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Abstract

The classic Hegselmann-Krause (HK ) model for opinion dynam-
ics consists of a set of agents on the real line, each one instructed to
move, at every time step, to the mass center of all the agents within
a fixed distance R. In this work, we investigate the effects of noise in
the continuous-time version of the model as described by its mean-field
limiting Fokker-Planck equation. In the presence of a finite number of
agents, the system exhibits a phase transition from order to disorder as
the noise increases. The ordered phase features clusters whose width
depends only on the noise level. We introduce an order parameter to
track the phase transition and resolve the corresponding phase dia-
gram. The system undergoes a phase transition for small R but none
for larger R. Based on the stability analysis of the mean-field equation,
we derive the existence of a forbidden zone for the disordered phase to
emerge. We also provide a theoretical explanation for the well-known
2R conjecture, which states that, for a random initial distribution in
a fixed interval, the final configuration consists of clusters separated
by a distance of roughly 2R. Our theoretical analysis also confirms
previous simulations and predicts properties of the noisy HK model in
higher dimension.
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1 Introduction

Network-based dynamical systems have received a surge of attention lately.
In these systems, typically, a set of agents will interact by communicating
through a dynamic graph that evolves endogenously. The popularity of the
model derives from its widespread use in the life and social sciences [1–7].
Much of the difficulty in analyzing these systems stems from the coupling
between agent dynamics and evolving graph topology [4]. If the system is
diffusive and the information transfer between agents is symmetric, it usually
converges to an attractor under mild assumptions [8, 9]. In the absence of
symmetry, however, the system can exhibit the whole range of dynamical
regimes, from periodicity to chaos [4].

The Hegselmann-Krause (HK ) model is the classic representative of the
diffusive type. It consists of a fixed number N of agents, each one located
at xk(t) on the real line. At each time step, every agent moves to the
mass center of all the others within a fixed distance R. The position of an
agent represents its “opinion.” The underlying assumption is that people are
immune to the influence of others whose opinions greatly differ from their
own. In particular, two groups of agents initially separated by a distance
of R or more will form decoupled dynamical systems with no interaction
between them. HK systems are known to converge in finite time, but the
relationship between the initial and final profiles remains mysterious. The
celebrated 2R conjecture states, for a random initial distribution in a fixed
interval, the final configuration consists of clusters separated by a distance
of roughly 2R [10].

It is natural to enlarge the model by introducing noise into the dy-
namics [11]. Stochasticity can be invoked to capture nonobservable factors
operating at smaller scales. Analytically, it also has the benefits of nudging
the system away from pathological configurations. By tuning the noise level
as we would the temperature of a thermodynamical system, we can vary the
dynamics from chaos to fixed-point attraction and uncover phase transitions
in the process. To simplify the analysis, we model the system with a stochas-
tic differential equation for the continuous-time version of the HK model and
focus on its mean-field approximation in the form of a Fokker-Planck type
partial differential equation governing the agent density evolution. This for-
mulation of noisy HK systems in the thermodynamic limit can be derived
from first principles and seems well-supported by computer simulation.

Results and organization of the paper. After the formal introduction
of the model in Section 2, its long-time behavior is analyzed in Section 3,
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along with a discussion of basic path properties. The bistability of the sys-
tem is investigated in Section 4 and an order parameter is introduced to
track the phase transition and resolve the corresponding phase diagram.
We find that the system undergoes a phase transition for small R but none
for larger R. Based on the stability analysis of the mean-field equation (Sec-
tion 6), we derive the existence of a forbidden zone for the disordered phase
to emerge. This puts us in a position to provide a theoretical explanation,
to our knowledge the first of its kind, for the 2R conjecture. Our theoretical
analysis confirms previous simulations and predicts properties of the noisy
HK model in higher dimension. The pseudo-spectral scheme used for our
simulations is discussed in the Appendix.

Prior work. The convergence of the classical HK system was established
in a number of articles [9,12,13] and subsequent work provided increasingly
tighter bounds on the convergence rate, with a current bound of O(N3) [14].
While there exists a worst-case lower bound of Ω(N2) [15], computer sim-
ulations suggest that, in practice, the convergence rate is at most linear.
The model extends naturally to higher dimension by interpreting R as the
Euclidean distance, and polynomial bounds are known for that case as
well [8, 14]. We note that the convergence time can be significantly lowered
if certain “strategic” agents are allowed to move anywhere at each step [16].
For general consensus and stability properties of the infinite-horizon profile,
we refer the interested readers to [17–20].

Attempts to generalize the HK model to the nonsymmetric case have
proven surprisingly frustrating. While it is known that diffusive influence
systems (the generalization of HK model) can have limit cycles and even
chaotic behaviors, the simple fact of allowing each agent to pick its own
interval produces dynamics that remains unresolved to this day. Numerical
simulations suggest that such systems converge but a proof has been elusive.
All we know is that if each agent can pick its interval freely in {0, R}, the
system still converges [21]; in other words, taking the original HK system
and fixing some of the agents once does not change the fact that all the
orbits have fixed-point attractors.

Regarding the 2R conjecture, the concept of equilibrium stability was
introduced in [10] to put this conjecture on formal grounds. Extensive ex-
periments were conducted, suggesting a closer to 2.2R. All the work cited
so far considers only the deterministic version of the system. For the noisy
version of the model, Pineda et al. consider a discrete-time formulation
where, at each step, every agent randomly chooses to perform the usual
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HK step or to move randomly [11]. Two types of random jumps are con-
sidered: bounded jumps confine agents to a bounded distance from their
current position while free jumps allow them to move anywhere. An ap-
proximate density-based master equation is adopted for the analysis of the
order-disorder phase transition and the noisy HK system is then compared
with another opinion dynamics system, the so-called DW model [22].

2 The Model

The stochastic differential equation (SDE) model we use in this paper can
be expressed as

dxi = − 1

N

∑
j: |xi−xj |≤R

(xi − xj) dt+ σ dW
(i)
t , (1)

where i = 1, 2, . . . , N denotes the agents, σ specifies the magnitude of the

noise and W
(i)
t represent independent Wiener processes. For technical con-

venience, we impose periodic boundary conditions on (1) by taking each xi
modulo L = 1 and interpreting |z| as min{|z|, L−|z|}. Intuitively, the model
mediates the tension between two competing forces: the summation in (1)
represents an attracting force that pulls the agents together while the diffu-
sion term keeps them active in Brownian motion. This can be compared to
the use of two parameters in the noisy model of Pineda et al.: a noise inten-
sity m determines the probability that an agent should move to the mass
center of its neighbors (vs. moving randomly), and γ bounds the length of
the jump [11]. In the continuous-time model, the pair (m, γ) reduces to a
single parameter, namely the noise magnitude σ.

The mean-field approximation. In the mean field limit N →∞, Equa-
tion (1) induces a nonlinear Fokker-Planck equation for the agent density
profile ρ(x, t) [23]:

ρt(x, t) =

(
ρ(x, t)

∫
(x− y)ρ(y, t)1|y−x|≤R) dy

)
x

+
σ2

2
ρxx(x, t). (2)

The function ρ(x, t) is the limiting density of ρN (x, t) := 1
N

∑
δxj(t)(dx),

as N goes to infinity, where δx(dx) denotes the Dirac measure with point
mass at x. In this partial differential equation form, the second derivative
term represents the diffusion process that flattens the density ρ. On the
other hand, the first term represents the advection of the density caused
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by attraction. In higher dimensions, one just needs to replace the first
derivative by a divergence operator and replace the second derivative by a
Laplace operator. We will use bold letter to denote a vector or a point in
higher dimensional space.

To derive (2) from Equation (1), we consider the agent flux of a small
piece of space Ω. The Brownian motion of infinitely many agents is equiv-
alent to a diffusion process, which implies that the flux caused by the noise
is −σ∇ρ. On the other hand, the attraction between agents causes a flow
with velocity

∫
|y−x|≤R(y − x)ρ(y, t) dy at x; hence a net outflow equal to

the derivative of ρ(x, t)
∫
|y−x|≤R(y − x)ρ(y, t) dy. Equation (2) follows im-

mediately from mass conservation and the divergence theorem. Regarding
the boundary condition, none is necessary if we consider the system on the
real line. For the case of an interval, we use Neumann boundary conditions,
in this case a reflecting boundary condition since the flux at the boundary
should be zero. To simplify our analysis and simulation, we use a peri-
odic boundary condition over the unit interval for the rest of this paper. It
should be noted that boundary effect plays a minor role in the dynamics of
the system.

3 Long-time Dynamics

As we mentioned earlier, the original HK system always converges within a
number of steps and the final configuration consists of a union of clusters
with pairwise distance larger than R. A case of particular interest is that
of a single cluster, forming what is commonly called consensus. Of course,
when noise is added to the system, there is no “final” state to speak of;
nevertheless, for the SDE model, one could focus on the averaged long-time
behavior of the system as measured by the number of clusters. Intuitively,
a higher noise level σ should correspond to more diffused clusters while,
for σ above a certain threshold, clusters should break apart and release the
agents to move randomly in the unit interval. This intuition is confirmed
by simulating (1) for different values of R and σ.

We highlight two interesting scenarios in the SDE model. For small val-
ues of σ, a random initial distribution of the agents evolves in the following
manner: at the beginning, the attracting forces dominate and break symme-
try by forming clusters of width less than 2R. As the clusters are formed,
the noise term gradually overtakes the dynamics and produces a jiggling
motion of the clusters. The mass center of the clusters follows a Brown-
ian motion of variance σ2/n, where n is the number of agents in the cluster.
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Brownian motion in one (and two) dimension(s) is recurrent so, as one would
expect, the clusters formed in the early stage will eventually merge almost
surely. Such merging process can be observed in Figure 1 (with the time
axis suitably transformed to make the evolution more apparent). One does
not expect this phenomenon in dimension three and above unless periodic
conditions are added. If σ is large and we initialize the system by placing
all the agents at the same position, the initial cluster breaks apart to fill up
the entire space (Figure 2).

Figure 1: Simulation of the SDE model for noisy HK system with n = 100,
σ = 0.05 and R = 0.1. Several clusters are formed at the beginning and
later merge with each other. The time axis is suitably transformed to make
the evolution more apparent.

Figure 2: Simulation of a noisy HK system with n = 100, σ = 0.5 and
R = 0.1. All the agents start at x = 0.5 and then diffuse to fill up the space.

For the PDE model, we use a semi-implicit pseudo-spectral method [24]
for simulating (2). The details of the numerical procedure are given in the
Appendix. In the simulation, the initial profile is rescaled before the system
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starts to ensure that the total mass is equal to 1. In Figure 3 (left and
middle), a relatively small σ is chosen, with R smaller in the middle figure,
which results in multiple clusters. In the right figure, even though the initial
profile is a cluster, the density tends to flatten because of the high noise.

Figure 3: ρ(x, 0) ∝ e−20(x−0.5)2 (left); ρ(x, 0) ∼ e−(x−0.5)2 (middle); ρ(x, 0) ∼
e−40(x−0.5)

2
(right).

4 Phase Transition and Order Parameter

A low noise level σ corresponds to clustered phase in which a single cluster
performs a random walk. Conversely, a large value of σ is associated with a
disordered phase, as the noise comes to dominate the dynamics and render
the attraction between agents negligible. Our simulations reveal a bistable
behavior. As σ increases and crosses a certain threshold, the cluster becomes
dispersed and finally fills up space. When σ approaches the critical point,
some agents may escape the main cluster and travel through space but
eventually return to the cluster. In general, clusters widen as σ grows.
This observation will be explained in Section 5. To illustrate the change of
behavior as the noise level increases, sample paths for fixed R are shown
in Figure 4 for σ = 0.01, 0.03, . . . , 0.11. Since the long-time behavior of the
system does not depend on the initial value, we always use random initial
values for the agents and wait for the system to stabilize.

To describe and distinguish between the clustered and disordered phases,
we introduce the order parameter

Q(x) :=
1

N2

N∑
i,j=1

1|xi−xj |≤R

to measure the edge density of the communication graph. Obviously, Q = 1
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Figure 4: Simulations of six independent systems, for N = 100, R = 0.2,
and σ = 0.01, 0.03, . . . , 0.11. The display is limited to the time window
[2000, 4000]. For visualizing purposes, the diagram is shifted to keep the
cluster around the center. We note how the cluster widens as the noise level
σ grows, until the latter reaches a critical value signalling the start of the
disordered phase.

when a consensus state is reached and it can be easily checked that Q =
2R/L when the system is in a disordered state.

Figure 5 suggests that Q(x) is discontinuous near the origin but the dis-
continuity vanishes for large R. In fact, when the interval length R is large,
the noise level σ need to be comparably large to overcome the attracting
forces among the agents. The distinction between the clustered phase and
the disordered one becomes blurry for large (R, σ) and the phase transition
ceases to be observable.

5 Analysis of the Clustered Phase

We analyze the long-time profile of the clustered phase with respect to the
interval length R and the noise level σ. An important difference with the
original noiseless HK system is that clusters do not form single points but
evolving intervals of moving points. We seek conditions on (R, σ) to make
the clusters stable.
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Figure 5: Phase diagram for the SDE model. The color scale represents the
value of Q for L = 1, N = 300, and t = 105, the latter being large enough to
ensure that the system has reached steady state. We note the existence of
a phase transition for small σ consisting of a line separating clustered and
disordered states. The transition line vanishes at higher noise level.

The SDE model. If we assume that the widths of the clusters are smaller
than 2R, then the drift term becomes simpler. Indeed, suppose there are n
agents in the cluster and let g(t) = 1

n

∑n
i=1 xi(t) denote the center of mass.

The equations for xi(t) and g(t) become dxi = n
N (g(t)− xi) dt+ σ dW i

t and

dg = σ
n

∑n
i=1 dW

(i)
t . Then it is straightforward to see that

dxi = − n
N
xi dt+ σ dW i

t +
σ

N

n∑
k=1

dW k
t . (3)

Pick one cluster and assume that all of its agents are initially placed at the
origin. They will oscillate in Brownian motion while being pulled back to the
origin because of the first term of (3). It follows that the invariant measure
of the stochastic differential equation above provides a faithful description of
the local profile. Since the SDE (3) is linear in x = (x1, . . . , xn), it describes
a Gaussian process; therefore, it suffices to study the first two moments of
the vector x to provide its complete characterization in distribution. Using
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Itô calculus, we obtain the following moment equations:

dExi = − n
N

Exi dt ,

dExixj =

(
−2n

N
Exixj + σ2(ΣΣT )ij

)
dt,

where Σij = 1
N + δij . This implies that

Exixj =
Nσ2

2n
(ΣΣT )ij(1− e−2nt/N ).

Hence, at steady state,

Exi = 0 and Exixj =
Nσ2

2n
(ΣΣT )ij .

This implies a Gaussian profile at steady state of the form xi ∼ N (0, Nσ
2

2n ΣΣT ).

Notice that the covariance matrix Nσ2

2n ΣΣT has one-fold eigenvalue (1+ n
2N +

N
2n)σ2 and (n − 1)-fold eigenvalue Nσ2

2n . Therefore the cluster size depends
linearly on σ. Furthermore, since these two eigenvalues both decrease when
n increases from 1 to N , the cluster size actually increases as the number
of agents declines. This result may seem counterintuitive at a first glance
because more agents are naturally associated with larger clusters. In the
SDE model, however, more agents lead to stronger attraction to the mass
center, which results in smaller-size clusters.

The PDE model. The clustered phase corresponds to a steady solution
of (2). Asymptotic analysis shows that the clusters are locally Gaussian.
Again, we assume that the clustered phase is stable for the given parameters
R and σ. In addition, we focus on the case where R is much smaller than
L = 1. By (2), the steady-state equation can be expressed as(

ρ(x)

∫ x+R

x−R
(y − x)ρ(y) dy

)′
=
σ2

2
ρ′′(x). (4)

After integrating the above equation once, we have

ρ(x)

∫ x+R

x−R
(y − x)ρ(y) dy =

σ2

2
ρ′(x) + C1. (5)

Note that ρ(x) ≡ 1 is a solution for C1 = 0. For a single-cluster profile, we
may assume without loss of generality that the cluster is centered around 0
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and the solution is symmetric: ρ(x) = ρ(−x). By periodicity, we can confine
our analysis to the interval [−1

2 ,
1
2 ], which implies C1 = 0. Rearranging and

integrating (5) once more yields

ρ(x) = ρ(0) exp

{
2

σ2

∫ 1/2

−1/2
K(x, y)ρ (y) dy

}
, (6)

where

K (x, y) =

∫ x

0
(y − ξ) 1|y−ξ|≤R dξ. (7)

It is easy to evaluate the kernel K. For |x| > 2R, we have

K (x, y) =


1
2(R+ x− y)(R− x+ y) x−R ≤ y ≤ x+R,
1
2(y2 −R2) −R ≤ y ≤ R,
0 otherwise.

(8)

For 0 ≤ x ≤ 2R, we get

K (x, y) =


1
2(R+ x− y)(R− x+ y) R ≤ y ≤ x+R,

−1
2x(x− 2y) x−R ≤ y ≤ R,

1
2(y2 −R2) −R ≤ y ≤ x−R,
0 otherwise.

(9)

and for −2R ≤ x < 0, we get

K (x, y) =


1
2(R+ x− y)(R− x+ y) x−R ≤ y ≤ −R,
−1

2x(x− 2y) −R ≤ y ≤ x+R,
1
2(y2 −R2) x+R ≤ y ≤ R,
0 otherwise.

(10)

Now, it is not easy to solve the integral functional equation (6) for ρ. Instead,
we try to find an asymptotic solution for small σ. Concretely, we define

ρ0 (x) = Ce−min{x2,R2}/σ2
. (11)

where the normalization constant C ensures summation to 1. We now show
that ρ0 solves (6) up to the leading term in the expansion in σ. Observe
that, for σ much smaller than R, the profile ρ0 is concentrated around x = 0,
so we only need to evaluate the integral in (6) near y = 0 and thus ignore
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error terms exponentially small in σ. For |x| ≤ R, by (9, 10), we see that
near y = 0,

K (x, y) = −1

2
x(x− 2y). (12)

The exponent on the right hand side of (6) becomes

2

σ2

∫ 1/2

−1/2
K (x, y) ρ0 (y) dy = − 1

σ2

∫ 1/2

−1/2
x(x− 2y)ρ0 (y) dy

= −x
2

σ2

∫ 1/2

−1/2
ρ0(y) dy = −x

2

σ2
,

which satisfies (6). On the other hand, for |x| > R, near y = 0, we have

K (x, y) =
1

2
(y2 −R2). (13)

Thus,

2

σ2

∫ 1/2

−1/2
K (x, y) ρ0 (y) dy =

1

σ2

∫ 1/2

−1/2
(y2 −R2)ρ0 (y) dy = −R

2

σ2
+O (σ) .

Once again, (6) is satisfied, this time up to the leading term in the expansion
in σ. We have thus established that, in the presence of a low level of noise,
the single-cluster steady state has a Gaussian profile with variance σ2/2
near the cluster with exponential error decay as function of σ. Notice that
convex combinations of cluster profiles of the form (11) but centered at
different locations in (4) generate error terms in O(σ) as long as the distances
between clusters are large enough to eliminate inter-cluster interaction. As a
result, multiple Gaussians are also steady-state solutions in the σ-error sense
as long as the Gaussians are well-separated. The asymptotic solution (11)
matches remarkably well the simulation results for the PDE model given in
Section 3.

6 The Disordered Phase and the 2R-Conjecture

In order to analyze the stability of the disordered phase, we perturb the
constant solution ρ = 1 by Fourier waves and focus on the most unstable
mode. To unify the calculation in each dimension, we consider the mean-field
Fokker-Planck equation in dimension d with periodic boundary conditions
in the unit cube (that is, reducing each coordinate modulo L = 1):
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∂

∂t
ρ(x, t) = ∇ ·

(
ρ(x, t)

∫
‖x−y‖≤R

(x− y)ρ(y, t) dy

)
+
σ2

2
∆ρ(x, t), (14)

ρ(x, 0) = ρ0(x),

∫ 1

0
ρ(x, t) dx = 1, 0 ≤ xi ≤ 1, i = 1, 2, . . . , d.

We perturb the constant solution by ρ(x, t) = 1 + p(t)e2πik·x, where k =
(k1, k2, . . . , kd). Gram-Schmidt orthogonalization guarantees that we could
find an orthogonal matrix M such that the first row of M is k/K, where
K := ‖k‖2. By defining z = My, we then have z1 = k · y/K. Now let
s = 2πKR and plug in the ansatz ρ(x, t) = 1 + p(t)e2πik·x. For p small
enough, this gives us

pte
2πik·x

= −∇ ·
(

(1 + pe2πik·x)

∫
‖y‖≤R

ype2πik·(x+y) dy

)
−2π2σ2K2pe2πik·x

≈ −2πipe2πik·x
∫
‖y‖≤R

k · ye2πik·y dy − 2π2σ2K2pe2πik·x

≈ −2πipe2πik·x
∫
‖z‖≤R

Kz1e
2πiKz1 dz − 2π2σ2K2pe2πik·x

≈ sRpe2πik·x
∫
‖z‖≤1

z1e
isz1 dz − 2π2σ2K2pe2πik·x .

This results in the ODE

pt = R

(
s

∫
‖z‖≤1

z1 sin(sz1) dz −
σ2

2R3
s2

)
p

= 2Rp

(
sin s

s
− cos s− σ2

4R3
s2
)
.

In dimension d = 1, the ODE reduces to pt/p = 2Rfγ(s), where γ := σ2/4R3

and fγ(s) is defined as

fγ(s) =
sin s

s
− cos s− γs2. (15)

When fγ(s) ≤ 0 for all s = 2kπR, small perturbation to ρ = 1 will decay and
finally vanish. On the other hand, if some k makes fγ(s) > 0, then ρ = 1
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is no longer stable and the system yields a clustered phase. The function
fγ(s) is graphed in Figure 6 for several values of γ. Since its first two terms
in (15) are bounded, fγ(s) < 0 for all s > s0 and γ > 0, which means that
the high frequency modes are all stable. On the other hand, when γ = 0
(the noiseless model), fγ(s) behaves like − cos s for s large enough, which
implies that fγ(s) can be positive for infinitely many frequencies. When
γ > 0.012, fγ(s) > 0 only over an interval of the form [0, s1], corresponding
to the low frequency modess. As γ increases, s1 shrinks to become nearly 0
at γ = 1

3 .

Figure 6: The graph of fγ(s) for different values of γ.

The unstable zone for the disordered phase. When the noise level σ
is very small, the clustering effect of the system dominates and the system
falls within the clustered phase. A Taylor expansion of fγ(s) shows that
it can take on positive values as long as γ < 1

3 , which gives us the critical
curve σ2 = 4

3R
3. Below this curve lies the unstable zone for the disordered

phase in which symmetry breaking fragments the constant solution ρ = 1
into separate clusters.

It should be noted that this boundary is accurate whenR is small enough,
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since a suitable frequency k can always be found such that fγ(s) > 0, hence
making the disordered phase unstable. Conversely, for large R, fγ(s) could
be negative for all k, conferring stability, even though fγ(s) > 0 for some
s < 2πR.

Global stability conditions were discovered in [25], showing that an un-
stable region for clustered phase lies above the curve σ2 = 2(R+R2/

√
3)/π.

Combining these two results, we see that the two phases can coexist between
the two curves, which agrees with our simulations of the SDE—see (1) and
Figures 5 and 7.

Figure 7: Unstable zones for the disordered and clustered phases

Resolving the 2R conjecture. The conjecture in questions refers to the
original (noiseless) HK model: it states that, if the agents starts out uni-
formly distributed in [0, 1], they will converge toward clusters separated by
distance of roughly 2R, thus setting their number close to the value 1/2R.
This assumes that N and 1/R are large enough. To address this conjec-
ture in the PDE model, we must confine γ to the range [0, 13 ] to make the
clustered phase stable and then ask how many clusters one should expect.

We first rule out the case s > 2π by considering the pairwise distance
of the resulting clusters. Notice that when s > 2π, k is then larger than
1/R. Even if the wave e2πikx grows, it cannot exist for too long since the
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pairwise distance of the clusters would be smaller than R. Therefore for this
class of waves, no matter whether they are initially stable or unstable during
the perturbation, they will not contribute to the final profile of the system.
Then it is safe to focus on the interval s ∈ [0, 2π]. The expected number
of clusters is given by the value of s that maximizes fγ(s). As shown in
Figure 6, the function increases to some peak and then dips, while the root
of f ′γ(s) = 0 (the peak’s location) shifts to the left as γ grows from 0 to 1

3 .
This implies that the number of clusters k = s/(2πR) decreases as the noise
level rises. The 2R conjecture corresponds to the case γ = 0. Numerical
calculation indicates that the smallest nonzero root of f ′0(s) is s∗ = 2.7437.
It follows that the expected number of final clusters is equal to

k∗ =
s∗

2πR
=

1

2.29R
.

Note that the bound comes fairly close to the number observed experimen-
tally for HK systems with a finite number of agents [10].

The higher-dimensional case. In higher dimensions, we have to con-
sider functions of the form

Fγ(s) :=
1

2
s

∫
‖z‖≤1

z1 sin(sz1) dz − γs2.

For the forbidden zone of the disordered phase, we can use a Taylor expan-
sion for Fγ in s to determine the critical noise level σ for a given R. Let
Sd−1 denote the area of the unit sphere in dimension d. It is well known
that S1 = 2π and S2 = 4π. For general d, we have

Sd−1 =
2πd/2

Γ(d2)
, where Γ(s) :=

∫ ∞
0

xs−1e−x dx.

It follows that

Fγ(s) ≈ 1

2
s

∫
‖z‖≤1

sz21 dz − γs2

≈ s2

2d

∫
‖z‖≤1

‖z‖2 dz − γs2

≈ s2

2d

∫ 1

0
Sd−1r

d+1 dr − γs2

≈

(
πd/2

d(d+ 2)Γ(d2)
− γ

)
s2.
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The above expansion gives us the boundary at which the disordered phase
loses stability:

σ2 =
4πd/2

d(d+ 2)Γ(d2)
R3.

Notice that the right-hand side equals π
2R

3 > 4
3R

3 when d = 2, which means
that in two dimensions we need even larger noise to make the disordered
phase stable. As the dimension grows, however, the Gamma function will
bring the noise level down to zero and the disordered phase will dominate
unless the system becomes essentially noiseless.

7 Conclusions

The contribution of this paper is an analysis of the clustering modes of the
noisy Hegselmann-Krause model. We have provided theoretical insights,
validated by numerical simulations, into the stochastic differential equation
model for a finite number of agents and the Fokker-Planck model for the
mean-field approximation in the thermodynamic limit. In the SDE model,
we have shown that the system exhibits either disorder or single-cluster
profile. In higher dimensions we conjecture that multiple clusters might be
able to co-exist. We have proposed an order parameter based on the edges
density of the communication graph to describe the phase transition. In the
PDE model, we used linear stability analysis to find a forbidden zone for
disordered phase in which the constant solution cannot survive in the long
run. Most important, we provided a theoretical explanation, the first to our
knowledge, for the 2R conjecture.
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Appendix: Pseudo-Spectral Method for the PDE

Pseudo-spectral method has been extensively adopted for simulating PDEs with periodic
boundaries, especially in the fields of fluid dynamics and material science [24,26]. To solve
Equation (2) with periodic condition and L = 1, we expand ρ(x, t) in Fourier space and
cut off the expansion at m:

ρ(x, t) ≈
m∑

k=−m

ρ̂k(t)ei2πkx. (16)

It follows that∫ x+R

x−R
(y − x)ρ(y, t) dy =

∫ R

−R
yρ(x+ y, t) dy ≈

m∑
k=−m

ρ̂k(t)ei2πkx
∫ R

−R
yei2πky dy

=
∑

−m≤k≤m,k 6=0

{
R

i2πk

(
ei2πkR + e−i2πkR

)
+

1

4π2k2

(
ei2πkR − e−i2πkR

)}
ρ̂k(t)ei2πkx

Next we discretize the time as ρ̂k,r = ρ̂k(rh) and generate the numerical scheme as follows:
for all −m ≤ k ≤ m,

ρ̂k,r −→
[
R

i2πk
(ei2πkR + e−i2πkR) +

1

4π2k2
(ei2πkR − e−i2πkR)

]
ρ̂k,r := ϕ̂k,r

ρ̂k,r
FFT−−−→ ρk,r

ϕ̂k,r
FFT−−−→ ϕk,r

ψk,r := ϕk,rρk,r

ψk,r
FFT−−−→ ψ̂k,r
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ρ̂k,r+1 =
(
− i2πkψ̂k,r − 2π2σ2k2ρ̂k,r+1

)
h+ ρ̂k,r

Notice that the constraint
∫
ρ(y, t) dy = 1 is unconditionally satisfied in Equation (2);

therefore we only need to set ρ̂0,r = 0 during the iteration to prevent numerical error while
no further treatment is required.
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