ds+A(t) should be a vacuum field.

This is necessary as no photon should be present in the output field if perfect absorption
is taking place. This means that one must have [22],〈

exp

(
ı

∫ ∞
0

(u(t)∗dY (t) + u(t)dY (t)∗)

)〉
= exp

(
−1/2

∫ ∞
0

|u(s)|2ds
)
,

for any u ∈ L2(R+;C), where the right hand side is the characteristic function of the
vacuum state of a bosonic field. Evaluating the left hand side is in general difficult, if
not intractable, except in special instances like the linear quantum networks analysed
in [10]. However, the zero-dynamics principle can still be applied, but by looking at it
from another equivalent viewpoint. Zero-dynamics corresponds to the state of the output
field always being vacuum at all times t ≥ 0, U(t)|1〉1|0〉2|Ω〉 = |ϕ(t)〉|Ω〉 for some pure
state vector |ϕ(t)〉 on H1 ⊗ H2 for all t ≥ 0. This is similar in spirit to the form of
the principle employed in [8, 7]. Thus we may state the ansatz that the wavefunction is
|ϕ(t)〉 = α(t)|1〉1|0〉2 + β(t)|0〉1|1〉2 for t ≥ 0 for some scalar complex functions α(t) and
β(t) that will be sought, satisfying |α(t)|2 + |β(t)|2 = 1. We also have the initial condition
α0 = 1 and β0 = 0. Substituting this ansatz into the joint QSDE of the system and field
gives:

d|ϕ(t)〉 ⊗ |Ω〉 = (−(ıH(t) + 1/2L(t)∗L(t))dt+ L(t)dA(t)∗ − L(t)∗dA(t)) |ϕ(t)〉 ⊗ |Ω〉.

Since the input to the generator-absorber is vacuum, for zero-dynamics to hold the term
L(t)dA(t)∗ in the QSDE should be 0 for all times (otherwise dA∗(t) will create a photon
in the field after time t and the field will no longer be in the vacuum state), meaning that
L(t)|ϕ(t)〉 = 0 for all t ≥ 0. This gives the condition

(λ(t)α(t) + β(t)γ(t))|0〉1|0〉2 = 0, ∀t ≥ 0
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and thus,
λ(t)α(t) + β(t)γ(t) = 0, ∀t ≥ 0. (4)

Moreover, noting that L(t)∗dA(t)|ϕ(t)〉|Ω〉 = 0 (since dA(t) annihilates the portion of the
vacuum after time t), the QSDE reduces to the deterministic equations,

d|ϕ(t)〉 = −ıH(t)|ϕ(t)〉dt,
α̇(t)|1〉1|0〉2 + β̇(t)|0〉1|1〉2 = 1/2γ(t)λ(t)∗β(t)|1〉1|0〉2 − 1/2γ(t)∗λ(t)α(t)|0〉1|1〉2

Thus we arrive at the following set of differential equations,

α̇(t) = γ(t)λ(t)∗β(t),

β̇(t) = −γ(t)∗λ(t)α(t),

λ(t)α(t) + β(t)γ(t) = 0

Using the constraint (4), subtituting β(t)γ(t) = −λ(t)α(t) gives,

α̇(t) = −1/2|λ(t)|2α(t),

β̇(t) = 1/2|γ(t)|2β(t),

λ(t)α(t) + β(t)γ(t) = 0

The solution for α with initial condition α0 = 1 is:

α(t) = e−
∫ t
0 |λ(s)|

2dsα0 =

√∫ ∞
t

|ξ(s)|2ds,

But we also have that |α(t)|2 + |β(t)|2 = 1, so |β(t)|2 =
∫ t
0
|ξ(s)|2ds. It follows from the

constraint (4) that

|γ(t)| = |λ(t)α(t)/β(t)| = |ξ(t)|√∫ t
0
|ξ(s)|2ds

.

So, we arrive at

β(t) =

√∫ t

0

|ξ(s)|2ds e−iφ(t), γ(t) = − ξ(t)√∫ t
0
|ξ(s)|2ds

eiφ(t).

for some arbitrary real-valued differentiable function φ(t). However, to satisfy the differ-
ential equation for β(t), φ(t) must in fact be a real constant, say, φ0. Whence,

β(t) =

√∫ t

0

|ξ(s)|2ds e−iφ0 , γ(t) = − ξ(t)√∫ t
0
|ξ(s)|2ds

eiφ0 .

Thus we recover the form of the modulating function γ(t) that was obtained in Section
3.1 by explicitly solving the QSDE, indicating the power of the zero-dynamics principle
for state-transfer problems such as this. Since one does not need to solve a QSDE, this
approach would be more widely applicable. Moreover, even if the QSDE is explicitly
solvable, it allows the differential equations characterizing γ(t) to be derived thus avoiding
having to make an educated guess about γ(t).
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3.3 Effect of imperfect realization of γ

We have seen that the analytical form of γ for perfect absorption has a singularity that
grows as O(t−1/2) as t → 0 for any wavepacket ξ. This poses a practical challenge as
an infinite coupling magnitude cannot be physically realized. Moreover, in the potential
implementation of the absorber using a single mode resonator, the coupling parameter
should be much smaller than the resonator’s free spectral range as to not excite higher
frequency modes of the resonator. A sub-optimal implementation would be to truncate
the magnitude of γ(t) for small values of t to a finite value. However, this will mean that
the absorber will no longer perfectly absorb a single photon. In this section, we numerically
evaluate the effect of bounding the magnitude of γ(t) for small t on a particular example.

Let nj = σj,+σj,− denote the number operator for the generator (j = 1) and absorber
(j = 2). To ease the notation, in the following we will often not explicitly write the
time dependence on operators, with the time dependence being implicitly understood. We
will be interested in the evolution of the mean number operator for the absorber, 〈n2〉,
in the Heisenberg picture, as this gives the probability of excitation of a single photon
in the absorber. In the perfect absorption case we have already discussed, we have that
limt→∞〈n2〉 = 1. Since the combined generator-absorber is driven by a vacuum field, the
evolution of the mean 〈X1X2〉 is given by the ordinary differential equation (the general
expression for Lt(X1X2) is derived in the Appendix),

d

dt
〈X1X2〉 = 〈Lt(X1X2)〉,

= γ(t)∗λ(t)
〈
X1σ1,−[σ2,+, X2]

〉
+1/2|λ(t)|2

〈
(σ1,+[X1, σ1,−] + [σ1,+, X1]σ1,−)X2

〉
+λ(t)∗γ(t)

〈
σ1,+X1[X2, σ2,−]

〉
+1/2|γ(t)|2

〈
(σ2,+[X2, σ2,−] + [σ2,+, X2]σ2,−)X1

〉
.

When X2 = n2 and X1 = 1, we get that:

d

dt
〈n2〉 = 〈Lt(n2)〉, (5)

= γ(t)∗λ(t)
〈
σ1,−[σ2,+, n2]

〉
+ λ(t)∗γ(t)

〈
σ1,+[n2, σ2,−]

〉
+1/2|γ(t)|2

〈
(σ2,+[n2, σ2,−] + [σ2,+, n2]σ2,−)

〉
,

= −|γ(t)|2〈n2〉 − γ(t)∗λ(t)
〈
σ1,+σ2,−

〉∗ − γ(t)λ(t)∗
〈
σ1,+σ2,−

〉
. (6)

Let σ2,z = [σ2,+, σ2,−]. Then when X2 = σ2,− and X1 = σ1,+ the equation is:

d

dt
〈σ1,+σ2,−〉 = 〈L(σ1,+σ2,−)〉,

= −1/2(|λ(t)|2 + |γ(t)|2)〈σ1,+σ2,−〉+ γ(t)∗λ(t)
〈
n1σ2,z〉. (7)

When X1 = n1 and X2 = σ2,z, the equation is:

d

dt
〈n1σ2,z〉 = 〈Lt(n1σ2,z)〉,

= −|λ(t)|2〈n1σ2,z〉+ 2|γ(t)|2
〈
n1n2〉. (8)
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Finally, when X1 = n1 and X2 = n2 the equation is:

d

dt
〈n1n2〉 = 〈Lt(n1n2)〉,

= −(|λ(t)|2 + |γ(t)|2)〈n1n2〉. (9)

The initial conditions are 〈n2(0)〉 = 0, 〈σ1,+(0)σ2,−(0)〉 = 0, 〈n1(0)σ2,z(0)〉 = −1, and
〈n1(0)n2(0)〉 = 0. From the last initial condition, we can solve for (9) to get that
〈n1(t)n2(t)〉 = 0 for all t ≥ 0. Thus there are actually only three coupled equations
that can have a non-trivial solution. The remaining initial conditions can then be used to
sequentially solve equations (8), (7), and (6) (in that order), yielding the explicit solutions.
However, here we are interested in evaluating the effect of approximating the function γ(t),
which is singular at t = 0, with a function γT (t) given by

γT (t) =

 −
ξ(T )√∫ T

0 |ξ(s)|2ds
, t ≤ T,

− ξ(t)√∫ t
0 |ξ(s)|2ds

, t > T
,

where T is a real parameter taking a value in the open interval (0,∞). By construction,
γT (t) is continuous for all t ≥ 0. To evaluate the probability of the absorber being excited
to the single photon state |1〉2 when γ(t) is replaced by γT (t) for some chosen value of T ,
we can solve for (8) to obtain

〈n1(t)σ2,z(t)〉 = −
∫ ∞
t

|ξ(τ)|2dτ,

and numerically integrate Eqs. (6) and (7), with the given initial conditions.

Let us consider the case where the input wavepacket ξ(t) is a decaying exponential
function of the form ξ(t) =

√
ce−ct/2 for some positive real constant c. This is the form of

the wavepacket that would be produced at the output of an optical cavity that is initialized
in the 1-photon Fock state. Let us take c = 7.2× 107 (this is a value that can be realized
in table-top quantum optical experiments, see, e.g., [23]) and allow the absorber to run up
to time t1 = 10/c = 1.3889 × 10−7. Fig. 1 shows the evolution of 〈n2(t)〉 for T = 0.001t1,
T = 0.01t1, and T = 0.1t1. It can be seen that for larger T (wider truncation) the
excitation probabillity of the absorber is lower for all t ≥ 0, as can be expected. The steady-
state excitation probability is approximately 0.9957, 0.9575, and 0.6037 for T = 0.001t1,
T = 0.01t1, and T = 0.1t1, respectively.

4 Conclusion

In this work we have considered a single photon absorber with a tunable coupling parameter
to an external travelling single photon field. We analytically derived the exact form of the
time-dependent coupling parameter for perfect absorption of a single photon field of any
temporal wavepacket shape. The ideal modulation function has a singularity at t = 0 which
cannot be attained in real devices, therefore it is approximated with a continuous function
that is truncated to a finite value at t = 0. In a numerical example, we illustrate the effect
of this truncation on the ability of the absorber to perfectly absorb a single photon for a
particular truncation scheme applied to an exponentially decaying wavepacket.
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Figure 1: Time evolution of the excitation probability 〈n2〉. with the absorber initalized in
the state |0〉2, from t = 0 to t = t1 = 1.3889×10−7, for T = 0.001t1 (top solid black curve),
T = 0.01t1 (middle dashed blue curve), and T = 0.1t1 (bottom dash dotted red curve).

Appendix: General expression for Lt(X1X2)

LL(t)(X1X2) = 1/2L(t)∗[X1X2, L(t)] + 1/2[L(t)∗, X1X2]L(t),

= 1/2(λ(t)σ1,+ + γ(t)∗σ2,+)[X1X2, λ(t)σ1,− + γ(t)σ2,−]

+1/2[λ(t)∗σ1,+ + γ(t)∗σ2,+, X1X2](λ(t)σ1,− + γ(t)σ2,−)

= 1/2(λ(t)∗σ1,+ + γ(t)∗σ2,+)(λ(t)[X1, σ1,−]X2 + γ(t)X1[X2, σ2,−])

+1/2(λ(t)∗[σ1,+, X1] + γ(t)∗σ2,+X1[σ2,+, X2](λ(t)σ1,− + γ(t)σ2,−).

−ı[X1X2, H(t)] = −ı[X1X2,={γ(t)∗λ(t)σ2,+σ1,−}],
= −ı[X1X2, 1/2ı(γ(t)∗λ(t)σ2,+σ1,− − γ(t)λ(t)∗σ2,−σ1,+)],

= [X1X2, 1/2(γ(t)λ(t)∗σ2,−σ1,+ − γ(t)∗λ(t)σ2,+σ1,−)],

= 1/2γ(t)λ(t)∗[X1X2, σ2,−σ1,+]− 1/2γ(t)∗λ(t)[X1X2, σ2,+σ1,−].
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Combining yields,

Lt(X1X2) = −ı[X1X2, H(t)] + LL(t)(X1X2),

= 1/2γ(t)∗λ(t)[X1, σ1,−]σ2,+X2 + 1/2γ(t)∗λ(t)X1[σ2,+, X2]σ1,−

−1/2γ(t)∗λ(t)(X1σ1,−X2σ2,+ − σ1,−X1σ2,+X2),

+1/2|λ(t)|2(σ1,+[X1, σ1,−]X2 + [σ1,+, X1]σ1,−X2]

+1/2λ(t)∗γ(t)σ1,+X1[X2, σ2,−] + 1/2λ(t)∗γ(t)[σ1,+, X1]X2σ2,−

+1/2λ(t)∗γ(t)(X1X2σ2,−σ1,+ − σ1,+σ2,−X1X2),

+1/2|γ(t)|2(σ2,+[X2, σ2,−]X1 +X1[σ2,+, X2]σ2,−),

= γ(t)∗λ(t)X1σ1,−[σ2,+, X2] + 1/2|λ(t)|2(σ1,+[X1, σ1,−] + [σ1,+, X1]σ1,−)X2

+λ(t)∗γ(t)σ1,+X1[X2, σ2,−] + 1/2|γ(t)|2(σ2,+[X2, σ2,−] + [σ2,+, X2]σ2,−)X1.
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