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Identification of FIR Systems with Binary Input and

Output Observations
Alex S. Leong, Erik Weyer, and Girish N. Nair

Abstract—This paper considers the identification of FIR sys-
tems, where information about the inputs and outputs of the sys-
tem undergoes quantization into binary values before transmis-
sion to the estimator. In the case where the thresholds of the input
and output quantizers can be adapted, but the quantizers have no
computation and storage capabilities, we propose identification
schemes which are strongly consistent for Gaussian distributed
inputs and noises. This is based on exploiting the correlations
between the quantized input and output observations to derive
nonlinear equations that the true system parameters must satisfy,
and then estimating the parameters by solving these equations
using stochastic approximation techniques. If, in addition, the

input and output quantizers have computational and storage
capabilities, strongly consistent identification schemes are pro-
posed which can handle arbitrary input and noise distributions.
In this case, some conditional expectation terms are computed
at the quantizers, which can then be estimated based on binary
data transmitted by the quantizers, subsequently allowing the
parameters to be identified by solving a set of linear equations.
The algorithms and their properties are illustrated in simulation
examples.

I. INTRODUCTION

It is nowadays common to transmit data using digital com-

munication techniques rather than analog communications,

due to advantages such as better noise tolerance and the

possibility of doing error control coding on the data [1]. In

digital communications, analog valued data is required to be

quantized into a digital form (e.g. bit strings of 0s and 1s)

before transmission. For applications such as large-scale pro-

duction plants and environmental monitoring, the sensors must

transmit their measurements over a communication network

to a distant monitoring station. Unlike consumer internet and

telephony, these networks must often satisfy severe limitations

on transmission power and bandwidth, for reasons of cost and

energy efficiency [2], [3]. This thus limits the resolution in

bits of the transmitted measurements and degrades the quality

of the models and relationships constructed from the received

data. In this paper we consider identification of FIR systems

where information about the inputs and outputs of the system

are quantized to a single bit (i.e. binary data) at each discrete

time instant before transmission to the estimator.

System identification using quantized observations has been

previously studied. The case where only the system outputs are
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quantized has been considered in e.g. [4]–[9] by using multi-

level quantizers, and [4], [10]–[16] by using 1-bit quantizers.

Different aspects such as asymptotic properties of estimators,

design of input signals for identification, and design of quan-

tizers and threshold selection have been investigated, with

various assumptions made on the type of system and level

of knowledge of the noise distributions.

In this paper we do not assume that the input signal

can be designed, but we assume that we have quantized

measurements of it. Such a situation is encountered in many

areas, e.g. process industries, ecology, environmental sciences,

and economics [17, p.409] where one cannot or should not

interfere with the system (or certain parts of the system). In

such cases the input signal is measured rather than specifically

designed. This is also different from the setting in blind

system identification as studied in the signal processing and

communication literature, where the system parameters are

identified (up to a multiplicative constant) based on only

statistical information about the input signal in addition to

measurements of the output [18], [19].

When both the inputs and outputs are quantized with

multi-level quantizers, approaches using instrumental variables

methods were proposed in [20], [21], but the analysis relies on

the validity of high rate quantization assumptions [22] and no

proof of consistency was provided. The problem of finding an

optimal fixed order FIR approximation from quantized input

and output data was studied in [23]. In the case where both

inputs and outputs are quantized to 1-bit, [24] studied the

identification of a dynamic shock error model by counting

patterns of zeros and ones [25], which can give consistent

estimates for known noise distributions, but requires knowl-

edge of the power ratio between the input and output signals.

The identification of FIR systems where output observations

are quantized, and the input signal is constrained to take on

a finite number of possible values, was studied in [26]. The

identification of first order gain systems with binary input and

output observations was investigated in [27] in the case where

the noise and inputs were assumed to be Gaussian, and for

symmetrically distributed (about its mean) inputs and noises in

[28]. Identification schemes based on empirical measures and

the EM algorithm were presented in [27], and schemes based

on stochastic approximation in [28]. However, for higher order

FIR systems with input and output observations quantized

to a single bit, no consistent identification schemes currently

exist. Other related work include identification of Wiener [29],

[30], Hammerstein [31], [32], and nonlinear ARX [33], [34]

systems, but the inputs are assumed to be perfectly known

in these works, and only [34] explicitly considers quantized
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outputs.

In this paper we extend the setup considered in [27] and

[28] to FIR systems. Their proposed methods however do not

generalize in a straightforward manner to higher order systems,

thus alternative identification schemes are devised. The main

contributions of the paper are:

• We consider identification of FIR systems where both

the input and output observations are quantized to 1-

bit. The input signal is not designed, and we only have

information about the realization of the signal from the

quantized measurements.

• In the case where the thresholds of the input and output

quantizers can be dynamically adjusted, but the quantizers

have no computation and storage capabilities, we propose

identification schemes which are strongly consistent for

i.i.d. Gaussian distributed inputs and noises.

• If, in addition, the input and output quantizers have com-

putational and storage capabilities, we devise strongly

consistent identification schemes for arbitrary i.i.d. input

and noise distributions.

The paper is organized as follows. Section II considers

identification of FIR systems for quantizers without computa-

tional capabilities and Gaussian distributed inputs and noise.

We present identification schemes when either the parameters

of the Gaussian distributed input are known (Section II-B) or

unknown (Section II-C), together with proofs of strong consis-

tency of the schemes. The idea is based on exploiting the cor-

relations between the quantized input and output observations

to derive nonlinear equations that the parameters must satisfy.

The parameters are then estimated by solving these nonlinear

equations using stochastic approximation techniques. Section

III considers the case of quantizers with computational and

storage capabilities, and arbitrary input and noise distributions.

Identification schemes are presented when either the input

distribution is known (Section III-B) or unknown (Section

III-C), together with proofs of strong consistency. The idea

is now to compute certain conditional expectation terms at the

quantizers. These conditional expectations can be estimated

based on binary data transmitted by the quantizers, which then

allows the parameters to be identified by solving a set of linear

equations. A preliminary version of the results in this paper

(without convergence proofs) can be found in [35].

II. QUANTIZERS WITHOUT COMPUTATIONAL

CAPABILITIES

A. Data Generating System and Model

The system to be identified is an N -th order FIR system

yt = b1ut−1 + b2ut−2 + · · ·+ bNut−N + wt

where {ut} are the inputs, {yt} the outputs, {wt} the noise,

and b1, . . . , bN are the parameters to be identified. There are

quantizers at the inputs {ut} and outputs {yt}, which transmit

1-bit (binary) quantized information to the estimator, see Fig.

1. The estimator can also transmit information back to the

input and output quantizers, e.g. it can tell the quantizers to

adjust their thresholds. However, in this section the quantiz-

ers will be assumed to have no additional computation or

Fig. 1. System Model

storage capabilities. At time t, the estimator will receive the

measurements zt = (1(ut > cu),1(yt > cy)), where 1(.)
is the indicator function, and cu and cy are the input and

output quantizer thresholds respectively. In this paper we are

primarily interested in FIR systems of order N ≥ 2, as the

case of N = 1 with binary input and output observations has

been previously studied in [27] and [28].

We make the following assumptions:

Assumption 1: The input sequence {ut} is i.i.d. Gaussian with

mean µ and variance σ2
u.

Assumption 2: The noise sequence {wt} is i.i.d. Gaussian and

independent of {ut}, with zero mean and variance σ2
w.

Assumption 3: The model order N is known.

We will assume that µ and σ2
u are known to the estimator

in Section II-B, but unknown in Section II-C. It will turn

out that knowledge of the noise variance σ2
w is not needed

in the identification schemes. In Section III, the Gaussian

assumptions stated in Assumptions 1 and 2 will be removed.

B. Identification Scheme for Known Input Distribution

In this subsection we will also make the following assump-

tion:

Assumption 4: The input parameters µ and σ2
u are known to

the estimator.

We will first describe the intuition behind the identification

scheme, before presenting it formally in Algorithm 1. We will

then give a proof of the strong consistency of the identification

scheme.

The basic idea is to consider the correlations between the

quantized input and output observations. Specifically, we look

at the product 1(ut−n > cu)1(yt > cy) for n = 1, . . . , N .

Taking the empirical mean, we have by the ergodic theorem

(see e.g. p. 393 of [36]) that as T → ∞,

1

T

T∑

t=1

1(ut−n > cu)1(yt > cy)
a.s.→ P(ut−n > cu, yt > cy)

= P(ut−n > cu, b1ut−1 + · · ·+ bNut−N + wt > cy)

= E [P(ut−n > cu, b1ut−1 + · · ·+ bNut−N + wt > cy|ut−n)]

=

∫ ∞

cu

[
1−Φ

(
cy−bnut−n−

∑N
m=1,m 6=n bmµ

√∑N
m=1,m 6=n b

2
mσ2

u + σ2
w

)]
p(ut−n)dut−n

(1)
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where Φ(x) =
∫ x

−∞
1√
2π

e−t2/2dt is the cumulative distribu-

tion function (cdf) of a N (0, 1) random variable, and

p(u) ,
1√
2πσ2

u

exp

(
− (u− µ)2

2σ2
u

)
(2)

is the probability density function (pdf) of a N (µ, σ2
u) random

variable. The last line of (1) holds since given ut−n, b1ut−1+
· · · + bNut−N + wt is Gaussian with mean bnut−n + (b1 +
· · ·+bn−1+bn+1+ · · ·+bN)µ and variance (b21+ · · ·+b2n−1+
b2n+1+ · · ·+b2N)σ2

u+σ2
w. Let y be a random variable with the

same stationary distribution as yt. Substituting the expressions

E[y] = (b1+ · · ·+ bN)µ and Var[y] = (b21+ · · ·+ b2N )σ2
u+σ2

w

into (1) gives

1

T

T∑

t=1

1(ut−n > cu)1(yt > cy)

a.s.→
∫ ∞

cu

[
1− Φ

(
cy − bnu− E[y] + bnµ√

Var[y]− b2nσ
2
u

)]
p(u)du

(3)

The idea is now to estimate E[y] and Var[y], and to substitute

these estimates in the equations above and solve with respect

to bn.

The identification scheme is divided into odd and even time

slots.1 During the odd time slots t = 2j − 1, j = 1, 2, . . . , we

estimate E[y], by using the stochastic approximation ([37],

[38]) procedure

cy,j+1 = cy,j + αj (1(y2j−1 > cy,j)− 0.5) , (4)

where {αj} is a sequence satisfying αj > 0,
∑∞

j=0 αj = ∞,

and
∑∞

j=0 α
2
j < ∞. The procedure tries to find a cy such

that P(yt > cy) = 0.5, so that the estimate of the mean

is Êy = cy , since the probability that a random variable is

larger than its mean is 0.5 for any symmetric distribution with

a continuous pdf such as the Gaussian. To see that (4) is a

stochastic approximation procedure, write

1(y2j−1 > cy,j)− 0.5

= P(yt > cy,j)− 0.5 + 1(y2j−1 > cy,j)− P(yt > cy,j).

Thus 1(y2j−1 > cy,j) − 0.5 can be regarded as a “noisy”

observation (with noise term 1(y2j−1 > cy,j)− P(yt > cy,j))
of the function P(yt > cy,j) − 0.5, whose root we are trying

to find.

During the even time slots t = 2j, j = 1, 2, . . . , we

estimate Var[y] = (b21+ · · ·+b2N)σ2
u+σ2

w, using the stochastic

approximation procedure

c̃y,j+1 = c̃y,j + αj (1(y2j > c̃y,j)− 0.1587) .

This procedure tries to find a c̃y such that P(yt > c̃y) =
0.1587. Since yt is Gaussian, it follows that c̃y will be one

standard deviation larger than the mean, since the probability

that a Gaussian random variable is more than one standard

deviation away from the mean is 1 − 0.6827 = 0.1587 × 2.

1Devoting half the resources to estimating the mean and half to estimating
the variance is an intuitively reasonable choice. Whether there is a different
proportion that gives “optimal” performance will however require further
investigation.

Hence an estimate of the variance is V̂y = (c̃y − Êy)2 =
(c̃y − cy)

2.

Replacing E[Y ] with cy and Var[Y ] with V̂y on the right

hand side of (3), and choosing the threshold2 cu = µ, gives

the equations

1

T

T∑

t=1

1(ut−n > µ)1(yt > cy)

=

∫ ∞

µ

[
1− Φ

(
−bn(u− µ)√

V̂y − b2nσ
2
u

)]
p(u)du, n = 1, . . . , N,

(5)

which can be solved with respect to bn, thereby obtaining

estimates.

Note that each of the N equations in (5) is an equation of

one variable, and all the equations are of the same form. A

question arises as to whether each of the equations in (5) has

a unique solution for bn. Given µ and σ2
u, define

F (b, V̂y)

,





∫∞
µ

[
1− Φ

(
−b(u−µ)√

V̂y−b2σ2
u

)]
p(u)du, −

√
V̂y
σ2
u
< b <

√
V̂y
σ2
u

∫∞
µ

p(u)du = 1
2 , b ≥

√
V̂y
σ2
u

0, b ≤ −
√

V̂y
σ2
u
.

(6)

Lemma 2.1: For fixed V̂y, the function F (b, V̂y) defined

by (6) is strictly monotonically increasing in b for b ∈(
−
√

V̂y/σ2
u,

√
V̂y/σ2

u

)
.

Proof See Appendix A. �

Remark 2.1: Since

lim
b→

√
V̂y/σ2

u

∫ ∞

µ

[
1−Φ

( −b(u− µ)√
V̂y − b2σ2

u

)]
p(u)du =

∫ ∞

µ

p(u)du

and

lim
b→−

√
V̂y/σ2

u

∫ ∞

µ

[
1− Φ

( −b(u− µ)√
V̂y − b2σ2

u

)]
p(u)du = 0,

F (b, V̂y) is monotonically increasing in b for fixed V̂y, and

strictly monotonic on the interval

(
−
√

V̂y/σ2
u,

√
V̂y/σ2

u

)
as

shown in Lemma 2.1.

By Lemma 2.1, the equations (5) can thus be

solved uniquely for bn, n = 1, . . . , N on the interval(
−
√

V̂y/σ2
u,

√
V̂y/σ2

u

)
. These calculations are also carried

out during the odd time slots t = 2j − 1, j = 1, 2, . . . .
In the proposed scheme, we will not actually solve the

nonlinear equations (5) exactly at every iteration, which

2The choice cu = µ gives roughly equal proportions of 0’s and 1’s for the
random variable 1(ut > cu), though any other reasonably chosen value for
cu will work. A similar comment applies to the choice of c̃y to be one standard
deviation larger than the mean. These choices in the algorithm could possibly
be tweaked and optimized over, but in this paper we will use intuitively natural
values to illustrate the basic principles.
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is computationally intensive. Instead, since b1, . . . , bN are

constant, we will update the estimates recursively using a

stochastic approximation approach, namely

b̂n,j+1 = b̂n,j + αj

(
1(u2j−1−n > µ)1(y2j−1 > cy,j)

−
∫ ∞

µ

[
1− Φ

(
−b̂n,j(u− µ)√
V̂yj − b̂2n,jσ

2
u

)]
p(u)du

)
, n = 1, . . . , N,

where V̂yj = (c̃y,j − cy,j)
2. This approach requires numerical

computation of N integrals (one for each n) at every iteration,

rather than having to solve N nonlinear equations (5) at every

iteration.

In addition, to ensure boundedness of the iterates and prove

the convergence of our scheme, we will also use the idea

of expanding truncations for the iterates [38]. Let {Mj}
be a sequence of positive numbers increasing to infinity. A

recursive procedure with expanding truncations has the form

xj+1 = ΠMς(j)
(xj + αjzj) (7)

where

ς(0) = 0, ς(j) ,

j−1∑

i=1

1(||xi + αizi|| > Mς(i)), (8)

and the truncation operation

ΠM (x) ,

{
x, ||x|| ≤ M
x∗, ||x|| > M.

(9)

Thus the procedure (7) truncates the iterate xj+1 back to x∗

when its norm exceeds a threshold Mς(j), with the threshold

increasing each time it is exceeded, according to (8). In this

paper we will choose x∗ = 0. As Mj goes to infinity, the

iterates will eventually almost surely have norm less than Mj

for a sufficiently large Mj , provided conditions such as those

in Theorem 2.4.1 of [38] (which we will verify as part of the

proof of Theorem 2.2) are satisfied.

Now that the intuitive ideas have been presented, the iden-

tification scheme is formally stated as Algorithm 1 below.

In Algorithm 1, note that the integrals F (b̂n,j, V̂yj) for

n = 1, . . . , N can be evaluated by lookup table, by precom-

puting
∫∞
µ [1− Φ (−x(u− µ))] p(u)du for different values of

x, which can substantially improve the running time of the

algorithm.

We will now prove the strong consistency of Algorithm 1.

Theorem 2.2: Under Algorithm 1 and Assumptions 1 − 4,

b̂n,j
a.s.→ bn as j → ∞ for n = 1, . . . , N .

Proof See Appendix C.

�

C. Unknown Parameters of Input Distribution

In this subsection, we will relax Assumption 4, and assume

that µ and σ2
u are also unknown. The idea in the scheme

below (Algorithm 2) is to estimate these quantities in a similar

manner to how E[y] and Var[y] were estimated in Algorithm 1.

However, a complication arises if we also try to estimate

E[u] during the odd time slots and estimate Var[u] during

the even time slots (or vice versa). This is because some

of the quantities 1(ut−n > cu)1(yt > cy), n = 1, . . . , N ,

which are used in updating the parameter estimates, cannot be

constructed at the estimator since we only have 1(uτ > cu)
when τ is odd.

To get around this difficulty, we propose the following.

We will continue to estimate E[y] during the odd time

slots 1, 3, 5, . . . , and to estimate Var[y] during the even time

slots 2, 4, 6, . . . . But we will estimate E[u] at time slots

1, 2, 5, 6, 9, 10, . . . , i.e. 2(j − 1) + [j]2, j = 1, 2, . . . where

[j]2 ,

{
0, j ≡ 0 (mod 2)
1, j ≡ 1 (mod 2),

(11)

and we will estimate Var[u] at time slots 3, 4, 7, 8, 11, 12, . . . ,
i.e. 2j+[j]2, j = 1, 2, . . . . Then there will be sufficient overlap

to construct the quantities 1(ut−n > cu)1(yt > cy). In order

to see this, note that the odd time slots have the form of either

4(k− 1)+ 1 or 4(k− 1) + 3 for k = 1, 2, . . . , while the time

slots 1, 2, 5, 6, 9, 10, . . . have the form of either 4(k′−1)+1 or

4(k′−1)+2 for k′ = 1, 2, . . . . So the estimator can construct

the quantities 1(ut′ > cu)1(yt > cy), for t = 4(k− 1) + 1 or

t = 4(k− 1)+3, and t′ = 4(k′− 1)+1 or t′ = 4(k′− 1)+2.

We have the following result:

Lemma 2.3: Let t be either of the form t = 4(k − 1) + 1
or t = 4(k − 1) + 3, and let t′ be either of the form t′ =
4(k′−1)+1 or t′ = 4(k′−1)+2. Then for any n ∈ {1, . . . , N},

there are infinitely many pairs (k, k′) ∈ N× N satisfying

t− t′ = n.

Algorithm 1

• Set cu = µ, and choose a sequence {αj} satisfying αj > 0,
∑

∞

j=0 αj = ∞, and
∑

∞

j=0 α
2
j < ∞

• Initialize cy,1 = 0, c̃y,1 = 1, b̂n,1 = 0, n = 1, . . . , N
• For j = 1, 2, . . . , compute:




cy,j+1

c̃y,j+1

b̂1,j+1

.

.

.

b̂N,j+1



= ΠMς(j)







cy,j
c̃y,j

b̂1,j
.
.
.

b̂N,j



+ αj




1(y2j−1 > cy,j) − 0.5
1(y2j > c̃y,j)− 0.1587

1(u2j−2 > µ)1(y2j−1 > cy,j)− F (b̂1,j , V̂yj)

.

.

.

1(u2j−1−N > µ)1(y2j−1 > cy,j) − F (b̂N,j , V̂yj)







(10)

where ΠMς(j)
(·) is defined by (7)-(9), F (·, ·) by (6), and V̂yj , (c̃y,j − cy,j)2
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h(cy, c̃y, cu, c̃u, b)

,





∞∫
cu

[
1−Φ

(
−b(u−cu)√

(c̃y−cy)2−b2(c̃u−cu)2

)]
1√

2π(c̃u−cu)2
exp

(
− (u−cu)

2

2(c̃u−cu)2

)
du, −

√
(c̃y−cy)2

(c̃u−cu)2
< b <

√
(c̃y−cy)2

(c̃u−cu)2

∞∫
cu

1√
2π(c̃u−cu)2

exp
(
− (u−cu)

2

2(c̃u−cu)2

)
du = 1

2 , b ≥
√

(c̃y−cy)2

(c̃u−cu)2

0, b ≤ −
√

(c̃y−cy)2

(c̃u−cu)2
.

(14)

Algorithm 2

• Choose a sequence {αj} satisfying αj > 0,
∑

∞

j=0 αj = ∞, and
∑

∞

j=0 α
2
j < ∞

• Initialize cy,1 = 0, c̃y,1 = 1, cu,1 = 0, c̃u,1 = 1, b̂n,1 = 0, n = 1, . . . , N
• For j = 1, 2, . . . , compute:




cy,j+1

c̃y,j+1

cu,j+1

c̃u,j+1

b̂1,j+1

.

.

.

b̂N,j+1




= ΠMς(j)







cy,j
c̃y,j
cu,j
c̃u,j

b̂1,j
.
.
.

b̂N,j




+ αj




1(y2j−1 > cy,j)− 0.5
1(y2j > c̃y,j)− 0.1587

1(u2(j−1)+[j]2 > cu,j)− 0.5
1(u2j+[j]2 > c̃u,j)− 0.1587

g(1, j)
[
1(u2j−2 > cu,j̄(1,j))1(y2j−1 > cy,j)− h(cy,j , c̃y,j , cu,j̄(1,j), c̃u,j, b̂1,j

]

.

.

.

g(N, j)
[
1(u2j−1−N > cu,j̄(N,j))1(y2j−1 > cy,j)− h(cy,j , c̃y,j, cu,j̄(N,j), c̃u,j , b̂N,j

]







(15)

where ΠMς(j)
(·) is defined by (7)-(9), [·]2 by (11), g(·, ·) and j̄(·, ·) by (13), and h(·, ·, ·, ·, ·) by (14).

Proof For each of the different forms of t and t′, we have

t− t′ given by

4(k − 1) + 1− [4(k′ − 1) + 1] = 4k − 4k′ ≡ 0 (mod 4)

or 4(k − 1) + 1− [4(k′ − 1) + 2] = 4k − 4k′ − 1 ≡ 3 (mod 4)

or 4(k − 1) + 3− [4(k′ − 1) + 1] = 4k − 4k′ + 2 ≡ 2 (mod 4)

or 4(k − 1) + 3− [4(k′ − 1) + 2] = 4k − 4k′ + 1 ≡ 1 (mod 4)
(12)

Now any n ∈ {1, . . . , N} must be equal to one of 0, 1, 2,

or 3 modulo 4. Suppose first that n ≡ 1 (mod 4). Pick an

arbitrary k ∈ N. Then for t of the form t = 4(k − 1) + 3,

and t′ of the form t′ = 4(k′ − 1) + 2, we have from the last

line of (12) that t− t′ = n is satisfied for k′ = 4k+1−n
4 , and

k′ ∈ N since n ≡ 1 (mod 4). As k is arbitrary, one can find

infinitely many pairs (k, k′) ∈ N × N satisfying t − t′ = n
when n ≡ 1 (mod 4).

A similar argument applies when n modulo 4 is equal to

0, 2, or 3. �

The identification scheme is formally given as Algorithm 2,

where we use the variables:

g(n, j) ,





1
(
2j − 1≡1 (mod 4)

)
, if n ≡ 0 (mod 4)

or n ≡ 3 (mod 4)
1
(
2j − 1≡3 (mod 4)

)
, if n ≡ 1 (mod 4)

or n ≡ 2 (mod 4),

j̄(n, j) ,

{
j − ⌊n

2 ⌋, if j − ⌊n
2 ⌋ ≥ 1

1, otherwise,
(13)

to keep track of which parameters can be updated and

past thresholds. In addition we also use the function

h(cy, c̃y, cu, c̃u, b) defined by (14).

By Lemma 2.3, there will be an infinite number of regularly

spaced time slots where the quantities 1(ut−n > cu)1(yt >

cy) for each n ∈ {1, . . . , N} can be constructed at the

estimator. In particular, the different cases in the definition

of g(n, j) in Algorithm 2 follow from (12) in the proof of

Lemma 2.3. Note also that the integral
∫ ∞

cu

[
1− Φ

( −b(u− cu)√
(c̃y − cy)2 − b2(c̃u − cu)2

)]

× 1√
2π(c̃u − cu)2

exp

(
− (u− cu)

2

2(c̃u − cu)2

)
du

in (14) can be evaluated by lookup table, by using a change

of variable v = u− cu and precomputing∫∞
0 [1− Φ (−xv)] 1√

2πz
exp

(
− v2

2z

)
dv for different values of

x and z.

Theorem 2.4: Under Algorithm 2 and Assumptions 1 − 3,

b̂n,j
a.s.→ bn as j → ∞ for n = 1, . . . , N .

Proof See Appendix D. �

D. Simulation Results

We consider a third order system with µ = 1, σ2
u = 1,

σ2
w = 1, b1 = 0.2, b2 = −0.2, b3 = 0.6. In the plots below we

will use the sequence αj = 10
j . An initial truncation bound

of M0 = 1000 was used, but was never exceeded in our

simulations. We first consider the case where µ and σ2
u are

known to the estimator. Fig. 2 shows the estimates b̂1, b̂2, b̂3
from Algorithm 1, and as expected from Theorem 2.2, they

converge to the true values.

To look at the convergence behaviour, we can approximate

the variance of j1/2(b̂n,j−bn), n = 1, 2, 3 [38], [37]. However,

in order to allow for a fairer comparison with the algorithms

of Section III, we will instead approximate the variance of

t1/2(b̂n,j − bn), n = 1, 2, 3, where t is the time index. This is
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Fig. 2. Parameter Estimates: Algorithm 1
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Fig. 4. Parameter Estimates: Algorithm 2

done by computing the sample variance over 10000 different

simulation runs of Algorithm 1, and are given in Fig. 3.

Next, we consider the system identification scheme of

Section II-C where µ and σ2
u are not assumed to be known.

Fig. 4 shows the estimates b̂1, b̂2, b̂3 from Algorithm 2. Also

in this case, the estimates converge to the true values, in

agreement with Theorem 2.4. Approximations of the variances

t1/2(b̂n,j − bn), n = 1, 2, 3 using Monte Carlo approximations

over 10000 simulation runs are plotted in Fig. 5. We see that
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Fig. 5. Convergence Behaviour: Algorithm 2

the normalized variances in Fig. 5 are significantly higher

(more than double) than for Algorithm 1, due to the need

to also estimate the parameters of the input distribution.

III. QUANTIZERS WITH COMPUTATIONAL CAPABILITIES

The setup in Section II assumes knowledge of the input

and noise distributions. Specifically, we assumed that the input

and noise were both Gaussian. For unknown distributions and

FIR systems of order N > 1, it appears to be difficult to

come up with an identification scheme that is consistent and/or

efficient.3 In this section we consider the case where the input

and output quantizers are “smart”, in the sense that they have

some computational and storage capabilities, and have access

to the unquantized inputs and outputs. For instance, in many

wireless sensor network applications such as in environmental

monitoring [39], [40] and process industries [41], the sensors

used often have sensing, computation and wireless commu-

nication capabilities. In such applications the quantization or

analog-to-digital (A/D) conversion is done by the sensor, and

additionally these sensors would also have some on-board

computing capabilities to do additional processing of the data.

For such situations we present in this section identification

schemes which can estimate the parameters for unknown input

and noise distributions.

A. Data Generating System and Model

As in Section II, the system to be identified is an N -th order

FIR system

yt = b1ut−1 + b2ut−2 + · · ·+ bNut−N + wt. (16)

We now make the following assumptions:

Assumption 5: The input and output quantizers have compu-

tational and storage capabilities.

Assumption 6: The input sequence {ut} and the noise sequence

{wt} are i.i.d. and mutually independent. Moreover, wt is zero

mean.

Assumption 7: The model order N is known.

3For N = 1 a consistent identification scheme was developed in [28] for
symmetrically distributed inputs and noises.
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B. Identification Scheme for Known Input Distribution

In this subsection, we will also make the following assump-

tion:

Assumption 8: The input distribution is known to the estimator.

The noise distribution is not assumed to be known, apart

from assuming that it has zero mean. As in Section II-B, we

will start by describing the ideas involved, before formally

stating the identification scheme as Algorithm 3, followed by

a proof of strong consistency of the parameter estimates.

First, the quantized information 1(ut > cu), t = 1, 2, . . .
sent by the input quantizer to the estimator is forwarded by

the estimator to the output quantizer. Whenever ut > cu, we

increment an index i by one. Denote the times where ut >
cu by τ1, τ2, . . . , with τ1 < τ2 < . . . . The output quantizer

computes the following N quantities (after the corresponding

output is available at the quantizer):

dn,i ,
1

i

i∑

i′=1

yτi′+n, n = 1, . . . , N,

using the recursions

dn,i =
1

i
(yτi+n + (i− 1)dn,i−1), n = 1, . . . , N. (17)

By the ergodic theorem [36, p. 393], we have that as i → ∞,

dn,i
a.s.→ E[yt+n|ut > cu]

= E

[ N∑

m=1

bmut+n−m + nt+n

∣∣∣ut > cu

]

= b1E[u] + · · ·+ bn−1E[u] + bnE[u|u > c]

+ bn+1E[u] + · · ·+ bNE[u]

, dn, n = 1, . . . , N.

(18)

dn,i is computed at the output quantizer. In order for

the estimator to be able to approximate dn,i, information is

sent from the output quantizer to the estimator as follows.

Whenever the index i is a multiple of N , another iteration

index j is incremented by one and the following estimates of

d1, . . . , dN are computed at the output quantizer:

d̂n,j+1 = d̂n,j + αjsgn(dn,i − d̂n,j), n = 1, . . . , N, (19)

where {αj} is a sequence satisfying αj > 0,
∑∞

j=0 αj =

∞,
∑∞

j=0 α
2
j < ∞, and

sgn(x) ,

{
−1 , x < 0
1 , x > 0.

The term sgn(dn,i − d̂n,j) is essentially binary, and is sent to

the estimator by the output quantizer, which also computes

d̂n,j+1 according to (19), assuming that both the estimator

and the quantizer have access to the initial condition d̂n,0.

Alternatively, d̂n,j can be computed at the estimator only and

transmitted to the output quantizer.

Note that d̂n,j is updated at 1/N -th the rate of dn,i, in order

for each of the quantities sgn(dn,i− d̂n,j), n = 1, . . . , N to be

sent in separate time slots. From (18) and (19), we can show

(see the proof of Theorem 3.2) that

d̂n,j
a.s.→ dn = b1E[u] + · · ·+ bn−1E[u] + bnE[u|u > c]

+ bn+1E[u] + · · ·+ bNE[u].
(20)

Finally, the parameters b1, b2, . . . , bN of the N -th order

system (16) are estimated by solving for b̂1,j , b̂2,j, . . . , b̂N,j

the following set of linear equations:

U

[
b̂1,j , . . . , b̂N,j

]T
=
[
d̂1,j , . . . , d̂N,j

]T
, (21)

where

U ,




E[u|u > cu] E[u] . . . E[u]
E[u] E[u|u > cu] . . . E[u]

...
...

. . .
...

E[u] E[u] . . . E[u|u > cu]


 .

(22)

Note that U is known at the estimator, since by Assumption 8

the estimator knows the input distribution. The equations (21)

will have a unique solution under the following assumption:

Assumption 9: The input distribution of u and input quantizer

threshold cu satisfies E[u|u > cu] 6= E[u] and E[u|u > cu] 6=
(1−N)E[u].

We note that apart from degenerate cases such as u being

constant, cu can always be chosen such that Assumption 9

is satisfied. Under Assumption 9, when E[u] 6= 0 we have

uniqueness of solutions to (21) by the following result:

Lemma 3.1: The N ×N matrix

A ,




a 1 . . . 1
1 a . . . 1
...

...
. . .

...

1 1 . . . a


 (23)

is invertible if a 6= 1 and a 6= 1−N .

Proof We use the property that a matrix A is invertible if and

only if Ax = 0 ⇒ x = 0. Denoting x , [x1, x2, . . . , xN ]T ,

Ax = 0 (for A given by (23)) is equivalent to

ax1 + x2 + · · ·+ xN = 0

x1 + ax2 + · · ·+ xN = 0

...

x1 + x2 + · · ·+ axN = 0.

(24)

Subtracting the second equation from the first equation in (24),

we have (x1 − x2)(a − 1) = 0, which implies that x1 = x2

since a 6= 1. Repeating this argument leads to

x1 = x2 = · · · = xN . (25)

Using (25) on the first equation of (24), we have

(a+N − 1)x1 = 0, which implies x1 = 0 since a 6= 1−N .

Hence x = 0. �

We now formally state the identification scheme as Algo-

rithm 3. In the formal description, the sets Dt and indices in
are used to keep track of which of the quantities dn,i, n =
1, . . . , N , should be updated at time t.

Theorem 3.2: Under Algorithm 3 and Assumptions 5 − 9,

b̂n,j
a.s.→ bn as j → ∞ for n = 1, . . . , N .

Proof See Appendix E. �
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Algorithm 3

• Choose a cu satisfying Assumption 9, and a sequence {αj} satisfying αj > 0,
∑

∞

j=0 αj = ∞, and
∑

∞

j=0 α
2
j < ∞

• Initialize i = 0, j = 0, dn,0 = 0, d̂n,0 = 0, in = 1, n = 1, . . . , N, Dt = ∅, ∀t
• For t = 1, 2, . . . , do:

– If ut > cu, set τi = t, i := i+ 1

– If i ≡ 0 (mod N), set j := j + 1

– At the input quantizer:

1) Send 1(ut > cu) to estimator, which passes it on to the output quantizer

– At the output quantizer, when ut > cu:

1) Set Dt+n := Dt+n

⋃
{n}, n = 1, . . . , N

2) Compute dn,in = 1
in

(yt + (in − 1)dn,in−1) and set in := in + 1 for all n ∈ Dt, and remove Dt−1 from memory

3) When i ≡ 0 (mod N), compute sgn(dn,i − d̂n,j) and d̂n,j+1 = d̂n,j + αjsgn(dn,i − d̂n,j) at time τi + n for n = 1, . . . , N . Send

sgn(dn,i − d̂n,j) at time τi + n to estimator, for n = 1, . . . , N

– At the estimator, when i ≡ 0 (mod N):

1) Compute
[
b̂1,j , . . . , b̂N,j

]T
= U−1

[
d̂1,j , . . . , d̂N,j

]T
, where U is defined by (22)

2) Compute d̂n,j+1 = d̂n,j + αjsgn(dn,i − d̂n,j) when sgn(dn,i − d̂n,j) arrives at estimator, for n = 1, . . . , N

C. Unknown Input Distribution

Solving the linear equations (21) requires knowledge of

E[u] and E[u|u > cu], which in turn requires knowledge of

the distribution of u. When the input distribution is unknown

(except for enough knowledge such that Assumption 9 can be

satisfied), E[u] and E[u|u > cu] can be estimated if we also

allow for some computation at the input quantizer.

To estimate E[u], the input quantizer first computes

e1,t ,
1

t

t∑

t′=1

ut′

using the recursion

e1,t =
1

t
(ut + (t− 1)e1,t−1).

By the strong law of large numbers, e1,t
a.s.→ E[u] as t → ∞.

The estimator estimates e1,t using the recursion:

ê1,j+1 = ê1,j + αjsgn(e1,t − ê1,j)

where the quantities sgn(e1,t − ê1,j) are sent by the input

quantizer (see below for how the index j is updated). Again,

{ê1,j} can be reconstructed at the input quantizer given

knowledge of the initial condition ê1,0.

To estimate E[u|u > cu], whenever ut > cu, the input

quantizer first increments an index k by one. Denote the times

when ut > cu by t1, t2, . . . , with t1 < t2 < . . . . The input

quantizer then computes

e2,k ,
1

k

k∑

k′=1

utk′

using the recursion

e2,k =
1

k
(utk + (k − 1)e2,k−1).

We have e2,k
a.s.→ E[u|u > cu] as k → ∞ by the strong

law of large numbers. The estimator estimates e2,k using the

recursion:

ê2,j+1 = ê2,j + αjsgn(e2,k − ê2,j)

where the quantities sgn(e2,k − ê2,j) are sent by the input

quantizer.

Now in Algorithm 3, the input quantizer is already sending

1(ut > cu) to the estimator at every time slot. Thus we need to

modify the division of the time slots to incorporate the sending

of the additional information sgn(e1,t − ê1,j) and sgn(e2,k −
ê2,j) . We propose the following: Instead of an iteration j
having a (minimum) length of N time slots as in Algorithm

3, we will now consider iterations j with a (minimum) length

of N + 2 time slots. During the first N time slots, the input

quantizer will send 1(ut > cu) to the estimator, which are then

forwarded to the output quantizer. As in Algorithm 3, an index

i is now incremented by one4 every time ut > cu (during the

first N time slots), and the iteration index j is incremented by

one whenever i is a multiple of N . The remaining two time

slots will be used to transmit the quantities sgn(e1,t − ê1,j)
and sgn(e2,k − ê2,j).

The parameters b1, b2, . . . , bN are now estimated by solving

for b̂1,j, b̂2,j, . . . , b̂N,j the following set of linear equations:

Uj

[
b̂1,j , . . . , b̂N,j

]T
=
[
d̂1,j , . . . , d̂N,j

]T
(26)

where

Uj ,




ê2,j ê1,j . . . ê1,j
ê1,j ê2,j . . . ê1,j

...
...

. . .
...

ê1,j ê1,j . . . ê2,j


 . (27)

The formal statement of the identification scheme is given

as Algorithm 4.

Theorem 3.3: Under Algorithm 4 and Assumptions 5, 6, 7, 9,

b̂n,j
a.s.→ bn as j → ∞ for n = 1, . . . , N .

Proof Using similar arguments as in the proof of Theorem

3.2, we can show that

d̂n,j
a.s.→ b1E[u] + · · ·+ bn−1E[u] + bnE[u|u > cu]

+ bn+1E[u] + · · ·+ bNE[u], n = 1, . . . , N,

ê1,j
a.s.→ E[u], and ê2,j

a.s.→ E[u|u > cu].

(28)

4The indices i and k are different, as in the updating of k one checks if
ut > cu at every time step, to obtain more accurate estimates.
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Algorithm 4

• Choose a cu satisfying Assumption 9, and a sequence {αj} satisfying αj > 0,
∑

∞

j=0 αj = ∞, and
∑

∞

j=0 α
2
j < ∞.

• Initialize i = 0, j = 0, k = 0, dn,0 = 0, d̂n,0 = 0, in = 1, n = 1, . . . , N , e1,0 = 0, e2,0 = 0, ê1,0 = 0, ê2,0 = 0, Dt = ∅, ∀t
• For t = 1, 2, . . . , do:

– If ut > cu, set tk = t, k := k + 1
– If t mod (N + 2) ∈ {1, . . . , N} and ut > cu, set τi = t, i := i+ 1

– If i ≡ 0 (mod N), set j := j + 1

– At the input quantizer:

1) Compute e1,t = 1
t
(ut + (t − 1)e1,t−1) and e2,k = 1

k
(utk + (k − 1)e2,k−1)

2) Send 1(ut > cu) to estimator if t mod (N + 2) ∈ {1, . . . , N}, which passes it on to the output quantizer
3) When i ≡ 0 (mod N), compute sgn(e1,t− ê1,j), sgn(e2,k− ê2,j), ê1,j+1 = ê1,j +αjsgn(e1,t− ê1,j), and ê2,j+1 = ê2,j +αjsgn(e2,k−

ê2,j). Send sgn(e1,t − ê1,j) and sgn(e2,k − ê2,j) to estimator at times τi +N + 1 and τi +N + 2 respectively

– At the output quantizer, when t mod (N + 2) ∈ {1, . . . , N} and ut > cu:

1) Set Dt+n := Dt+n

⋃
{n}, n = 1, . . . , N

2) Compute dn,in = 1
in

(yt + (in − 1)dn,in−1) and set in := in + 1 for all n ∈ Dt, and remove Dt−1 from memory

3) When i ≡ 0 (mod N), compute sgn(dn,i − d̂n,j) and d̂n,j+1 = d̂n,i + αjsgn(dn,i − d̂n,j) at time τi + n, for n = 1, . . . , N . Send

sgn(dn,i − d̂n,j) at time τi + n to estimator, for n = 1, . . . , N

– At the estimator, when i ≡ 0 (mod N):

1) Compute
[
b̂1,j , . . . , b̂N,j

]T
=

{
U

−1
j

[
d̂1,j , . . . , d̂N,j

]T
, if Uj is invertible

0 , otherwise

where Uj is defined by (27)

2) Compute d̂n,j+1 = d̂n,i+αjsgn(dn,i−d̂n,j), n = 1, . . . , N , ê1,j+1 = ê1,j+αjsgn(e1,t− ê1,j), and ê2,j+1 = ê2,j+αjsgn(e2,k− ê2,j),

when the quantities sgn(dn,i − d̂n,j), sgn(e1,t − ê1,j), sgn(e2,k − ê2,j) arrive at estimator
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Fig. 6. Parameter Estimates: Algorithm 3

Hence by (28) and continuity,

[
b̂1,j, . . . , b̂N,j

]T
= U

−1
j

[
d̂1,j , . . . , d̂N,j

]T

a.s.→ U
−1

U [b1, . . . , bN ]
T
= [b1, . . . , bN ]

T
.

�

D. Simulation Results

We first consider the same third order system as in Section

II-D, where b1 = 0.2, b2 = −0.2, b3 = 0.6, and the inputs and

noises are Gaussian with µ = 1, σ2
u = 1, σ2

w = 1. We use the

identification schemes in Algorithms 3 and 4. In the schemes

we use the sequences αj =
1
j , and the threshold cu = 1. Figs.

6 and 7 shows the estimates b̂1, b̂2, b̂3 from Algorithms 3 and

4 respectively.
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Fig. 7. Parameter Estimates: Algorithm 4 with Gaussian inputs and noise

Next, we change wt to be uniformly distributed between

−
√
3 and

√
3, and ut to be uniformly distributed between 0

and 2
√
3 (so that the variances are equal to 1). Fig. 8 shows

the estimates b̂1, b̂2, b̂3 from Algorithm 4.

Approximations of the variances t1/2(b̂n,j−bn), n = 1, 2, 3
using Monte Carlo approximations over 10000 simulation runs

are plotted for the Gaussian distributed inputs and noise case

with Algorithms 3 and 4 in Figs. 9 and 10 respectively, and for

uniformly distributed inputs and noise in Fig. 11. Comparing

Figs. 9 and 10 with Figs. 3 and 5, we see that the normalized

variances are much smaller, and hence convergence of the

algorithms is better, when the quantizers have some computa-

tional and storage capabilities. We do emphasize however that

the algorithms are based on different principles, so it is not a

straightforward comparison.
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TABLE I
SUMMARY OF IDENTIFICATION ALGORITHMS

Algorithm Computational Capability Input Signal Output Noise Input Parameter
of Quantizer Knowledge

Algorithm 1 None i.i.d. Gaussian i.i.d. zero-mean Gaussian (µ, σ2
u)

Algorithm 2 None i.i.d. Gaussian i.i.d. zero-mean Gaussian None

Algorithm 3 At output quantizer i.i.d. i.i.d. zero-mean E[u] & E[u|u > cu]
Algorithm 4 At input & output quantizers i.i.d. i.i.d. zero-mean None
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Fig. 8. Parameter Estimates: Algorithm 4 with uniformly distributed inputs
and noise

500 1000 1500 2000 2500 3000
j

0

0.5

1

1.5

2

2.5

3

3.5

4

V
ar
(t

1
/
2
(b̂

n
,j
−
b n
))

Fig. 9. Convergence Behaviour: Algorithm 3 with Gaussian inputs and noise

IV. CONCLUSION

This paper has considered the identification of FIR systems

with binary input and output observations. For the case where

the quantizer thresholds can be adapted but the quantizers

have no computational capabilities, we proposed identification

schemes which are strongly consistent for Gaussian distributed

inputs and noises. For the case of smart quantizers which

have some computational and storage capabilities, strongly

consistent identification schemes are proposed which can

handle arbitrary input and noise distributions. A summary of

the main features and assumptions required for the different

algorithms is provided in Table I. Numerical simulations

have illustrated the performance of the algorithms. Rigorous

analyses of the convergence rates of the algorithms is currently

under investigation.
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Fig. 10. Convergence Behaviour: Algorithm 4 with Gaussian inputs and noise
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Fig. 11. Convergence Behaviour: Algorithm 4 with uniformly distributed
inputs and noise

APPENDIX

A. Proof of Lemma 2.1

First note that

∂

∂b

[
1− Φ

(
−b(u− µ)√
V̂y − b2σ2

u

)]
=

1√
2π

exp

(
− b2(u− µ)2

2(V̂y − b2σ2
u)

)

×
[

b2σ2
u(u− µ)

(V̂y − b2σ2
u)

3/2
+

u− µ

(V̂y − b2σ2
u)

1/2

]

is continuous for b ∈
(
−
√

V̂y/σ2
u,

√
V̂y/σ2

u

)
, since quotients

and compositions of continuous functions are continuous. For



11

fixed V̂y, regard F (b, V̂y) as a function of b. Then by the

Leibniz rule, we have that

dF

db
=

∫ ∞

µ

∂

∂b

[
1− Φ

(
−b(u− µ)√
V̂y − b2σ2

u

)]
p(u)du

=

∫ ∞

µ

1√
2π

exp

(
− b2(u− µ)2

2(V̂y − b2σ2
u)

)

×
[

b2σ2
u(u− µ)

(V̂y − b2σ2
u)

3/2
+

u− µ

(V̂y − b2σ2
u)

1/2

]
p(u)du

> 0, ∀b ∈
(
−
√

V̂y/σ2
u,

√
V̂y/σ2

u

)
,

since each term in the integrand is strictly positive for b ∈(
−
√

V̂y/σ2
u,

√
V̂y/σ2

u

)
and u > µ.

B. Statement of Theorem 2.4.1(ii) of [38]

We provide here the statement of Theorem 2.4.1(ii) of [38],

adapted to the notation of this paper. A major part of the

proof of Theorem 2.2 is the verification of the conditions of

this theorem.

Theorem A.1 (Theorem 2.4.1(ii) of [38]): Consider the

procedure

xj+1 = ΠMς(j)
(xj + αj(f(xj) + εj))

where

ς(0) = 0, ς(j) ,

j−1∑

i=1

1(||xi + αi(f(xi) + εi)|| > Mς(i)),

and the truncation operation

ΠM (x) ,

{
x, ||x|| ≤ M
x∗, ||x|| > M.

Suppose f(.) : Rl → R has a unique root x0, and f(.) is

continuous at x0. Further assume that conditions A2.2.1 and

A2.2.2 below hold.

A2.2.1: αj > 0, αj → 0, and
∑∞

j=1 αj = ∞.

A2.2.2: There exists a continuously differentiable function

v(.) : Rl → R such that

sup
δ≤||x−x0||≤∆

fT (x)∇v(x) < 0 (29)

for any ∆ > δ > 0, and

v(x∗) < inf
||x||=c0

v(x) (30)

for some c0 > 0 and ||x∗|| < c0.

Then {xj} converges to x0 for those sample paths where

εj can be written as εj = ε
(1)
j + ε

(2)
j , with

∞∑

j=1

αjε
(1)
j < ∞ and ε

(2)
j → 0.

C. Proof of Theorem 2.2

The idea of the proof is that we will first show that

Algorithm 1 can be viewed as a multi-dimensional stochastic

approximation algorithm with expanding truncations. We will

then verify the conditions of Theorem 2.4.1(ii) of [38] (given

in Appendix B) to conclude that b̂n,j
a.s.→ bn as j → ∞ for

n = 1, . . . , N .

Define f(.) : RN+2 → R
N+2 by

f







cy
c̃y
b̂1
...

b̂N







,




P(yt > cy)− 0.5
P(yt > c̃y)− 0.1587

F (b1, (c̃y − cy)
2)− F (b̂1, (c̃y − cy)

2)
...

F (bN , (c̃y − cy)
2)− F (b̂N , (c̃y − cy)

2)



.

where

P(yt > c) = 1− Φ

(
c− (b1 + · · ·+ bN )µ√
(b21 + · · ·+ b2N )σ2

u + σ2
w

)

is the stationary probability that yt > c, and F (., .) is given

by (6).

Since yt is Gaussian, the unique solution to P(yt > cy) −
0.5 = 0 is clearly cy = E[y], and the unique solution to

P(yt > c̃y)− 0.1587 = 0 is clearly c̃y = E[y] +
√

Var[y]. For

cy = E[y] and c̃y = E[y] +
√

Var[y], each of the equations

F (bn, (c̃y − cy)
2)− F (b̂n, (c̃y − cy)

2) = 0

has the unique solution b̂n = bn (i.e. the true value of the

parameter) by Lemma 2.1. Hence the equation

f([cy, c̃y, b̂1, . . . , b̂N ]T ) = 0 (31)

has the unique root

[cy, c̃y, b̂1, . . . , b̂N ]T =[E[y],E[y]+
√

Var[y], b1, . . . , bN ]T ,x0.
(32)

Next, let us write the recursions in Algorithm 1 in the

following form:




cy,j+1

c̃y,j+1

b̂1,j+1

...

b̂N,j+1



= ΠMς(j)







cy,j
c̃y,j
b̂1,j

...

b̂N,j



+ αjf







cy,j
c̃y,j
b̂1,j

...

b̂N,j







+ αjεj




(33)

where

εj ,


1(y2j−1 > cy,j)− P(yt > cy,j)
1(y2j > c̃y,j)− P(yt > c̃y,j)

1(u2j−2 > µ)1(y2j−1 > cy,j)− F (b1, (c̃y,j − cy,j)
2)

...

1(u2j−1−N >µ)1(y2j−1>cy,j)− F (bN , (c̃y,j−cy,j)
2)



,

(34)

which is in the form of a multi-dimensional stochastic approx-

imation algorithm, that tries to find the roots of the equation

(31), with the “noise” term being εj .
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We will now verify the conditions of Theorem 2.4.1(ii) of

[38], whose statement is also given in Appendix B. We first

need f(.) to have a unique root x0, with f(.) continuous at

x0. Uniqueness of x0 given by (32) has been shown at the

beginning of the proof, and f(.) is clearly continuous at x0.

Note that Condition A2.2.1 is true by assumption. We next

verify Condition A2.2.2. Choose v(x) , ||x− x0||2, i.e.

v
(
[cy, c̃y, b̂1, . . . , b̂N ]T

)
=
∥∥∥[cy, c̃y, b̂1, . . . , b̂N ]T − x0

∥∥∥
2

.

Then

fT
(
[cy, c̃y, b̂1, . . . , b̂N ]T

)
∇vn

(
[cy, c̃y, b̂1, . . . , b̂N ]T

)

= 2




P(yt > cy)− 0.5
P(yt > c̃y)− 0.1587

F (b1, (c̃y − cy)
2)− F (b̂1, (c̃y − cy)

2)
...

F (bN , (c̃y − cy)
2)− F (b̂N , (c̃y − cy)

2)




T

×
(
[cy, c̃y, b̂1, . . . , b̂N ]T − x0

)

< 0, ∀[cy, c̃y, b̂1, . . . , b̂N ]T 6= x0.

The inequality above holds since P(yt > cy)−0.5 and P(yt >
c̃y)− 0.1587 are strictly decreasing in cy and c̃y respectively,

F (bn, (c̃y − cy)
2)− F (b̂n, (c̃y − cy)

2)

for fixed cy and c̃y is decreasing in b̂n, n = 1, . . . , N by

Lemma 2.1, and for cy = E[y] and c̃y = E[y] +
√

Var[y]

only takes on the value 0 when b̂n = bn. This verifies (29).

Also, by the reverse triangle inequality, we have

v(x) = ||x− x0||2 ≥
∣∣∣||x|| − ||x0||

∣∣∣
2

so that for some c0 > 2||x0||, one has

inf
||x||=c0

v(x) > (2||x0|| − ||x0||)2 = ||x0||2 = v(0).

By our choice of x∗ = 0, this verifies (30) and hence condition

A2.2.2.

Finally, we want to show that εj can be written as εj =

ε
(1)
j + ε

(2)
j , with

∞∑

j=1

αjε
(1)
j < ∞ a.s. and ε

(2)
j → 0 a.s.,

which will then imply the a.s. convergence of

[cy,j, c̃y,j , b̂1,j, . . . , b̂N,j]
T to x0. Rewrite (34) as

εj =


1(y2j−1 > cy,j)− P(y2j−1 > cy,j)
1(y2j > c̃y,j)− P(y2j > c̃y,j)
1(u2j−2 > µ)1(y2j−1 > cy,j)

−P(u2j−2 > µ, y2j−1 > cy,j)
...

1(u2j−1−N > µ)1(y2j−1 > cy,j)
−P(u2j−1−N > µ, y2j−1 > cy,j)




+




P(y2j−1 > cy,j)− P(yt > cy,j)
P(y2j > c̃y,j)− P(yt > c̃y,j)
P(u2j−2 > µ, y2j−1 > cy,j)− P(ut−1 > µ, yt > cy,j)

+P(ut−1 > µ, yt > cy,j)− F (b1, (c̃y,j − cy,j)
2)

...

P(u2j−1−N > µ, y2j−1 > cy,j)− P(ut−N > µ, yt > cy,j)
+P(ut−N > µ, yt > cy,j)− F (bN , (c̃y,j − cy,j)

2)




,

[
ε
(1,1)
j , ε

(2,1)
j , ε

(3,1)
j , . . . , ε

(N+2,1)
j

]T

+
[
ε
(1,2)
j , ε

(2,2)
j , ε

(3,2)
j , . . . , ε

(N+2,2)
j

]T
.

We will prove that
∑∞

j=1 αjε
(i,1)
j < ∞ a.s. and ε

(i,2)
j

a.s.→ 0 for

i = 1, 2, . . . , N + 2.

In order to show that
∑∞

j=1 αjε
(i,1)
j < ∞ a.s., we will show

that each {ε(i,1)j } is a martingale difference sequence, which

will then imply that
∑∞

j=1 αjε
(i,1)
j < ∞ a.s., by e.g. Theorem

B.6.1 of [38]. Define the σ-algebras

Fj , σ
(
{1(y2i−1 > cy,i),1(y2i > c̃y,i),1(u2i−2 > µ),

i = 1, . . . , j}
)
.

(35)

From the recursion for cy,j , we note that cy,j is measurable

with respect to Fj (and in fact is also measurable with respect

to Fj−1), and so ε
(1,1)
j is measurable with respect to Fj . We

have

E[ε
(1,1)
j |Fj−1] = E[1(y2j−1 > cy,j)− P(y2j−1 > cy,j)|Fj−1]

= 0.

Thus {ε(1,1)j } is a martingale difference sequence. Similar

arguments can be used to show that {ε(i,1)j } for i = 2, . . . , N+
2 are martingale difference sequences, and therefore that∑∞

j=1 αjε
(i,1)
j < ∞ a.s.

Let us now show that ε
(1,2)
j = P(y2j−1 > cy,j) − P(yt >

cy,j)
a.s.→ 0. First, we note that y2j−1 and cy,j−L are inde-

pendent for sufficiently large L, e.g. L = N , so that we can

write

P(y2j−1 > cy,j−L) = P(yt > cy,j−L). (36)

Next, we note that cy,j+1 differs from cy,j by αj/2 (either

above or below). Since by assumption αj > 0, ∀j, we can

bound the difference between cy,j and cy,j−L as follows:

cy,j−L −
j−1∑

i=j−L

αi

2
≤ cy,j ≤ cy,j−L +

j−1∑

i=j−L

αi

2
, (37)
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where
∑j−1

i=j−L
αi

2 is a deterministic quantity. Then we have

P

(
y2j−1 > cy,j−L +

j−1∑

i=j−L

αi

2

)
≤ P(y2j−1 > cy,j)

≤ P

(
y2j−1 > cy,j−L −

j−1∑

i=j−L

αi

2

)
,

or by (36) that

P

(
yt > cy,j−L +

j−1∑

i=j−L

αi

2

)
≤ P(y2j−1 > cy,j)

≤ P

(
yt > cy,j−L −

j−1∑

i=j−L

αi

2

)
.

From (37) we also have

P

(
yt > cy,j−L +

j−1∑

i=j−L

αi

2

)
≤ P(yt > cy,j)

≤ P

(
yt > cy,j−L −

j−1∑

i=j−L

αi

2

)
.

Thus

P

(
yt > cy,j−L +

j−1∑

i=j−L

αi

2

)
− P

(
yt > cy,j−L −

j−1∑

i=j−L

αi

2

)

≤ P(y2j−1 > cy,j)− P(yt > cy,j)

≤ P

(
yt > cy,j−L −

j−1∑

i=j−L

αi

2

)
− P

(
yt > cy,j−L +

j−1∑

i=j−L

αi

2

)
.

Since αj → 0 as j → ∞, we also have
∑j−1

i=j−L
αi

2 → 0 as

j → ∞. As yt is Gaussian, we then have

P

(
yt > cy,j−L+

j−1∑

i=j−L

αi

2

)
−P

(
yt > cy,j−L−

j−1∑

i=j−L

αi

2

)
a.s.→ 0,

P

(
yt > cy,j−L−

j−1∑

i=j−L

αi

2

)
−P

(
yt > cy,j−L+

j−1∑

i=j−L

αi

2

)
a.s.→ 0,

and hence

P(y2j−1 > cy,j)− P(yt > cy,j)
a.s.→ 0.

By applying Theorem 2.4.1 of [38] to the recursions for cy,j ,

we can then conclude that cy,j
a.s.→ E[y]. A similar argument

can be used to show ε
(2,2)
j

a.s.→ 0, and hence that c̃y,j
a.s.→ E[y]+√

Var[y]. Moreover, it also follows that for n = 1, . . . , N ,

P(u2j−1−n > µ, y2j−1 > cy,j)− P(ut−n > µ, yt > cy,j)
a.s.→ 0

by a similar argument. Next, the a.s. convergence to 0 of

P(ut−n > µ, yt > cy,j)− F (bn, (c̃y,j − cy,j)
2)

=

∫ ∞

µ

[
1− Φ

(
cy,j − bn(u − µ)− E[y]√

Var[y]− b2nσ
2
u

)]
p(u)du

− F (bn, (c̃y,j − cy,j)
2)

follows from the almost sure convergence of cy,j and c̃y,j , and

continuity. Hence for n = 1, . . . , N ,

ε
(n+2,2)
j =

P(u2j−1−n > µ, y2j−1 > cy,j)− P(ut−n > µ, yt > cy,j)

+ P(ut−n > µ, yt > cy,j)− F (bn, (c̃y,j − cy,j)
2)

a.s.→ 0.

By Theorem 2.4.1 of [38] again, we then conclude the almost

sure convergence of [cy,j, c̃y,j , b̂1,j, . . . , b̂N,j]
T to [E[y],E[y]+√

Var[y], b1, . . . , bN ]T as j → ∞, and in particular the

almost sure convergence of b̂n,j to the true value bn, for

n = 1, . . . , N .

D. Proof of Theorem 2.4

Note that in Algorithm 2, the update for b̂n,j+1 involves

“delayed” information cu,j̄(n,j) rather than cu,j . We will

first consider the convergence for a non-delayed version of

Algorithm 2, and then describe how delays can be handled.

We first look at the recursions (15), but with cu,j̄(n,j)
replaced by cu,j for n = 1, . . . , N . Define f(.) : RN+4 →
R

N+4 by

f







cy
c̃y
cu
c̃u
b̂1
...

b̂N







,




P(yt > cy)− 0.5
P(yt > c̃y)− 0.1587
P(ut > cu)− 0.5

P(ut > c̃u)− 0.1587

h(cy, c̃y, cu, c̃u, b1)− h(cy, c̃y, cu, c̃u, b̂1)
...

h(cy, c̃y, cu, c̃u, bN )−h(cy, c̃y, cu, c̃u, b̂N)




.

where h(·, ·, ·, ·, ·) is given by (14). By similar arguments as

in the proof of Theorem 2.2, we can show that the equation

f([cy, c̃y, cu, c̃u, b̂1, . . . , b̂N ]T ) = 0

has the unique root

[cy, c̃y, cu, c̃u, b̂1, . . . , b̂N ]T

= [E[y],E[y]+
√

Var[y],E[u],E[u]+
√

Var[u], b1, . . . , bN ]T .

We then write the recursions in the following form:




cy,j+1

c̃y,j+1

cu,j+1

c̃u,j+1

b̂1,j+1

...

b̂N,j+1




= ΠMς(j)







cy,j
c̃y,j
cu,j
c̃u,j
b̂1,j

...

b̂N,j




+ αjf







cy,j
c̃y,j
cu,j
c̃u,j
b̂1,j

...

b̂N,j







+ αjεj



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where

εj=




1(y2j−1 > cy,j)− P(yt > cy,j)
1(y2j > c̃y,j)− P(yt > c̃y,j)
1(u2(j−1)+[j]2 > cu,j)− P(ut > cu,j)
1(u2j+[j]2 > c̃u,j)− P(ut > c̃u,j)
g(1, j)

[
1(u2j−2 > cu,j)1(y2j−1 > cy,j)

−h(cy,j, c̃y,j, cu,j , c̃u,j , b̂1,j)
]

−h(cy,j, c̃y,j, cu,j , c̃u,j , b1)

+h(cy,j, c̃y,j, cu,j , c̃u,j , b̂1,j)
...

g(N, j)
[
1(u2j−1−N >cu,j)1(y2j−1>cy,j)

−h(cy,j, c̃y,j, cu,j , c̃u,j , b̂N,j)
]

−h(cy,j, c̃y,j, cu,j , c̃u,j , bN)

+h(cy,j, c̃y,j, cu,j , c̃u,j , b̂N,j)




,




ε1j
ε2j
ε3j
ε4j
ε5j
...

εN+4
j




The first four components of εj can be rewritten as



ε1j
ε2j
ε3j
ε4j


 =




1(y2j−1 > cy,j)− P(y2j−1 > cy,j)
1(y2j > c̃y,j)− P(y2j > c̃y,j)

1(u2(j−1)+[j]2 > cu,j)− P(u2(j−1)+[j]2 > cu,j)
1(u2j+[j]2 > c̃u,j)− P(u2j+[j]2 > c̃u,j)




+




P(y2j−1 > cy,j)− P(yt > cy,j)
P(y2j > c̃y,j)− P(yt > c̃y,j)

P(u2(j−1)+[j]2 > cu,j)− P(ut > cu,j)
P(u2j+[j]2 > c̃u,j)− P(ut > c̃u,j)




,

[
ε
(1,1)
j , ε

(2,1)
j , ε

(3,1)
j , ε

(4,1)
j

]T
+
[
ε
(1,2)
j , ε

(2,2)
j , ε

(3,2)
j , ε

(4,2)
j

]T
.

By similar arguments as in the proof of Theorem 2.2, we

can show that
∑∞

j=1 αjε
(i,1)
j < ∞ a.s. and ε

(i,2)
j

a.s.→ 0 for

i = 1, 2, 3, 4, and hence the almost sure convergence of

[cy,j, c̃y,j , cu,j , c̃u,j]
T to [E[y],E[y] +

√
Var[y],E[u],E[u] +√

Var[u]]T as j → ∞.

For the convergence of b̂n,j, n = 1, . . . , N , note that if

g(n, j) = 1, then g(n, j + 1) = 0, g(n, j + 2) = 1,

g(n, j + 3) = 0 etc., so that b̂n,j updates at every second

j. When g(n, j) = 1, we have

εn+4
j

= 1(u2j−1−n>cu,j)1(y2j−1>cy,j)−h(cy,j, c̃y,j, cu,j , c̃u,j , bn)

=
[
1(u2j−1−n > cu,j)1(y2j−1 > cy,j)

− P(u2j−1−n > cu,j , y2j−1 > cy,j)
]

+
[
P(u2j−1−n>cu,j, y2j−1>cy,j)−P(ut−n>cu,j , yt>cy,j)

+ P(ut−n>cu,j , yt>cy,j)−h(cy,j, c̃y,j, cu,j , c̃u,j , bn)
]

, ε
(n+4,1)
j + ε

(n+4,2)
j

For a given n, let j0(n) be the smallest positive in-

teger such that g(n, j0(n)) = 1. Using similar argu-

ments as in the proof of Theorem 2.2, we can show that∑∞
j′=0 αj0(n)+2j′ε

(n+4,1)
j0(n)+2j′ < ∞ a.s. and ε

(n+4,2)
j0(n)+2j′

a.s.→ 0

as j′ → ∞, for n = 1, 2, . . . , N . This then implies

that b̂n,j0(n)+2j′ → bn as j′ → ∞. As b̂n,j0(n)+2j′+1 =

b̂n,j0(n)+2j′ , we also have b̂n,j0(n)+2j′+1 → bn as j′ → ∞,

and hence b̂n,j → bn as j → ∞.

The above shows convergence for the recursion (15), but

with cu,j̄(n,j) replaced by cu,j for n = 1, . . . , N . For the

original updates (15) in Algorithm 2 which uses the delayed

information cu,j̄(n,j), the situation can be considered as a case

of the asynchronous stochastic approximation procedure of

[38, Sec. 5.6].5 Almost sure convergence of the procedure is

shown by verifying conditions A5.6.1-A5.6.5 of [38]. Condi-

tions A5.6.1-A5.6.4 are similar to the conditions of Theorem

2.4.1 of [38], and can be verified using similar arguments to

the above, together with our assumption that the same αj is

used for all components. The additional condition is A5.6.5,

which in our notation says that

lim
j→∞

j∑

i=j̄(j,n)

αi
a.s.
= 0, n = 1, . . . , N.

But this condition is true since j − j̄(j, n) = ⌊n
2 ⌋ is bounded

and αj → 0 as j → ∞.

E. Proof of Theorem 3.2

As previously noted in (18), we have that dn,i
a.s.→ dn for

n = 1, . . . , N . We will first show that

d̂n,j
a.s.→ dn = b1E[u] + · · ·+ bn−1E[u] + bnE[u|u > c]

+ bn+1E[u] + · · ·+ bNE[u]
(38)

for n = 1, . . . , N , where d̂n,j satisfies the recursion (19) with

i = Nj.

Fix an arbitrary n ∈ {1, . . . , N}. Since dn,i
a.s.→ dn, consider

a sample path ω where dn,i → dn. We will show that one also

has d̂n,j → dn for this ω. Let ǫ > 0 be given. Since dn,i → dn,

there exists an i∗(ω) dependent on ω such that

|dn,i − dn| <
ǫ

2
, ∀i ≥ i∗(ω). (39)

Referring back to the recursion (19), note that the iterate

d̂n,j+1 will either increase or decrease by αj from the previous

iterate d̂n,j , depending on whether d̂n,j was below or above

dn,i respectively. Let j0(i
∗(ω)) be sufficiently large such that

j ≥ j0 implies αj < ǫ
2 and i ≥ i∗(ω). We want to show that

there exists a j1(i
∗(ω), ω) ≥ j0 such that |d̂n,j1 − dn| < ǫ. If

|d̂n,j0−dn| < ǫ, then by setting j1 = j0 we are done. If instead

|d̂n,j0 − dn| > ǫ, then such a j1 exists since
∑∞

j=j0
αj = ∞

(which follows from the assumption that
∑∞

j=0 αj = ∞) and

αj → 0.

We next want to show that

|d̂n,j1 − dn| < ǫ ⇒ |d̂n,j1+1 − dn| < ǫ, (40)

which by induction then implies

|d̂n,j − dn| < ǫ, ∀j ≥ j1. (41)

There are two cases to consider: i) If |d̂n,j1 − dn| < ǫ
2 , then

|d̂n,j1+1 − dn| < ǫ since αj < ǫ
2 . ii) If |d̂n,j1 − dn| > ǫ

2

and |d̂n,j1 − dn| < ǫ, then d̂n,j1+1 will decrease by αj if

d̂n,j1 − dn > ǫ
2 (since d̂n,j1 > dn,i by (39)), and increase by

αj if d̂n,j1−dn < − ǫ
2 . Either way, we have |d̂n,j1+1−dn| < ǫ.

Thus (41) is satisfied, which means that d̂n,j → dn for this

ω. Therefore P({ω : d̂n,j → dn}) ≥ P({ω : dn,i → dn}) = 1,

5The asynchronous stochastic approximation algorithm of [38] also allows
for different step sizes αj for each component, and different truncation times
for different components.



15

and we have d̂n,j
a.s.→ dn. Since n was arbitrary, we thus have

d̂n,j
a.s.→ dn for n = 1, . . . , N .

To complete the proof, almost sure convergence of

[b̂1,j , . . . , b̂N,j] to [b1, . . . , bN ] follows from (38) and conti-

nuity, since

[
b̂1,j, . . . , b̂N,j

]T
= U

−1
[
d̂1,j , . . . , d̂N,j

]T

a.s.→ U
−1

U [b1, . . . , bN ]
T
= [b1, . . . , bN ]

T
.
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