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Abstract— Unmanned Aerial Vehicles (UAVs) are becoming a
significant field of research with numerous applications, ranging
from mapping to surveillance. New applications, such as aerial
delivery of goods, are expected to appear in the next years
and will require more and more autonomy from UAVs. One
challenge preventing UAVs from being fully autonomous is
their current limitations in handling potential collisions among
multiple vehicles. This paper presents a collision avoidance
algorithm for fixed-wing UAVs navigating in a three dimensional
space. It satisfies limited field of view constraints that stem
from the use of a single camera system as sensing device. The
proposed algorithm uses potential fields to both navigate and
avoid obstacles. To guarantee collision avoidance, the algorithm
is enhanced with a turning behavior that allows for ensuring
the safety of the method. Simulations are performed to show
the effectiveness of the proposed algorithm.

I. INTRODUCTION

Recently, the field of small Unmanned Aerial Vehicles
(UAVs) became of significant importance as numerous new
applications, ranging from mapping to surveillance, appeared.
For example, aerial delivery of goods is expected to appear in
near future and will require increasingly more autonomy.
Up to date, research activities focused mainly on self-
localization [1], path planning [2], [3] and navigation [4],
[5]. Importantly, ensuring safety is one of the remaining
challenges that needs to be overcome in order to achieve
fully autonomous UAVs. More specifically, the UAVs do not
have yet the capacity to avoid collisions with other threats,
including other UAVs. The challenge is even greater if UAVs
do not mutually share their positions, and have to rely only
on on-board sensors to detect and track threats.

Currently, research considers several sensing modalities
that allow for tracking other UAVs, including vision using
on-board cameras. Visual sensing is of particular interest
as it generally requires less power and is lighter than other
solutions. It also enables to track other aircraft without the
latter requiring specific equipment (e.g., transponders). One
downside of the use of cameras is their limited Field Of View
(FOV). Although a camera can have a FOV larger than 180◦

using a fish-eye lens, it will always have a blind spot. It is
possible to add several cameras pointing in different directions
to cover the whole space or use pan-and-tilt cameras, but
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it would be at the expense of increased weight. As a result,
the collision avoidance algorithm not only needs to satisfy
actuator constraints, but also take into account the limitations
of the chosen sensor modality.

Several contributions on collision avoidance systems for
UAVs have been published over the last few years. In [6]
navigation functions are used to avoid collision between
autonomous vehicles under actuation and sensing constraints,
although not limited in FOV. Avoidance maneuvers for aircraft
have been presented in [7] and validated for constrained
sensing (both in range and in FOV), although no analytical
proof of collision avoidance is presented. In [8] the authors
introduce a gyroscopic force field to improve the collision
avoidance capability of the navigation function for holonomic
agents. In [9] a similar approach is used and applied to
aircraft with limited turning rate and sensing range. The
two latter studies rely on introducing a gyroscopic force to
the potential field gradient to avoid stagnation points and
guarantee collision avoidance.

A number of algorithms has been validated experimentally.
In [10] an algorithm based on velocity obstacles has been
implemented on quadrotors, and while the algorithm is
competitive in minimising the change in motion to perform
an avoidance, neither the algorithm nor the camera FOV can
guarantee avoidance in all situations. The algorithm presented
in [11] leverages the properties of spherical lenses by keeping
the object to be avoided on one edge of the image. Even if the
authors show a proof of collision avoidance, they assume the
object is already in the FOV. Moreover, they do not show a
proof of reciprocal collision avoidance. In other words, none
of these works explicitly addresses the FOV problem. Our
previous work [12] is, to our knowledge, the first collision
algorithm that takes into account the FOV limitations and
has been experimentally validated [13].

In this paper, we will present a three-dimensional collision-
avoidance algorithm that satisfies the limited FOV constraints
of cameras for fixed-wing aircraft. We introduce the require-
ments to guarantee collision avoidance using the proposed
algorithm and show a proof of its safety. We also compare
the algorithm’s performance with previous work published
in [12] in terms of turn rate. This metric is of importance as
turning rate is the only command input that is not bounded
in our algorithm.

The paper is structured as follows: Section II describes
the system of interest. Section III presents the potential field
used for navigation. Section IV and V present the control
laws for the system, and show proofs. Simulations of the
algorithm are presented in Section VI.



Fig. 1. Illustration of the angles and distances used in this paper. The green
area represents the area where aircraft j (in orange) is sensed by aircraft i (in
blue). Note that the angles θi and λij might not be in the same plane. The
FOV is defined by αs in all direction (thus both horizontally and vertically).

II. PROBLEM FORMULATION

In this paper we consider N non-holonomic homogeneous
vehicles in a three dimensional space [x, y, z] with dynamics
similar to fixed-wing aircraft. Their motion is a combination
of an unicycle model on the horizontal plane and velocity
control on the vertical axis:

ẋi
ẏi
żi
θ̇i

 =


vi cos θi
vi sin θi
li
ui

 (1)

with qi = [xi, yi, zi] vehicle’s position and θi its heading
(defined on the horizontal plane). The heading and any other
angle considered in this paper are always defined between
[−π;π] and any function returns angles in that interval. The
aircraft can be controlled with the three input variables ui,
li, and vi that are the yaw turning rate, the vertical speed,
and the forward speed, respectively. The horizontal speed vi
is constrained by:

0 < v− ≤ vi ≤ v+ (2)

with v+ the maximum horizontal speed and v− = v+ −∆v
the minimum horizontal speed of the aircraft.

An aircraft i goes from a starting point qoi to a destination
point qdi , while avoiding collisions with other aircraft. The
collision zone of each aircraft i is a sphere of radius r that
fully includes the aircraft. The collision zone is a zone that
should not be crossed by any obstacle or other aircraft. A
collision is defined between aircraft i and j if the distance
between the two aircraft is smaller than 2r.

Aircraft i is capable to sense an aircraft j that is located
at a distance dij = ‖qi − qj‖ − 2r < Rs and at an angle
λij ≤ αs with αs > π/2 where

λij = arccos

(
[cos θi, sin θi, 0]T · (qi − qj)

‖qi − qj‖

)
. (3)

The definitions are illustrated in Figure 1.

III. NAVIGATION

The proposed control scheme is based on potential field
theory but adapted to the FOV constraints of our system. The

proposed potential field is a combination of a function V navi

that steers aircraft i to its destination, and another function
V avoidij that steers aircraft i away from another aircraft j. The
function that steers aircraft i to destination is defined as:

V navi = Knav‖qi − qdi‖2 (4)

but other functions are possible [9]. The collision avoidance
function is defined as:

V avoidij =
Kavoid

‖qi − qj‖ − 2r
. (5)

Both Kavoid and Knav are gains. Like in our previous work
[12], the aircraft i is directed by the weighted sum of the
gradient of the potential fields described in Equations 4 and
5 in the following manner:

∇V toti =
(
1−max

j

(
βajβdj

))
∇V navi

+
∑
j

βajβdj∇V avoidij . (6)

From Equation 6 we also define the desired direction for
aircraft i as −V toti = [xt,i, yt,i, zt,i]

T . The weighting function
βaj and βdj encode aircraft’s sensors limitations, and are
defined as:

βdj = β

(
Rs − dij
Rs −Ra

)
, (7)

βaj = β

(
αs − |λij |
αs − π

2

)
(8)

with Ra the distance at which an aircraft should only be
avoiding. The barrier function β is defined as follows:

β(a) =

 0 if a < 0
f (a) if 0 ≤ a < 1
1 otherwise

(9)

with f(a) a monotonic and smooth function that allows a
smooth transition of β from 0 to 1. In this paper f(a) is
similar to the one used in [14] and is defined as:

f(a) = 3a2 − 2a3 (10)

The potential field cannot be directly applied to the three
inputs that are ui, li, and vi for two reasons. First, the relation
between those commands and the aircraft’s state space is non-
linear and thus the gradient of the potential field needs to
be translated into those inputs. Second, the potential field
alone does not provide collision avoidance guarantees because
of the non-holonomicity of the system. As a consequence,
the three inputs are controlled separately as described in the
following section.

IV. CONTROL

This section describes how to convert the potential field to
command input for the aircraft. The turning rate command
ui performs the horizontal avoidance, and is the most
important component in collision avoidance. The vertical
speed command li is responsible for height control and
vertical collision avoidance, although the latter is limited
by the FOV. Finally, the horizontal speed command vi is
responsible for faster avoidance resolution as reported in
[12].



A. Speed control

As explained in [12], a change in forward speed vi is
required to mitigate deadlocks. Even if having two aircraft at
exactly the same speed and height is unlikely, we reuse the
same control law to improve system’s separation capability.

vi = v+ −max
j

(
βajβdj

)
∆v (11)

B. Height control

As the height dynamics is decoupled from the other state
variables, it would be possible to directly apply the negative
potential field’s gradient −∇V toti to the vertical speed li. But
due to FOV constraints a saturation lsat on the vertical speed
is required (see Proposition 1).

0 < lsat = vi sin
(
αs −

π

2
− ρ
)
< vi sin

(
αs −

π

2

)
(12)

and the maximum vertical speed is :

lmax = v+ sin
(
αs −

π

2
− ρ
)

(13)

with 0 < ρ < αs− π
2 a margin angle. The absolute maximum

speed is vmax =
√
v2

+ + l2max. The saturation is applied
using the following equation:

li = min (max (Kzzt,i,−lsat) , lsat) (14)

with Kz a strictly positive gain.

C. Yaw control

The yaw control1 is responsible of steering the aircraft
away from threat on the horizontal plane. It switches between
following the potential field and a simple collision avoidance
behavior.

ui = Ka

(
1−max

j

(
βajβdj

))
(θt − θi)

+
∑
j

βajβdj
−2πvmax

dij
. (15)

with the target heading θt = atan2(yt,i, xt,i), and Ka a gain.

V. COLLISION AVOIDANCE

One of the challenges of collision avoidance under limited
FOV constraints is to design a control law that does not
generate a trajectory that would lead aircraft to a collision
with none of them being able to sense a priori its related
threat. This in turn enforces constraints on the shape of the
FOV itself; indeed, this is the reason why the FOV in this
paper is hemispherical with an angle strictly larger than π
radian. However, note that even with the FOV satisfying these
constraints, poorly designed control law can lead to collisions.
In this subsection, we show that the proposed control law
does not generate trajectories that lead to collisions with the
help of two propositions and corresponding proofs. The first
proof demonstrates that if two aircraft do not sense each
other, they are no able to collide with the proposed control

1The yaw control described by Equation 15 is slightly different from the
work in [12]. This is to correct for a mistake in [12] where the turn rate is
only half what would be needed to prove avoidance. The proof in [12] is
also correct if the avoidance term in the yaw control is multiplied by two.

Fig. 2. Illustration of the variables involved in Proposition 1. a) Two aircraft
about to collide, defining Γa and Vα. b) Computation of the projections of
vh and vz on n.

laws. The second proof shows that if they mutually sense,
then the control law maneuvers the aircraft safely away from
the potential collision.

Proposition 1: An aircraft with FOV described by Equa-
tion 3, its dynamics described by Equation 1 and the control
law described by Equations 11, 13 and 15 will not move
along a trajectory that would lead to a collision with another
aircraft without them being able to sense each other. That is,
there is no possible collision without at least one of the two
aircraft sensing the other aircraft.

Proof: Consider two UAVs i and j that are about to
collide at point P while none of the two is sensing the other
one. Consider also the plane Γa that goes through P and is
tangent to the two collision spheres of aircraft i and j. To
collide, at least one of the two aircraft needs to move towards
the plane Γa. We will prove that with the proposed control
law it is impossible for any of the UAVs to move towards
Γa without sensing the other UAV.

Without loss of generality, the proof can be done while
fixing the frame of one of the aircraft, for example aircraft
j as shown in Figure 2a. As none of the two can see each
other, the point P is on the sphere sector of j that is not in
the FOV of aircraft j. Placing P also defines the position of
aircraft i relative to aircraft j. Define Vα as the cone formed
by all camera directions for which aircraft i does not see
aircraft j. Define also Γ′a the plane parallel to Γa located
at the center of i. Note that aircraft i not crossing Γa is
equivalent to the center of i moving away from aircraft j.
Because it is solely defined by the geometry of the FOV of
j, Vα is always the same relative to Γ′a: it is a right circular
cone with its apex centered on i, its axis normal to Γ′a and
an aperture of π − 2

(
αs − π

2

)
.

Because the horizontal velocity vh = vi [cos θi, sin θi, 0]
T

is aligned with the camera, we have that vh ∈ Vα ∩ Vv
with Vv the spherical shell formed by the velocities between
[v−, v+]. The shape of Vα∩Vv is shown in Figure 2b. Because
αs > π/2 the velocity vh alone will never lead to a collision
when both aircraft do not see each other and can only be due
to the vertical velocity vz = [0, 0, li]

T . Define n the vector
normal to Γ′a and directed away from aircraft j, and project
vh and vz to obtain vh,n and vz,n respectively. We want to
show that:

‖vh,n‖ > ‖vz,n‖ ∀vh,n ∈ Vα ∩ Vv, li. (16)



(a) (b) (c)

(d) (e) (f)
Fig. 3. Top row (a,b,c): three sets of trajectories obtained with presented collision avoidance algorithm. Bottom row (d,e,f): three sets of trajectories
obtained with the algorithm from previous work [12] for the same initial conditions.

First, define the angle µ between the plane Γ′a and the vector
vh. Note that π/2 > µ ≥ αs − π/2. The left hand of
Equation 16 is:

‖vh,n‖ = ‖vh‖ sin(µ) = vi sin(µ) ≥ vi sin(αs−π/2) (17)

Similarly, by defining the angle γ between vz,n and −n, the
right hand of Equation 16 becomes:

‖vz,n‖ = ‖vz‖ cos(γ) < ‖vz‖ ≤ lsat = vi sin(αs −
π

2
− ρ)

(18)
with π/2 > γ ≥ αs − π/2. Combining Equations 17 and 18
the final result is obtained:

‖vh,n‖ > vi sin(αs −
π

2
) > vi sin(αs −

π

2
− ρ) > ‖vz,n‖

(19)
Thus aircraft i subject to control law described by Equa-
tions 11, 13 and 15 will move away from aircraft j if unable
to sense aircraft j and as a result will not be responsible for
colliding. The same reasoning can be done for aircraft j and
as a result both aircraft are unable to move towards the other
aircraft while not sensing it.

Using Proposition 1, we will now show that two aircraft
are unable to collide if they use the proposed control law.

Proposition 2: Two aircraft with the dynamics given by
Equation 1 and the control laws given by Equations 11, 13
and 15 will not collide.

Proof: The proof is done in a similar way as proposed
in [12], but care has to be taken because of the vertical
component of the aircraft’s velocity. Consider two aircraft i
and j about to collide at point P at time tc. We will prove
that with the proposed control law there is no trajectory that
leads to point P , that is, both the horizontal and vertical
velocities will drive the aircraft away from point P before it
is reached.

First, notice that at least one of the two aircraft has to
move towards the collision point. Let’s assume, without loss
of generality, it is aircraft i. Two cases have to be studied: first,
the case where the camera is pointing towards the collision
point P . As a result βajβdj = 1. A second case is when
0 < βajβdj < 1.

For the first case, when βajβdj = 1, the horizontal velocity
is directed towards the collision point. We will prove that ui
will change the heading of the aircraft early enough so that
the aircraft moves away from point P at time tc. Consider the
situation a short moment before the two aircraft collide and
are separated by a small distance 2R. Because the maximum
speed of the aircraft is vmax, the minimum time ∆t before
the two aircraft collide is given by:

∆t =
R

vmax
. (20)

Because of βajβdj = 1, the turning rate is bounded above
by the interaction between aircraft i and j:

ui =
∑
j

βajβdj
−πvmax
dij

<
−πvmax
dij

< 0 (21)

The change in heading between time t ∈ [tc −∆t, tc] is as a
result also bounded:

|∆θi| =
∣∣∣∣∫ tc

tc−∆t

ui dt

∣∣∣∣ (22)

≥
∣∣∣∣∫ tc

tc−∆t

−2πvmax
dij

dt

∣∣∣∣
≥

∣∣∣∣∫ tc

tc−∆t

−2πvmax
2R

dt

∣∣∣∣
=

∣∣∣∣−πvmaxR
∆t

∣∣∣∣ = π (23)



As a result aircraft i will do more than half a turn, thus
moving away from the collision point. Thus they could only
collide if the two aircraft come closer on the vertical axis. But
because βajβdj = 1, the vertical velocity for aircraft i can
only make it move away from the collision point as only the
component ∇V avoidij remains in ∇V totij . This can be verified
by computing the sign of the scalar product between the
vertical velocity liz and the vector between the two aircraft
qi − qj . Because li is monotonic and odd as function of
−∇V toti z, it is possible to ignore the saturation as it does
not influence the sign of the scalar product. The following
result is obtained:

sign(liz · (qi − qj)) (24)
= sign((−Kz∇V toti · z)(z · (qi − qj)))

= sign((−Kz∇V toti · z)(zi − zj))
= sign((−Kz∇V avoidi · z)(zi − zj))

= sign

(
KzKavoid

(‖qi − qj‖ − 2r)2

(zi − zj)
‖qi − qj‖

(zi − zj)
)
≥ 0.

The vertical speed vector is, if not zero, in the same direction
as the vector that goes from aircraft j (encounter) to aircraft
i. This shows that the vertical velocity will not drives aircraft
i towards aircraft j.

The second case is when 0 < βajβdj < 1. This is only
due to βaj < 1 because the distance is considered small,
thus βdj = 1. In this case, the horizontal velocity is already
moving the aircraft away from the collision point. As for the
vertical velocity li, one has to consider an R small enough
so that:

|βajβdj∇V avoidij z| � |
(
1−max

j

(
βajβdj

))
∇V navi z| (25)

The reasoning is then the same as for Equation 24. As a
result, the vertical velocity component li will try to drive the
aircraft away from the collision point. There exists such small
R that Equation 25 is satisfied, with two corner cases that
require further attention. One corner case is if the two aircraft
are at the same height, in which case ∇V avoidij ·z ≈ 0. Define
φ the angle between the vector ∇V avoidij and the vector z so
that:

−∇V avoidij · z = ‖ − ∇V avoidij ‖‖z‖ cosφ (26)

=
∥∥∥ KavoidKz

(‖qi−qj‖−2r)2
qi−qj
‖qi−qj‖

∥∥∥ cosφ

= KavoidKz
(‖qi−qj‖−2r)2

∥∥∥ qi−qj
‖qi−qj‖

∥∥∥ sin
(
π
2 − φ

)
= KavoidKz

sin(π2−φ)
(‖qi−qj‖−2r)2

= KavoidKz
sin(π2−φ)

R2 (27)

By choosing R = π
2 − φ and taking he limit φ → π/2 we

obtain:

lim
φ→π/2

∣∣∣∣∣KavoidKz

sin
(
π
2 − φ

)(
π
2 − φ

)2
∣∣∣∣∣ =∞ (28)

thus the avoidance component ∇V avoidij grows faster than it
decreases, being almost perpendicular to the vertical axis. And

Fig. 4. Example of trajectories obtained with 4 aircraft.

because of Equation 24 we know that the vertical component
will always drive aircraft i away. If ∇V avoidij ·z = 0, the case
degenerates to the 2D case treated in [12] and the collision
avoidance is also guaranteed. Another corner case is if βaj =
0, because βajβdj∇V avoidij = 0. But this case is treated in
Proposition 1 with the margin angle ρ > 0.

As a result, aircraft i cannot reach the collision point. There
are two possibilities for aircraft j, it does either not see aircraft
i and is moving away from i as proven in Proposition 1, or
it does see it and the same reasoning can be done as is done
for aircraft i. As a result there is a contradiction between the
existence of a collision point P and the incapacity of both
aircraft to reach that point. This leads to the conclusion that
such a collision point cannot exist and that the two aircraft
cannot collide with each other.

VI. SIMULATION

In this section we will present simulations to show the
effectiveness of the presented algorithm in comparison to
the algorithm presented in [12]. The turning rate command
will be studied in depth as it is the only input that is not
bounded in both algorithms. Although both algorithms rely
on the fact that it can be infinite to prove collision avoidance,
it usually remains bounded and depends on the parameters
used. Keeping it low is thus of great importance.

We simulated the encounter of two aircraft in three different
scenarios and the obtained trajectories are shown in Figure 3.
The parameters used are: v+ = 0.5, v− = 0.4, αs = 110◦,
r = 1, Ra = 4, RS = 20, Ka = 1.0, Kz = 1.0, Knav = 0.2,
Kavoid = 80, ρ = 5◦. The simulations were performed with
a time step of 0.05 seconds.

Both algorithms show different behaviors: generally speak-
ing, taking advantage of the third dimension enhances the
trajectories by making them smoother in most cases (compare
Figures 3a and 3c with Figures 3d and 3f). Since for the



Fig. 5. Comparison of the average turning rate for the 2D and 3D
implementations for our case scenario.

Fig. 6. Left boxplot: Comparison of the average turning rate command input
for the 2D and 3D implementations. Right boxplot: Minimum distances
between two aircraft during the simulations. The red dashed line is the
distance for which the two aircraft are considered colliding.

3D collision avoidance algorithm the potential field has been
modified to add V avoidij , the turning rate command will tend
to react strongly around the obstacle. As a result, the 3D
collision avoidance algorithm does not always produce the
most smooth trajectories, as for example shown in Figure 3b.
Our algorithm is also capable of avoiding several aircraft. An
example is shown in Figure 4.

Another scenario was designed to show that the presented
algorithm reduces further the average turning rate when
compared to the algorithm reported in [12]. The scenario
is based on three parameters: the distance between tracks
e, the angle between tracks ψ (both shown on Figure 5)
and the height between tracks h. The aircraft aim to stay at
their initial height and to follow their track. The parameters
are chosen randomly with uniform distribution U as follows:
e ∼ 12(U − 0.5), φ ∼ 1.6π(U − 0.5) and h ∼ 8r(U − 0.5).
The simulations were performed 1000 times. For each run,
the root mean squared turning rate command over the whole
simulation run was computed. The result are presented
as boxplots in Figure 6. The novel 3D algorithm does
perform better than the 2D version from [12] in terms
of the average turning rate with 3 times smaller median.
This shows that the algorithm trades vertical movement for
smoother horizontal curves. However, the novel algorithm
does sometimes have a larger average turning rate, due to
the addition of the avoidance potential field resulting in
more aggressive maneuvers. The minimum distance between
aircraft during the whole simulation was also recorded and
for none of the simulations the minimum distance went below
the collision distance of 2r (see Figure 6).

VII. CONCLUSION

We presented a provably safe collision avoidance algo-
rithm based on potential fields for fixed-wing UAVs with
constrained FOV sensors such as cameras. We demonstrated
the effectiveness of our method with several simulations,
including one with randomized trajectories covering a large
set of possible configurations. This work extends the work
presented in [12] and show that the turning rate command is
reduced on average when leveraging the third dimension.

Possible future work includes the use of encountered
aircraft’s velocity to enhance the avoidance behavior. One
possibility is to modify another class of algorithms based on
the concept of Velocity Obstacle by restricting the motion
according to sensing constraints. Another future direction
involves bounding the turning rate command input while
keeping the guarantees of collision avoidance.
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