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Abstract

This paper studies the problem of constructing in-block controllable (IBC) regions for affine systems. That is, we are concerned
with constructing regions in the state space of affine systems such that all the states in the interior of the region are mutually
accessible through the region’s interior by applying uniformly bounded inputs. We first show that existing results for checking
in-block controllability on given polytopic regions cannot be easily extended to address the question of constructing IBC
regions. We then explore the geometry of the problem to provide a computationally efficient algorithm for constructing IBC
regions. We also prove the soundness of the algorithm. We then use the proposed algorithm to construct safe speed profiles for
different robotic systems, including fully-actuated robots, ground robots modeled as unicycles with acceleration limits, and
unmanned aerial vehicles (UAVs). Finally, we present several experimental results on UAVs to verify the effectiveness of the
proposed algorithm. For instance, we use the proposed algorithm for real-time collision avoidance for UAVs.

1 Introduction

In this paper, we introduce the problem of constructing
in-block controllable (IBC) regions for affine systems. In
particular, we study the construction of regions in the
state space of affine systems such that all the states in
the interior of the region are mutually accessible through
the region’s interior by applying uniformly bounded con-
trol inputs. We then use the proposed theoretical results
to build safe speed profiles for several classes of robotic
systems, including fully-actuated robot arms, ground
robots with acceleration limits, and unmanned aerial ve-
hicles (UAVs).

With the rapidly increasing desire for building the next
generation of engineering systems that can safely inter-
act with each other, their environment and possibly non-
professional humans (e.g., self-driving cars or assistive
robots), there is an urgent need for developing controller
design methods that consider and obey to all given safety
constraints of the systems even in the transient period.
Hence, we set our goal to provide the mathematical foun-
dations for controller design under safety constraints.

There are two common ways for dealing with safety con-
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straints in industrial control systems. First, typically,
given safety constraints are not explicitly considered
in the controller design phase but indirectly accounted
for when manually tuning the controller parameters on
the real system (e.g., PID controller design). Usually,
an emergency system is added to the controller to shut
down the industrial system in case of constraint violation
(e.g., a robotic arm moving into an obstacle). However,
shutting down the system is not possible in all applica-
tions, and considering the safety constraints in the design
phase will prevent system damage, unnecessary system
downtime, and therefore save money and time. Second,
predictive/optimal controllers have received special in-
terest for decades since they optimize the system’s be-
havior, while respecting given, hard safety constraints
(Aswani et al. , 2008; Rawlings, Mayne , 2009). This
is typically carried out by solving an online optimiza-
tion problem within each sampling interval. Such pre-
dictive controllers have been successful in practice be-
cause of their ability to explicitly consider system con-
straints (Qin, Badgwell , 2003). Nevertheless, there are
many fundamental questions in the area of controller
design under safety constraints that still require further
studies. For instance, suppose that we have a wheeled
robot moving on a bounded table, with additional limits
on the robot’s speed. Using Kalman’s controllability no-
tion (Kalman , 1960), we cannot even answer the simple
question whether the robot can reach, starting from any
initial position and speed, any final position and speed
while respecting the safety constraint of staying on the
table and using uniformly bounded input force? This
illustrates the urgent need for finding checkable condi-
tions that define when we can fully control our system
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within given safety constraints.

Hence, we recently introduced the study of in-block con-
trollability (IBC), which formalizes Kalman’s controlla-
bility under given safety state constraints (Helwa, Caines
, 2014a, 2016a). The notion of IBC can, however, be mo-
tivated from several different perspectives. In (Helwa,
Caines , 2014c), we showed that if one constructs a spe-
cial partition of the state space of piecewise affine (PWA)
hybrid systems such that each region of the partition
satisfies the IBC property, then one can systematically
study controllability and build hierarchical structures
for the PWA hybrid systems. We note that controllabil-
ity of PWA hybrid systems is a challenging open prob-
lem to date (Camlibel et al. , 2008; Thuan, Camlibel ,
2014). Also, building hierarchical structures of PWA hy-
brid systems allows us to design controllers that achieve
temporal logic statements at the higher-levels of the hi-
erarchy, and then to systematically realize these high-
level control decisions at the lower levels. In (Helwa,
Caines , 2015a), the IBC notion was also used to build
special covers of the state space of nonlinear systems, in
which each region satisfies the IBC property, and then
these IBC covers were used to build hierarchical struc-
tures and to systematically study approximate mutual
accessibility problems of nonlinear systems under safety
constraints. Moreover, the IBC notion is useful in the
context of optimal control problems. In particular, the
IBC conditions ensure that all the optimal accessibil-
ity problems within given safety constraints are feasible.
Furthermore, in this paper we use the IBC results to
build safe speed profiles for different classes of robotic
systems. We then, for example, utilize these safe speed
profiles to achieve static/dynamic obstacle avoidance.
We also use the speed profiles to determine the feasibil-
ity of given reference trajectories, where we determine
whether these reference trajectories are reachable from
all other states in the safe position-speed region via tra-
jectories that completely lie in the safe region and with
inputs within the actuation limits.

The notion of IBC was first introduced for finite state
machines in (Caines, Wei , 1995). The notion was then
extended to nonlinear systems on closed sets in (Caines,
Wei , 1998), and to automata in (Hubbard, Caines ,
2002). In these papers, the notion was used to build hi-
erarchical control structures of the systems. However,
these papers do not study conditions for when the IBC
property holds. In (Helwa, Caines , 2014a, 2016a), three
necessary and sufficient conditions were provided for
IBC of affine systems on given polytopes. The condi-
tions require solving linear programming (LP) problems
at the vertices of the given polytope. In (Helwa , 2015),
the IBC conditions were extended to controlled switched
linear systems having both continuous inputs and on/off
control switches. In (Helwa, Caines , 2014b, 2016b), the
notion of IBC was relaxed to the case where one can dis-
tinguish between soft and hard safety constraints. Simi-
lar controllability studies to IBC can be found in (Bram-

mer , 1972), (Sontag , 1984), (Heemels, Camlibel , 2007),
(Heemels, Camlibel , 2008). In (Brammer , 1972), (Son-
tag , 1984), controllability of linear systems under input
constraints was studied, while in (Heemels, Camlibel ,
2007) controllability of continuous-time linear systems
under state and/or input constraints was studied un-
der the assumption that the system transfer matrix is
right invertible. Under the same assumption, the study
of (Heemels, Camlibel , 2007) was extended in (Heemels,
Camlibel , 2008) to null controllability of discrete-time
linear systems under constraints. Compared to the well-
known controlled invariance problem (Blanchini , 1999;
Dorea, Hennet , 1999), which requires that all the state
trajectories initiated in a set to remain in the set for
all future time, IBC has the additional requirement of
achieving mutual accessibility. This is a basic, additional
property that enables us to use IBC as a basis for build-
ing hierarchical control structures and for studying con-
strained mutual accessibility problems for PWA hybrid
systems and nonlinear systems (Helwa, Caines , 2014c,
2015a).

In many practical scenarios, however, it may happen
that the given affine system is not IBC with respect to
(w.r.t.) the given polytope, representing the intersection
of the given safety constraints. For this case, it would be
important from a practical perspective to find the largest
IBC region inside the given region, formed by the inter-
section of the safety constraints. The IBC region then
represents a large, safe region within which we can fully
control our system. Also, constructing IBC regions is an
essential problem for building the partitions/covers in
(Helwa, Caines , 2014c), (Helwa, Caines , 2015a), respec-
tively, so that one can make use of the hierarchical con-
trol results of these papers. This motivates us to study
the problem of constructing IBC regions in this paper.

In this paper, we first show the difficulties that are
faced when trying to directly use the available results
for checking IBC of affine systems on given polytopes to
construct IBC regions. In particular, while checking the
IBC property requires solving LP problems, building
polytopes for which the IBC property holds generally
requires solving bilinear matrix inequalities (BMIs),
which is NP hard (see (Toker, Ozbay , 1995)). Sec-
ond, we explore the geometry of the problem, and try
to provide a computationally efficient method for con-
structing IBC polytopic regions, which avoids solving
BMIs. Our geometric approach was first introduced in
(Helwa, Caines , 2015b) for a special class of affine sys-
tems, namely hypersurface systems for whichm = n−1,
where m is the number of inputs and n is the system
dimension. In this paper, we extend the geometric study
of (Helwa, Caines , 2015b) to a more general geomet-
ric case that can be achieved for systems with m ≥ n

2 .
We also provide a computationally efficient algorithm
for constructing IBC polytopic regions, and prove its
soundness. For our geometric study of IBC, we utilize
some geometric tools that are used for the study of the
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control-to-facet problem, also called the reach control
problems (RCP) on polytopes, (Habets, van Schuppen
, 2004; Broucke , 2010; Helwa, Broucke , 2013, 2015).
Third, we show how our proposed algorithm for con-
structing IBC regions can be useful for constructing safe
speed profiles for different classes of robotic systems
that include fully-actuated robots, ground robots mod-
eled as unicycles with acceleration limits and UAVs.
That is, we construct for each position of the robot
a corresponding safe speed range. The proposed safe
speed profiles are useful for robot speed scheduling algo-
rithms (Ostafew et al. , 2014; Purwin, D’Andrea , 2006;
Prado et al. , 2003; Kant, Zucker , 1986). In particular,
if the speed scheduling algorithms limit the selected
speeds to the safe speed profiles provided by our algo-
rithm, then safety of the robot can be always achieved
on the given constrained position space by applying a
feasible input within the robot’s actuation limits. We
also show in this paper how the proposed safe speed
profiles can be used to achieve static/dynamic obstacle
avoidance. Compared to the safe speed profiles built by
intuition or by the controlled invariance property, one
advantage of the proposed safe speed profiles is that
they guarantee full controllability of the robots on the
position-speed regions constructed using our proposed
algorithm. Therefore, there is no loss of generality in re-
stricting the robots to operate in these constructed safe
regions. As another advantage, the proposed algorithm
ensures that any state in the constructed safe position-
speed region is reachable from all other states in the
safe region with trajectories that completely lie in the
safe region and using a feasible input within the robot’s
actuation limits. Thus, in planning reference trajecto-
ries for robots, it would be important to select reference
points inside the proposed safe position-speed regions
to ensure that they are reachable within the given safety
state constraints and under the robot’s actuation limits.
Compared to the feasibility study of (Schoellig et al. ,
2011), we hereby take the safety position/speed con-
straints into consideration in determining the feasibility
of given references, and not only the robot actuation
limits.. Finally, in this paper we provide several exper-
imental results on UAVs to verify the effectiveness of
our proposed safe speed profiles.

The paper is organized as follows. Section 2 provides
some geometric background. Section 3 reviews IBC. In
Section 4, we introduce the problem of constructing IBC
regions, provide a computationally efficient algorithm
for solving the problem, and prove its soundness. In Sec-
tion 5, we provide applications of the proposed algorithm
to several classes of robotic systems. We summarize our
results in Section 6. A brief preliminary version of the
paper appeared in (Helwa, Schoellig , 2016). Here we
include complete proofs, additional discussions and re-
marks, simulation results for fully-actuated and ground
robots, and a novel, detailed subsection on UAVs, which
includes experimental results.

Notation: Let K ⊂ Rn be a set. The closure of K is
denoted by K, the interior by K◦, and the boundary
by ∂K. For vectors x, y ∈ Rn, x · y denotes the inner
product of the two vectors. The notation ‖x‖ denotes
the Euclidean norm of x. The notation co {v1, v2, . . .}
denotes the convex hull of a set of points vi ∈ Rn.

2 Background

We present some geometric background relevant for the
remainder of the paper, see (Brondsted , 1983; Rockafel-
lar , 1970). A set K ⊂ Rn is affine if λx+ (1− λ)y ∈ K
for all x, y ∈ K and all λ ∈ R. An example are dashed,
infinite lines K1, K2 in Figure 1. If the affine set passes
through the origin, then it forms a subspace of Rn. For
example, K2 is a subspace of R2. For subspaces A, B,
A+B := {a+b : a ∈ A, b ∈ B}. The set A+B is also a
subspace. The affine hull of a set K, denoted by aff (K),
is the smallest affine set containing K. We mean by a
dimension of a set K its affine dimension, which is the
dimension of aff (K). For instance, in Figure 1, the di-
mension of co {v3, v4} is the dimension of the affine set
K1, which is one. A hyperplane is an (n−1)-dimensional
affine set in Rn, dividing Rn into two open half-spaces
(e.g., K1 in R2). A finite set of vectors {x1, · · · , xk}
is called affinely independent if the unique solution to∑k
i=1 αixi = 0 and

∑k
i=1 αi = 0 is αi = 0 for all

i = 1, · · · , k. Affinely independent vectors do not all
lie in a common hyperplane. In Figure 1, the points
{v1, v3, v4} are affinely independent, while the points
{v3, x, v4} are not. An n-dimensional simplex is the con-
vex hull of (n + 1) affinely independent points in Rn
(e.g., the triangles S1 and S2 in R2). A simplex is a gen-
eralization of a triangle in 2D to arbitrary dimensions.
An n-dimensional polytope is the convex hull of a finite
set of points in Rn whose affine hull has dimension n.
Let {v1, · · · , vp} be a set of points in Rn, where p > n,
and suppose that {v1, · · · , vp} contains (at least) (n+1)
affinely independent points. Then X := co {v1, · · · , vp}
is an n-dimensional polytope. An example is the poly-
tope X = co {v1, · · · , v4} in Figure 1. A simplex is a
special case of a polytope in which p = n+ 1. A face of
X is any intersection of X with a closed half-space such
that none of the interior points of X lie on the bound-
ary of the half-space. The polytope X and the empty set
are considered trivial faces, and all other faces are called
proper faces. A facet of X is an (n− 1)-dimensional face
of X. A polytope is simplicial if all its facets are sim-
plices. We denote the facets of X by F1, · · · , Fr, and
we use hi to denote the unit normal vector to Fi point-
ing outside of X. Figure 1 illustrates this concept for
X = co {v1, · · · , v4}. In Section 4, we use triangulations
of polytopes, and so we review its definition.

Definition 2.1 ((Lee , 1997)) A triangulation T of
an n-dimensional polytope X is a finite collection of
n-dimensional simplices S1, · · · , SL such that:
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Fig. 1. Illustrative figure explaining several geometric concepts.

(i) X =
⋃L
i=1 Si;

(ii) for all i, j ∈ {1, · · · , L} with i 6= j, the intersection
Si ∩ Sj is either empty or a common face of Si and Sj.

For example, T = {S1, S2} is a triangulation of the poly-
tope X in Figure 1.

3 In-Block Controllability

In this section, we review in-block controllability (IBC).
Consider the affine control system:

ẋ(t) = Ax(t) +Bu(t) + a , x(t) ∈ Rn , (1)

whereA ∈ Rn×n, a ∈ Rn,B ∈ Rn×m, and rank(B) = m.
Throughout the paper, we assume that the input u :
[0,∞) → Rm is measurable and bounded on any com-
pact time interval to ensure the existence and uniqueness
of the solutions of (1) (Filippov, , 1988). Let φ(x0, t, u)
be the trajectory of (1) under a control law u, with ini-
tial condition x0 and evaluated at time t. We first review
the IBC notion (after (Caines, Wei , 1998)).

Definition 3.1 (In-Block Controllability (IBC))
Consider the affine control system (1) defined on an
n-dimensional polytope X. We say that (1) is in-block
controllable (IBC) w.r.t. X if there exists an M > 0 such
that for all x, y ∈ X◦, there exist T ≥ 0 and a control
input u defined on [0, T ] such that (i) ‖u(t)‖ ≤ M and
φ(x, t, u) ∈ X◦ for all t ∈ [0, T ], and (ii) φ(x, T, u) = y.

That is, the system is IBC w.r.t. the polytope X if all
the states in the interior of X are mutually accessible
through its interior using uniformly bounded inputs.

We review below the main result on IBC. In (Helwa,
Caines , 2014a), it was shown that for studying IBC we
can always apply a coordinate shift, and assume without
loss of generality (w.l.o.g.) that we study a linear system

˙̃x(t) = Ax̃(t) +Bũ(t) (2)

on a new polytope X̃ with 0 ∈ X̃◦. For notational
convenience and w.l.o.g., we will call X̃, x̃, and ũ just

X, x, and u, respectively, in the remainder of the pa-
per. Let J := {1, · · · , r} be the set of indices of the
facets of X, and J(x) := {j ∈ J : x ∈ Fj} be the set
of indices of the facets of X in which x is a point. We
define the closed, convex tangent cone to X at x as
C(x) := {y ∈ Rn : hj · y ≤ 0, j ∈ J(x)}, where hj is the
unit normal vector to Fj pointing outside X.

Theorem 3.1 ((Helwa, Caines , 2014a)) Consider
the system (2) defined on an n-dimensional simplicial
polytope X satisfying 0 ∈ X◦. The system (2) is IBC
w.r.t. X if and only if

(i) (A,B) is controllable;
(ii) the so-called invariance conditions ofX are solvable

(that is, for each vertex v ∈ X, there exists u ∈ Rm
such that Av +Bu ∈ C(v));

(iii) the so-called backward invariance conditions of X
are solvable (that is, for each vertex v ∈ X, there
exists u ∈ Rm such that −Av −Bu ∈ C(v)).

In (Helwa, Caines , 2014a), it was shown that condi-
tions (i)-(iii) of Theorem 3.1 are also necessary for IBC
on non-simplicial polytopes. For given polytopes, both
the invariance conditions and the backward invariance
conditions can be easily checked by solving a linear pro-
gramming (LP) problem for each vertex of the polytope.
The invariance conditions and the backward invariance
conditions should only be checked at the vertices of X
since solvability of these conditions at the vertices im-
plies by a simple convexity argument that they are solv-
able at all boundary points of X (Habets, van Schuppen
, 2004).

Remark 3.1 The definition of IBC can be easily tailored
to the case when we have both state and input constraints.
Suppose u ∈ U ⊂ Rm, where U is a polytope having 0 ∈
U◦. For this case, the system is IBC if every x, y ∈ X◦ are
mutually accessible through X◦ using control inputs u ∈
U . Similarly, the definitions of invariance and backward
invariance conditions are adapted to restrict u to lie in
U . It can be shown that for these tailored definitions,
conditions (i)-(iii) of Theorem 3.1 remain necessary for
IBC. Also, the proof of the sufficiency of conditions (i)-
(iii) in this case is similar to the one in Section V of
(Helwa, Caines , 2014a) under the mild assumption on
U that for any x̄ ∈ X satisfying Ax̄ ∈ Im (B), the image
of B, there exists a ū ∈ U◦ such that Ax̄+Bū = 0.

4 Construction of IBC Regions

In this section, we study the problem of constructing
IBC regions for affine systems. The motivation behind
the study is as follows. First, in many practical scenar-
ios, it may turn out that the given dynamical system is
not IBC w.r.t. the given region resulting from the inter-
section of the given safety constraints. Hence, it would
be important to find a large IBC region within the given
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safety constraints, which represents a large safe region
within which we can fully control our dynamical system.
Second, the problem of constructing IBC regions is an
important milestone towards building the special parti-
tions/covers in (Helwa, Caines , 2014c), (Helwa, Caines
, 2015a), respectively, so that one can make use of the
hierarchical control results in these papers. Third, we
show in Section 5 of the paper how the proposed results
on constructing IBC regions can be useful for building
safe speed profiles for different classes of robotic systems.
These safe speed profiles are then utilized to achieve safe
operation of robots, e.g. static/dynamic obstacle avoid-
ance, and to determine the feasibility of given reference
trajectories, in the sense that they can be reached from
any safe initial condition within the given safety posi-
tion/speed constraints and under the robot’s actuation
limits.

Following (Helwa, Caines , 2014a), we know that w.l.o.g.
the problem of studying IBC of an affine system can be
transformed to studying a linear system on a new poly-
topeX having 0 ∈ X◦. Thus, we consider a linear system
(2). Given the necessity of condition (i) of Theorem 3.1
for IBC, in our study of constructing IBC regions, we as-
sume w.l.o.g. that (2) is controllable. We then construct
around the origin an IBC polytopic region for (2).

Problem 4.1 (Construction of IBC Polytopes)
Given a controllable linear system (2), construct a poly-
tope X such that 0 ∈ X◦ and (2) is IBC w.r.t. X.

It can be easily shown that if (2) is IBC w.r.t. the poly-
tope X, then it is also IBC w.r.t. λX := {x ∈ Rn : x =
λy, y ∈ X}, a λ-scaled version of X, for every λ > 0.
Moreover, if all the mutual accessibility problems on X◦

are achieved using uniformly bounded inputs satisfying
‖u‖ ≤M , then all the mutual accessibility problems on
(λX)◦ can be achieved using uniformly bounded inputs
satisfying ‖u‖ ≤ λM .

While checking IBC on given polytopes is easy and in-
corporates solving LP problems as mentioned in the pre-
vious section, building IBC polytopic regions is consider-
ably more difficult. Theorem 3.1 suggests that we build
around the origin simplicial polytopes satisfying both
the invariance conditions and the backward invariance
conditions. Two difficulties are faced here. First, to build
a polytope X satisfying the invariance conditions (sim-
ilar argument holds for the backward invariance condi-
tions), we would need to select the vertices of X, vi, the
unit normal vectors to the facets ofX, hj , and the control
inputs at the vertices, ui, such that hj · (Avi+Bui) ≤ 0,
for all j ∈ J(vi). Since hj , vi, and ui are all unknowns
in this case, we have a set of bilinear matrix inequali-
ties (BMIs), the solving of which is in general NP-hard
(Toker, Ozbay , 1995). Second, even if one constructs
a polytope X around the origin satisfying both the in-
variance conditions and the backward invariance condi-
tions, one still needs to verify that X is simplicial since

the proof of the sufficiency of Theorem 3.1 only holds for
simplicial polytopes.

One possible approach to face these difficulties is as fol-
lows. Since the BMIs can be solved offline, one can ex-
ploit available software packages for solving BMIs such
as PENBMI (Henrion et al. , 2005). Another possible
approach is to use trial-and-error. In particular, one first
constructs a candidate simplicial polytope X, and then
uses Theorem 3.1 to check whether the given system is
IBC w.r.t.X. If it is not the case, then one should try an-
other candidate polytope, and so on. It is clear that these
two approaches are computationally expensive, and for
the second approach, there is no guarantee that one will
eventually find the IBC polytope. Instead, in this paper,
we explore the geometry of the problem, and try to pro-
vide a computationally efficient algorithm for building
IBC polytopes that avoids solving BMIs. We initiated
this geometric study in (Helwa, Caines , 2015b) for hy-
persurface systems with m = n− 1, and here we extend
the study of (Helwa, Caines , 2015b) to a more general
geometric case.

To that end, let B := Im (B) be the image of B, and
define the set of possible equilibria of (2):

O := { x ∈ Rn : Ax ∈ B } . (3)

At any point in O, the vector field of (2) can vanish by
proper selection of the input u. Also, if x0 ∈ Rn is an
equilibrium point of (2) under some input, then x0 ∈ O
(Broucke , 2010). It can be verified that O is closed,
affine, and its dimension is m ≤ κ ≤ n (Helwa, Broucke
, 2013). Notice that both B and O are properties of the
system (2), and, as such, they can be calculated before
constructing the polytope X.

For the geometric caseO+B = Rn, we provide a compu-
tationally efficient algorithm for constructing IBC poly-
topes. We now show that this geometric condition is
more general than the condition m = n − 1 considered
in (Helwa, Caines , 2015b). If m = n − 1, then the di-
mension of O is n− 1 ≤ κ ≤ n (Helwa, Broucke , 2013).
If κ = n, then O + B = Rn clearly holds. We then show
that O + B = Rn holds for the case when κ = n − 1.
We claim that B is not subset of O. Otherwise, we have
Ax + Bu ∈ B ⊂ O for all x ∈ O, and so O is an invari-
ant set under any selection of the control input u, which
contradicts controllability of (2). If B is not subset of O,
then we can identify a non-zero vector b ∈ B such that
b /∈ O. Since κ = n−1, then clearly O+B = Rn. On the
other hand, for the following linear system, O+B = Rn
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holds, while m < n− 1:

ẋ(t) =


0 0 0 0

0 0 0 0

1 0 1 1

0 1 0 1

x(t) +


1 0

0 1

0 0

0 0

u(t). (4)

This shows that the geometric case considered in this
paper is more general than the one studied in (Helwa,
Caines , 2015b). Indeed, since the dimension of B is m
and the dimension of O is m ≤ κ ≤ n (Helwa, Broucke
, 2013), the condition O + B = Rn may be achieved
for systems having m ≥ n

2 as in (4), which is a sig-
nificant relaxation of the condition of (Helwa, Caines
, 2015b) 1 . Also, we found that studying the geomet-
ric case O + B = Rn is general enough to consider dif-
ferent classes of robotic systems in Section 5, includ-
ing fully-actuated robot arms, ground robots, and un-
manned aerial vehicles. Finally, we consider the study
of the geometric case O + B = Rn in this paper as a
milestone in studying the general case in the future.

We start by reviewing two geometric results of (Helwa,
Caines , 2015b).

Lemma 4.1 ((Helwa, Caines , 2015b)) Consider
the linear system (2). For any polytope X, if v ∈ O is
a vertex of X, then the invariance conditions and the
backward invariance conditions of X are solvable at v.

Lemma 4.2 ((Helwa, Caines , 2015b)) Consider
the linear system (2). For any polytope X, if B∩C◦(v) 6=
∅ at a vertex v of X, where C◦(v) denotes the interior of
C(v), then the invariance conditions and the backward
invariance conditions of X are solvable at v.

Since B and O are properties of the linear system and
can be calculated before constructing the polytope X,
Lemmas 4.1 and 4.2 suggest that we can construct the
polytope X such that the vertices of X lie on O, or the
subspace B dips into the interior of the tangent cones
to the constructed polytope X at the vertices. This en-
sures that both the invariance conditions and the back-
ward invariance conditions are solvable at the vertices
of the constructed polytope X. However, as mentioned
before, there is still the difficulty that the proof of the
sufficiency of Theorem 3.1 was carried out in (Helwa,
Caines , 2014a) only for simplicial polytopes, and, con-
sequently, Theorem 3.1 may not apply. An extension of
Theorem 3.1 is needed.

1 We present at this link: https://drive.google.com/
open?id=0BzU_Qe9rHozZTE82eUU2c2V0MWs other examples
of (A,B) pairs for which O + B = Rn is achieved (The ex-
amples are generated by MATLAB’s rand command and are
saved as .mat files). This includes an example of a large-scale
system with n = 1000 and m = 500.

In this paper, we first show that for a given controllable
linear system (2), if the vertices of the polytope X are
such that either v ∈ O or B ∩ C◦(v) 6= ∅, then the
system (2) is IBC w.r.t. X. We then provide, under the
geometric condition O + B = Rn, a computationally
efficient algorithm for constructing a polytopeX around
the origin such that the vertices of X satisfy v ∈ O
or B ∩ C◦(v) 6= ∅. We also prove the soundness of the
algorithm.

Theorem 4.3 Consider a controllable linear system (2)
defined on an n-dimensional polytope X satisfying 0 ∈
X◦. If for each vertex v ofX, either v ∈ O or B∩C◦(v) 6=
∅, then the system (2) is IBC w.r.t. X.

PROOF. By assumption and from Lemmas 4.1, 4.2,
both the invariance conditions and the backward invari-
ance conditions are solvable at the vertices of X. Al-
though the three conditions of Theorem 3.1 hold, the
polytope X in our case is not necessarily simplicial, and
consequently we cannot exactly follow the same suffi-
ciency proof as in (Helwa, Caines , 2014a) for Theorem
3.1. Indeed, the proof of Theorem 3.1 is divided into three
parts. In the first part, the invariance conditions are
used to construct a continuous piecewise linear (PWL)
feedback law, and under the assumption that the poly-
tope X is simplicial, it is proved that all the trajectories
initiated in X◦ eventually tend to O through X◦, and
reach close to O in finite time. Then, in the second part,
controllability of (A,B) is used to construct a piecewise
continuous control input that makes the trajectories ini-
tiated nearby O slide along O inside X◦ towards 0 ∈ X◦
in finite time. Third, using the backward invariance con-
ditions and a similar argument to the first two parts,
it is shown that one can steer the backward dynamical
system ẋ = −Ax−Bu from any state in X◦ to the ori-
gin in finite time through X◦ using uniformly bounded
inputs. Equivalently, one can steer the system (2) from
the origin to any final state in X◦ in finite time through
X◦ using uniformly bounded inputs. One can see that
the assumption that X is simplicial is used in (Helwa,
Caines , 2014a) only in the first part of the proof to show
that all trajectories initiated in X◦ tend to O. As a re-
sult, our task is reduced to prove this part in our case for
any polytope, not necessarily simplicial. The rest of the
proof is similar to (Helwa, Caines , 2014a). The details
of the proof are in the appendix.

We now provide under the geometric condition O+B =
Rn a computationally efficient algorithm for construct-
ing a polytope X such that 0 ∈ X◦ and the vertices of
X satisfy v ∈ O or B ∩ C◦(v) 6= ∅, which implies from
Theorem 4.3 that the given system is IBC w.r.t. X. The
algorithm is presented in Algorithm 1. We then prove
the soundness of the algorithm.
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Algorithm 1 Construction of IBC polytopes

Given: A controllable linear system (2) satisfying
O + B = Rn; Suppose B = sp {b1, · · · , bm}, and
{om+1, · · · , on} are such that ok ∈ O for all k = m +
1, · · · , n and Rn = sp {b1, · · · , bm, om+1, · · · , on}.
Objective: Construct an n-dimensional polytope X
such that 0 ∈ X◦ and the system (2) is IBC w.r.t. X.
Steps:
(1) Construct an initial n-dimensional polytope P such

that 0 ∈ P ◦, and let {v1, · · · , vp} denote the ver-
tices of P .

(2) Let T = [b1 · · · bm om+1 · · · on] and TO =
[0 · · · 0 om+1 · · · on]. For vi, i = 1, · · · , p, calculate
ōi = TOT

−1vi.
(3) Select α > 1, and define õi := αōi for i = 1, · · · , p.
(4) Define X := co {v1, · · · , vp, õ1, · · · , õp}.

Theorem 4.4 Consider a controllable linear system (2)
satisfying O+B = Rn. Then, Algorithm 1 always termi-
nates successfully, and the system (2) is IBC w.r.t. the
constructed polytope X.

PROOF. Since O + B = Rn, one can always identify
om+1, · · · , on such that ok ∈ O for all k = m+ 1, · · · , n,
and Rn = sp {b1, · · · , bm, om+1, · · · , on}. Since T has
linearly independent columns, it is invertible. Hence, one
can always calculate ōi, õi, and then construct X. By
construction, 0 ∈ P ◦ ⊂ X◦.

We now show that (2) is IBC w.r.t. X. To that
end, we prove that the vertices of X satisfy v ∈
O or B ∩ C◦(v) 6= ∅. Notice that the vertices of
X are subset of {v1, · · · , vp, õ1, · · · , õp}. Let ci =
(ci1, ci2, · · · , cin) := T−1vi. It is straightforward to show
vi =

∑m
j=1 cijbj +

∑n
j=m+1 cijoj ,

∑m
j=1 cijbj =: bvi ∈ B,

and
∑n
j=m+1 cijoj ∈ O. From step 2, ōi = TOci =∑n

j=m+1 cijoj ∈ O. Thus, we have

vi = bvi + ōi. (5)

Since O is affine and 0 ∈ O, õi := αōi ∈ O. We then
study the vertices of X in the set {v1, · · · , vp}. Notice
that ōi ∈ co {õi, 0}, and if ōi 6= 0, then õi 6= ōi. Since
õi ∈ X by construction and 0 ∈ X◦, then ōi ∈ X◦.
Now if vi, i ∈ {1, · · · , p}, is a vertex of X, then from
(5), vi − bvi = ōi ∈ X◦, which implies that −bvi ∈ B
dips into the interior of the tangent cone to X at vi, i.e.
−bvi ∈ B ∩ C◦(vi) 6= ∅. From Theorem 4.3, (2) is IBC
w.r.t. X.

Remark 4.1 Notice that in Step 2 of Algorithm 1, T−1

should be calculated only once. Indeed, Algorithm 1 does
not require solving any optimization problem, which rep-
resents a significant reduction of computational complex-
ity compared to the original formulation of the problem

x1

x2

Fig. 2. The constructed IBC polytope X in Example 4.1.

that requires solving BMIs or using trial-and-error. Com-
putational efficiency is quite important in fast applica-
tions. For instance, in Section 5, we compute the IBC
regions (the safe speed profiles) for UAVs at each sam-
pling instant to avoid dynamic obstacles that intersect
with the vehicle’s path.

Remark 4.2 As discussed before, for any λ > 0, (2) is
also IBC w.r.t. λX using λ-scaled inputs of the ones used
to solve mutual accessibility problems on X◦. This may
be useful in two ways. First, if it is required to keep the
system within given, hard safety constraints that form a
region Xc around the origin, then one can first use Al-
gorithm 1 to construct an IBC polytopic region X sat-
isfying 0 ∈ X◦, and then one can simply scale X such
that λX ⊂ Xc. Here, λX represents a safe region, within
which we can fully control our system. Second, for the
case of input constraints (u ∈ U ⊂ Rm, where 0 ∈ U◦),
we can similarly scale X such that on λX, λ < 1, the
IBC property is achieved using u ∈ U .

We present a simple illustrative example of Algorithm 1.

Example 4.1 Consider the double integrator ẋ1 = x2,
ẋ2 = u. The system is evidently controllable. We have
O = {x ∈ R2 : x2 = 0}, the x1-axis, and B =
sp {(0, 1)}, the x2-axis. Hence, O + B = R2. We fol-
low the steps of Algorithm 1: (1) We construct P =
co {v1, · · · , v4}, where v1 = (−0.8,−1), v2 = (0.8,−1),
v3 = (0.8, 1), and v4 = (−0.8, 1) 2 ; (2) we have b1 =
(0, 1), o2 = (1, 0), and we calculate ō1 = ō4 = (−0.8, 0)
and ō2 = ō3 = (0.8, 0); (3) we select α = 1.25, and so
õ1 = õ4 = (−1, 0) and õ2 = õ3 = (1, 0); (4) the system
is IBC w.r.t. X = co {v1, · · · , v4, õ1, õ2} shown in Fig-
ure 2. /

5 Applications to Robotics

In this section, we show how our proposed algorithm,
Algorithm 1, can be useful in constructing safe speed
profiles for different robotic systems that include fully-
actuated robot arms, ground robots, and unmanned

2 One can easily verify using Theorem 3.1 that the system
is not IBC w.r.t. P .
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aerial vehicles (UAVs). We also highlight the advantages
of the proposed safe speed profiles compared to the
ones obtained by intuition or by constructing controlled
invariant sets in the position-speed state space. More-
over, in addition to the simulation results presented in
this section, we present several experimental results on
UAVs to verify the effectiveness of our proposed results.
We start this section with fully-actuated robots.

5.1 Fully-Actuated Robots

Consider a fully-actuated robot with N links that is
modeled by:

D(q)q̈ + C(q, q̇)q̇ + g(q) = B(q)τ, (6)

where q = (q1, · · · , qN ) is the vector of generalized coor-
dinates 3 , q̇ = (q̇1, · · · , q̇N ) is the vector of velocities, τ
is the vector of generalized applied forces 4 , and D is a
positive definite matrix. For fully-actuated robots, it is
well-known that B ∈ RN×N is full-rank, and so one can
use the feedback law

τ = B−1(q)(C(q, q̇)q̇ + g(q) +D(q)u) (7)

to convert (6) into the equivalent controllable linear sys-
tem

q̈ = u, (8)

which is a set of decoupled double integrators, q̈i = ui,
representing the dynamics in the different generalized
coordinates.

Suppose that we have the position constraints qi ∈
[qi,min, qi,max], the velocity limits of the robot q̇i ∈
[q̇i,min, q̇i,max], where 0 ∈ (q̇i,min, q̇i,max), and the actua-
tor limits τi ∈ [τi,min, τi,max], where 0 ∈ (τi,min, τi,max).
Assume that the position space is free of kinematic
singularities, and that w.l.o.g. 0 ∈ (qi,min, qi,max) for
each i. Operating the robot within the maximum ve-
locity limits does not ensure that the robot remains
within the required position limits, and consequently
does not ensure safety of operation such as collision
avoidance. Instead, it is required to define a safe speed
profile for the robot. That is, for each value of qi within
the position limits, we define a corresponding range of
safe velocities, resulting in an overall safe region in the
position-velocity state space.

We assume that for the given position-speed lim-
its, the feedback linearization (7) can be carried out
within the actuator limits of the robot, provided that
for each i, ui is selected within [ui,min, ui,max], where
0 ∈ (ui,min, ui,max). Hence, our task is reduced to

3 The element qi represents the angle of link i if joint i is
revolute (we assume qi ∈ (−π, π]), or it is the displacement
if joint i is prismatic.
4 That is forces and/or torques.

finding for the equivalent linear system (8) a safe con-
trollable region, within the given position-speed ranges,
while taking into consideration the limits on the inputs
ui. It is straightforward to verify that for the control-
lable linear system (8), O+B = R2N , and so Algorithm
1 can be used to find a controllable safe position-speed
region. Indeed, since (8) is a set of decoupled double in-
tegrators, one can apply Algorithm 1 for each subsystem
q̈i = ui to find a safe speed profile for each generalized
coordinate qi (similar problem to Example 4.1).

As discussed in Remark 4.2, although Algorithm 1 does
not directly take the actuator limits into consideration
in calculating the IBC polytope X, one can always scale
the obtained polytope X to find another IBC polytope
λX, in which all the mutual accessibility problems are
achieved using control inputs within the actuator lim-
its. For the double integrator example (ẋ1 = x2, ẋ2 = u,
u ∈ [umin, umax], where 0 ∈ (umin, umax)), this can be
simply done as follows. One should first verify after con-
structing the IBC polytope X using Algorithm 1 that
at each vertex of X not in O = {x ∈ R2 : x2 = 0},
both the strict invariance conditions and the strict back-
ward invariance conditions are achieved using inputs
u ∈ [umin, umax]. Since the polytope X is known from
Algorithm 1, this verification can be carried out by solv-
ing LP problems. If the verification result is positive,
then in spite of the actuator limits, we can still construct
the special PWL feedback up(x) in the proof of Theorem
4.3, and it can be shown that the system is IBC w.r.t.
X using inputs u satisfying u ∈ [umin, umax]. Instead, if
the verification result is negative, then with the aid of
the fact that here B = sp {(0, 1)}, it can be shown that
one can always scale the x2-component of the vertices of
X (scale the velocity profile) to end up with a new IBC
polytope X ′ for which the mutual accessibility problems
are achieved using inputs u within [umin, umax].

To make our discussion more concrete, consider, for in-
stance, a one degree-of-freedom (DOF) robot arm rep-
resented by

Iθ̈ = −mgl sin(θ) + τ, (9)

where θ is the robot angle, I is its inertia, m is its
mass, l is the robot arm length, g is the gravitational
acceleration constant, and τ is the input torque. Sup-
pose that I = 1 kg.m2, m = 1 kg, l = 0.5 m, and
g = 10 m/s2. Also, suppose that we have the state con-

straints −π2 ≤ θ ≤ π
2 , −1 ≤ θ̇ ≤ 1, and the input con-

straints −10 ≤ τ ≤ 10. By using the feedback lineariza-
tion law

τ = mgl sin(θ) + Iu, (10)

we get the linearized dynamics

θ̈ = u, (11)
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x1

x2

Fig. 3. The constructed IBC polytopes X, X′ for constraints

−10 ≤ τ ≤ 10 and −8 ≤ τ ≤ 8, respectively.

which is a double integrator. It is straightforward to ver-
ify that if−5 ≤ u ≤ 5, then with (10),−10 ≤ τ ≤ 10, i.e.
the actuator limits of the robot arm are satisfied. Hence,
for (11), it is required to find a safe controllable position-
speed region under the limits −5 ≤ u ≤ 5. Similar to
Example 4.1, we use Algorithm 1 to construct the IBC
polytope X = co {v1, · · · , v4, õ1, õ2} shown in Figure 3,
where v1 = (− 5π

12 ,−1), v2 = ( 5π
12 ,−1), v3 = ( 5π

12 , 1),

v4 = (− 5π
12 , 1), õ1 = (−π2 , 0) and õ2 = (π2 , 0). One can

easily verify that under −5 ≤ u ≤ 5, both the strict in-
variance conditions and the strict backward invariance
conditions are solvable at the vertices outside O, and
consequently the system is IBC w.r.t. X under the given
actuator limits. Now suppose that we have tighter actua-
tor limits −8 ≤ τ ≤ 8. For this case, −3 ≤ u ≤ 3 ensures
under (10) that the robot’s actuator limits are satisfied.
Then under −3 ≤ u ≤ 3, it can be easily verified that
the invariance conditions are not solvable at the vertex
v3 = ( 5π

12 , 1) /∈ O. As a result, we should scale the set X,
or as discussed above, scale the velocity-component (x2-
component) of the vertices not in O. For a scaling factor
λ = 0.75 of the velocity components, one can verify that
for the new polytope X ′ = co {v′1, · · · , v′4, õ1, õ2} shown
in Figure 3, where v′1 = (− 5π

12 ,−0.75), v′2 = ( 5π
12 ,−0.75),

v′3 = ( 5π
12 , 0.75), and v′4 = (− 5π

12 , 0.75), both the strict in-
variance conditions and the strict backward invariance
conditions are solvable at the vertices of X ′ not in O
using control inputs that satisfy −3 ≤ u ≤ 3. Hence,
X ′ satisfies the IBC property under −8 ≤ τ ≤ 8. One
can see that with X or X ′, we provide for each posi-
tion within the given limits a corresponding safe speed
range, staying within those guarantees us that the sys-
tem is safe at all times. This safe profile can inform
learning-based speed scheduling algorithms (Ostafew et
al. , 2014), which gradually increase a robot’s speed
based on information from previous runs. Using the same
example, suppose that it is required under the actua-
tor limits −10 ≤ τ ≤ 10 to connect the state point
x0 = (θ0, θ̇0) = ( 5π

12 , 0.95) to the origin (0, 0) in finite
time within the given state constraints. Since both state
points lie in the IBC region X, we know that we can
find control inputs satisfying the constrained mutual ac-
cessibility in finite time under the given actuator limits.
Figure 4 shows two trajectories connecting x0 to the ori-
gin: the red trajectory is obtained by applying the tra-
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Fig. 4. An example of connecting two state points of the robot

arm under the actuation limits −10 ≤ τ ≤ 10: the black dashed
lines form the safe speed profile for the one DOF robot; the red

trajectory is under the traditional control law in equation (15)

of (Helwa, Caines , 2014a), with tf = 10 s; the blue trajectory is
the proposed one.

Pos

Vel

Fig. 5. A safe speed profile obtained by intuition.

ditional control law of connecting two states based on
the control Gramian, equation (15) of (Helwa, Caines ,
2014a), with tf = 10 s, while the blue trajectory is ob-
tained by first using the PWL feedback discussed in the
proof of Theorem 4.3 to decelerate the robot arm and
avoid violating the safety state constraints, and then us-
ing a traditional control law. One can see that using the
traditional control law (equation (15) of (Helwa, Caines ,
2014a)), there is no guarantee that the state constraints
are satisfied in the transient phase.

We now show the advantages of the proposed safe speed
profiles compared to the ones obtained by intuition. One
can simply argue that to prevent the violation of the po-
sition constraints near the edge x1 = π

2 , only a reduced
forward velocity is allowed. Similarly, to prevent the vio-
lation of the position constraints near the edge x1 = −π2 ,
only a reduced backward velocity is allowed. This results
in a polytope XI shown in Figure 5, which represents a
safe speed profile obtained by intuition. Our proposed
speed profiles in Figure 3 have the following advantages
compared to the intuitive one in Figure 5. First, our pro-
posed method provides a systematic approach for ob-
taining the vertices of the polytopic safe region, which
is an advantage compared to the intuitive method, es-
pecially for more complicated systems. Second, our con-
structed polytopes satisfy the IBC property, and conse-
quently all the states in the interior of the polytope are
mutually accessible through its interior by applying con-
trol inputs within the actuator limits. Thus, there is no
loss of generality (in terms of controllability) in restrict-
ing the robot to operate in the proposed safe position-
speed regions. On the other hand, the regions found by
intuition are not necessarily IBC. Third, since any state
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in our proposed safe position-speed regions is reachable
from any other state in the safe region through the region
itself, in planning a reference trajectory for the robot (a
position path and its corresponding scheduled speed), it
would then be recommendable to select the states of the
reference trajectory inside the proposed regions, which
would ensure that they can be reached within the safety
constraints and under the actuator limits. On the other
hand, one can verify that the state xs ∈ XI , shown in
Figure 5, is not reachable from 0 ∈ X◦I within XI , i.e.
it is not reachable from other states in the safe region
through the region itself. Hence, xs should not be se-
lected as a state in a reference trajectory, as the system
cannot reach the state from a safe starting position with-
out violating the constraints. One can see from Figure
3 that our proposed algorithm automatically excludes
these non-reachable parts of the safe region to ensure
full controllability on the proposed safe region.

It is noteworthy that all the polytopes in Figures 3 and
5 satisfy the controlled invariance property. One can see
that the polytopeXI in Figure 5 forms a larger invariant
set compared to the polytopes in Figure 3. Indeed, using
standard algorithms for calculating the largest polytopic
invariant set within the given safety constraints (Blan-
chini , 1999), we end up with a polytope similar to XI

in Figure 5. Nevertheless, we emphasize that our pro-
posed algorithm intentionally excludes some parts from
the largest controlled invariant set to achieve the advan-
tages mentioned in the previous paragraph.

5.2 Ground Robots

In this subsection, we consider ground robots, modeled
as unicycles with acceleration limits. In particular, we
have the model

ẋ1 = x4cos(x3)

ẋ2 = x4sin(x3)

ẋ3 = u2

ẋ4 = u1,

(12)

where (x1, x2) is the Cartesian position of the unicycle
in a world frame, x3 is the orientation of the unicycle
w.r.t. the x1-axis, x4 is the linear driving velocity, u1 is
the linear driving acceleration input, and u2 is the steer-
ing velocity input. Notice that (12) differs from the kine-
matic model of unicycles, in which it is assumed that one
can directly control the linear driving velocity. While it
is easy to show that under the kinematic model we can
ensure safety of the ground robots since we can deceler-
ate the robot to zero velocity immediately, this is not the
case for the more practical model (12). Imagine a sce-
nario in which the robot is initiated at a high linear ve-
locity x4 in the direction of the edges of a given Cartesian
region. It may happen that with the limits on the linear
acceleration input u1, we cannot decelerate the robot
fast enough to avoid collision. Hence, we study here the

construction of safe speed profiles for (12). We hereby
assume that for low linear velocities, |x4| ≤ x4,min, we
can safely connect any two states of (12) in the given
position-velocity limits, and so the problem would be
only in operating the robot at high linear velocities.

The system (12) can be feedback linearized as follows
(Chapter 5 of (Isidori , 1995)). By defining the outputs
y1 = x1, y2 = x2, and using the feedback linearization
law:[

u1

u2

]
=

[
cos(x3) −x4 sin(x3)

sin(x3) x4 cos(x3)

]−1 [
v1

v2

]
, (13)

we get ÿ1 = ẍ1 = v1 and ÿ2 = ẍ2 = v2, which are two
decoupled double integrators representing the dynamics
in the two Cartesian directions. Notice that the matrix in
(13) is invertible at any state except those having x4 = 0.
Thus, for low linear velocities, one should not use (13)
to avoid the singularity problem. Also, notice that one
can define limits on the inputs of the linearized model
v1, v2 to ensure that the actuator limits of the ground
robot, i.e. the limits on u1, u2, are satisfied. For instance,
suppose that the actuator limits for the ground robot
are: −10 ≤ u1 ≤ 10 and −5 ≤ u2 ≤ 5. Also, suppose
that we depend on the feedback linearization law (13) in
controlling the ground robot as long as the linear velocity
x4 is such that |x4| ≥

√
2 m/s which clearly prevents

the discussed singularity problem. With the aid of (13),
it can be verified that if −5 ≤ v1 ≤ 5 and −5 ≤ v2 ≤ 5,
then the actuator limits on u1, u2 are always satisfied.

Similar to our discussion in the previous subsection,
given position and velocity limits in the two Cartesian
directions as well as limits on the acceleration inputs
v1, v2, one can exploit Algorithm 1 to construct an
IBC region for the linearized system in the new coor-
dinates. The IBC region represents safe speed profiles
for the robot in the two Cartesian directions. For in-
stance, suppose that we have the position constraints
−30 ≤ x1 ≤ 30, −30 ≤ x2 ≤ 30, the velocity con-
straints −7 ≤ ẋ1 ≤ 7, −7 ≤ ẋ2 ≤ 7, and the constraints
−5 ≤ v1 ≤ 5, −5 ≤ v2 ≤ 5 obtained from the actuator
limits of the ground robot as discussed above. Using Al-
gorithm 1, we construct the safe speed profiles for the
two Cartesian directions as shown in red in Figures 6
and 7.

Now to connect any two states x0 and xf within the ob-
tained safe region, one can start by finding a connect-
ing trajectory x(t), t ∈ [0, tf ], for the linearized model.
Then, one can depend on the equivalence between the
linearized model and (12) as long as the linear velocity x4

does not drop to a low value (|x4| <
√

2 in our example).
For the parts of the obtained connecting trajectory x(t)
with low linear velocities x4, we avoid using (13), and
directly control the nonlinear model (12) to connect the
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Fig. 6. The proposed safe speed profile in the x1-direction. Blue

trajectory: proposed trajectory for achieving constrained mutual
accessibility. Black trajectory: standard PD controller, asymptot-

ically stabilizing the desired state.

two states of the trajectory having low linear velocities,
which can always be done safely by assumption as stated
at the end of first paragraph in this subsection. Consid-
ering again our example, suppose that it is required to
connect the state x0 = (x1, x2, ẋ1, ẋ2) = (22, 22, 5, 5) to
the state xf = (x1, x2, ẋ1, ẋ2) = (−25, 25, 0, 0) in finite
time within the given position and velocity constraints
and under the actuator limits of the ground robot. Notice
that the ground robot is initiated with positive velocities
in the directions of the edges x1 = 30 and x2 = 30. Fig-
ures 6 and 7 show, in blue lines, the proposed trajectories
that achieve the constrained mutual accessibility. These
proposed trajectories are obtained by first applying the
PWL feedback, described in the proof of Theorem 4.3,
to decelerate the ground robot, and hence avoid violat-
ing the safety position and velocity constraints. When
|x4| <

√
2, we stop using (13), and directly control the

nonlinear system. In particular, we first decelerate the
robot to zero velocity safely, then we set u1 = 0 and
control the input u2 to change the steering angle of the
robot, so that the robot heads towards the desired point
in the (x1, x2)-plane, and finally, we set u2 = 0 and
control u1 to reach the desired point in finite time. It is
worth mentioning that there may be more optimal ways
to control the robot, but since in this paper we focus on
the notion of controllability under constraints and not
on optimal controller design, we tried to show the exis-
tence of a feasible trajectory achieving the constrained
mutual accessibility. Nevertheless, as shown next, stan-
dard controllers are usually not sufficient for achieving
the constrained mutual accessibility. Figures 6 and 7 also
show, in black lines, the trajectories initiated at x0 un-
der stabilizing PD controllers, designed for the linearized
models in the x1-, x2-directions to stabilize the state
xf . One can see that using standard PD controllers, the
safety position and speed constraints are not necessar-
ily satisfied in the transient phase, which illustrates the
need for the proposed results of the paper.

5.3 Unmanned Aerial Vehicles (UAVs)

In this subsection, we utilize our proposed algorithm
to construct safe controllable position-speed regions for
an important class of UAVs, namely quadrotor vehicles
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Fig. 7. The proposed safe speed profile in the x2-direction. Blue

trajectory: proposed trajectory for achieving constrained mutual
accessibility. Black trajectory: standard PD controller, asymptot-

ically stabilizing the desired state.

(Schoellig et al. , 2011), and then show using experi-
mental results on a Parrot AR.Drone 2.0 platform how
these regions can be useful for the safe control of UAVs
in confined spaces and under vehicle actuation limits.
To that end, we start by reviewing briefly the dynamic
model of quadrotor vehicles (Schoellig et al. , 2011). The
quadrotor vehicle has six degrees of freedom: the trans-
lational position (x, y, z), measured in the inertial coor-
dinate frame O, and the vehicle Euler angles (φ, θ, ψ),
rotating the inertial frame into the body-fixed frame V,
where φ is the roll angle representing (for small angles)
the rotation of the quadrotor vehicle around the body
x-axis, θ is the pitch angle representing (for small an-
gles) the rotation of the vehicle around the body y-axis,
and ψ is the yaw angle representing (for small angles)
the rotation around the body z-axis. Notice that the full
state of the quadrotor vehicle also includes the transla-
tional velocities (ẋ, ẏ, ż) in the inertial frame O and the
rotational velocities of the body frame (p, q, r) in V, and
so the dynamic model of the quadrotor vehicle has 12
states. Let s := (x, y, z). The translational dynamics of
the quadrotor vehicle are represented by

s̈ = RZYX(ψ, θ, φ)f̄ − ḡ, (14)

where f̄ = (0, 0, f), f is the sum of the four ro-
tor forces Fi normalized by the vehicle mass m, i.e.
f =

∑4
i=1(Fi/m), ḡ = (0, 0, g), and RZYX(ψ, θ, φ) is

the rotation matrix for transforming coordinates from
V to O, which is given by

RZYX(ψ, θ, φ) = Rz(ψ)Ry(θ)Rx(φ),

where

Rx(φ) =


1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)

 ,

Ry(θ) =


cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

 ,
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Rz(ψ) =


cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 .

The Parrot AR.Drone 2.0 platform has an onboard con-
troller that takes four inputs: the desired pitch angle θd,
the desired roll angle φd, the desired vertical velocity of
the vehicle żd and the desired angular velocity of the ve-
hicle around the body’s z-axis rd, and then it calculates
the required four motor forces Fi,d, i ∈ 1, · · · , 4. In this
paper, we assume that all the states of the quadrotor ve-
hicle are measured. We first use standard, nonlinear con-
trollers to stabilize the z-value of the vehicle to a fixed
value z = zd, and the yaw angle of the vehicle to zero
(ψd = 0). Then, we manipulate θd and φd to control the
vehicle’s motion in the x-, y-directions. Assuming that
the nonlinear controller successfully stabilizes the vehi-
cle at z = zd and ψ = ψd = 0, we can assume z̈ = 0 and
ψ = 0 in the translational dynamics (14), and then (14)
can be reduced to

ẍ = g tan(θ), (15)

ÿ = −g tan(φ)/cos(θ). (16)

Now we linearize the dynamics (15) and (16), so that
we can apply the proposed algorithm in this paper to
calculate safe speed profiles for the quadrotor vehicle in
the x-, y-directions. To that end, let v1 := g tan(θd) and

v2 := −g tan(φd)
cos(θd) . Equivalently, θd = arctan( v1g ) and

φd = arctan(−v2cos(θd)
g ). If the onboard controller suc-

cessfully stabilizes the angles φ and θ to these selected
reference angles φd and θd, respectively, then the trans-
lational dynamics in the x-, y-directions become

ẍ = v1, (17)

ÿ = v2, (18)

which are decoupled double integrators. Since the on-
board controller typically operates much faster than the
position controllers 5 , it is reasonable to assume that the
angles φ and θ are stabilized to the desired ones φd and
θd quickly, and we can assume that (17) and (18) hold
approximately.

Next, we translate the actuator limits on the quadro-
tor vehicle to constraints on the linearized inputs v1, v2.
For our quadrotor platform, we have the following con-
straints on the inputs to the onboard controller: |φd| ≤
0.32 rad, and |θd| ≤ 0.32 rad. It can be verified that if
|vi| ≤ 3.247, i ∈ {1, 2}, then the constraints on φd and
θd are satisfied.

5 In our experiments, the position controllers operate at a
70 Hz rate, while the onboard controller operates around
three times faster.

Based on the above, our role reduces to constructing for
(17) and (18) IBC regions under the limits |vi| ≤ 3.247,
i ∈ {1, 2}. Suppose, for instance, that the position safety
constraints are: −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2. Similar to
Example 4.1 and the previous subsections, we use Algo-
rithm 1 to construct the IBC polytopes. Figure 8 shows
the IBC region for the dynamics in the x-direction un-
der the limit |v1| ≤ 3.247. Similarly, one can construct
an IBC region for the dynamics in the y-direction un-
der |v2| ≤ 3.247. As discussed before, the IBC region
in Figure 8 provides for each position a corresponding
safe speed range. If one limits the speed at any position
x, −2 ≤ x ≤ 2, to the safe speed range, then there ex-
ist feasible control inputs that keep the state trajectory
inside the IBC region, and prevent the violation of the
position safety constraints. Moreover, we provide in the
proof of Theorem 4.3 of the paper a constructive method
for synthesizing a PWL feedback that keeps the state
trajectories inside the IBC regions.

In our first experiment, we stabilize the y-value of the
quadrotor vehicle to 0, the z-value to zd = 1.5, and the
yaw angle to ψd = 0. We also allow the vehicle to gain
an initial velocity in the direction of the edge of the po-
sition range −2 ≤ x ≤ 2, and then initiate our proposed
PWL feedback in the proof of Theorem 4.3 to deceler-
ate the quadrotor vehicle to zero velocity, and so prevent
the vehicle from violating the position constraints. Fig-
ure 8 shows samples of the state trajectories, under the
proposed feedback, initiated at different critical states
inside the IBC region (blue trajectories). One can see
that for all the shown, critical initial conditions in the
IBC region, the proposed feedback successfully keeps the
state trajectories in the IBC region, and prevents the vi-
olation of the safety constraints. After decelerating the
vehicle to zero velocity, one can apply a robust hover-
ing controller to keep the vehicle in place, or one can
safely drive the vehicle to a safe point within the posi-
tion constraints (e.g., the center of the safe region). Fig-
ure 8 also shows two cases where the vehicle is initiated
at high initial velocities, outside the safe speed profile,
in the direction of the edge x = 2, but with initial posi-
tions inside of the position constraints (red trajectories).
One can see that for these cases the proposed feedback,
built based on the vehicle’s actuator limits, cannot de-
celerate the vehicle fast enough, and the position safety
constraints are violated. The experiment shows the im-
portance of keeping the quadrotor vehicle’s speed within
the safe speed profile for preventing collisions.

In the second experiment, we compare the proposed safe
speed profile to the ones that can be obtained by intu-
ition or by the controlled invariance property. One can
argue that the states in the red triangles in Figure 9
should be included in the safe position-speed region since
starting from any state in the red triangles, the position
constraints are not violated. For instance, starting very
close to the edge x = 2 with a high negative velocity
will make the vehicle head towards the other edge, and
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Fig. 9. The state trajectories connecting the origin to some points

outside the IBC region (dotted lines: simulations; solid lines:
experiments). Points within the red triangles are not reachable

from other points in the safe region through the region itself.

the position constraints are not violated. However, these
states in the red triangles are not reachable from all other
states inside the safe region through the region itself.
Hence, our algorithm automatically truncates these red
triangles to ensure full controllability on the safe region.
In Figure 9, we show the state trajectories of connect-
ing the origin to some points in the red triangles. The
dotted blue trajectories are obtained from simulation by
applying the standard open-loop control law of connect-
ing two states based on the control Gramian (equation
(15) of (Helwa, Caines , 2014a), with tf = 10 s). The
solid blue trajectories are real, experimental trajectories
obtained by applying similar acceleration profiles to the
real system. One can see that the quadrotor vehicle can-
not reach the points in the red triangles without violat-
ing the safety position constraints. Hence, it is always
recommended that the points of reference trajectories
are selected inside the IBC region to ensure that they
can be reached from other safe states with trajectories
that completely lie inside the safe region.

Thirdly, we show how the constructed IBC regions can
be useful in determining feasible reference trajectories
for the quadrotor vehicle given the position safety con-
straints and the vehicle’s actuator limits. For example,
suppose that it is required to track a circle in the (x, y)-
plane of radius 1.5 m, centered at (0, 0). This can be
achieved by tracking sinusoidal signals in both x-, y-
directions, with a 90◦ phase shift. Also, suppose that we
have three possible frequencies for going through the cir-
cle: 0.1 Hz, 0.2 Hz, or 0.4 Hz. Using the constructed safe
speed profiles in the x-, y-directions, represented by the
IBC regions, we want to determine a suitable, safe fre-
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Fig. 10. The speed profile of the reference signal in the x-direction

for three different frequencies: 0.1 Hz (green), 0.2 Hz (red), 0.4 Hz

(blue). The IBC region is shown in black.

quency. Figure 10 shows, for instance, the speed profile of
the reference sinusoidal signal in the x-direction for the
three frequencies. A similar figure can be drawn for the y-
direction. One can see that for the 0.4 Hz rate, the refer-
ence speed for the quadrotor vehicle does not completely
lie within the safe speed profile, and so we avoid this
frequency. Also, the reference speed for the 0.2 Hz rate
is within the safe speed profile and it is faster than the
0.1 Hz rate. Thus, we select the 0.2 Hz rate as reference
trajectory. Figure 11 shows the tracking of the reference
signal in the (x, y)-plane under standard tracking con-
trollers and starting from two initial conditions. The tra-
jectory starting at (0, 0), shown in green, remains within
the safety position constraints as required. Notice that
achieving perfect asymptotic tracking of reference sig-
nals is out of the scope of this paper. It is worth mention-
ing that although we know from the IBC property that
there exist uniformly bounded control inputs connect-
ing the initial state (x, y, ẋ, ẏ) = (1.8,−1.2, 0.31,−0.46)
to the states of the reference trajectory within the IBC
region, standard tracking controllers may not achieve
asymptotic tracking with trajectories that completely
lie within the safe position constraints (see, for instance,
the blue line in Figure 11). Hence, for the cases where the
quadrotor vehicle is initiated at risky initial conditions
(with a positive velocity in the direction of the position
region edge), it is recommended that one first applies
the PWL feedback in the proof of Theorem 4.3 to safely
decelerate the vehicle, and then connects the vehicle to
the point (0, 0) in the center of the position region, and
finally, applies the standard tracking controller (see the
magenta line representing the real trajectory connect-
ing the initial position to the origin within the safe po-
sition region). There may be more advanced controller
designs that achieve the tracking objective, but as men-
tioned before, we focus in this paper on controllability
under constraints and use the experiments to illustrate
the concept.

As discussed before, one advantage of the proposed algo-
rithm for constructing the IBC regions is that it is com-
putationally efficient. This enables us to implement the
algorithm in real time to update the safe speed profile on-
line if the position constraints change. To illustrate the
main idea, in the next set of experiments, we use the pro-
posed algorithm to achieve dynamic obstacle avoidance
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Fig. 11. The tracking of the circle in the (x, y)-plane under stan-
dard tracking controllers and starting from two initial conditions.

Red line: The reference trajectory in the (x, y)-plane (the circle).

Green line: starting from the origin. Blue line: starting from the
initial state (x, y, ẋ, ẏ) = (1.8,−1.2, 0.31,−0.46). Magenta line:

the proposed trajectory connecting the initial state to the origin
before starting the standard tracking controller.

when the dynamic obstacles intersect with the quadro-
tor vehicle’s path. The idea is to detect that a dynamic
obstacle is about to intersect with the quadrotor vehi-
cle’s path, and then to update the position constraints
accordingly. Then, our proposed algorithm is applied
in real time to calculate for the updated position con-
straints a corresponding safe speed profile 6 , as well as
an associated PWL feedback, as proposed in the proof of
Theorem 4.3, which keeps the quadrotor vehicle within
the updated safety position constraints. In the fourth ex-
periment, we let the quadrotor vehicle track a sinusoidal
reference trajectory in the y-direction with a frequency
of 0.1 Hz, while stabilizing the x-value to xd = 0 and
keeping a constant height. We then run another quadro-
tor vehicle, our dynamic obstacle, to track a sinusoidal
reference trajectory in the x-direction with a frequency
of 0.1 Hz, while stabilizing the y-value to yd = 0 and
again keeping a constant height. The two vehicles collide
if their x-, y-coordinates coincide. To achieve collision
avoidance, we run the proposed algorithm for the first
quadrotor vehicle in real time to update the safe speed
profile online. Figures 12, 13 and 14 show that the pro-
posed algorithm succeeds and prevents the collision be-
tween the two vehicles 7 . To emphasize the effect of our
proposed algorithm, we also illustrate in Figures 12, 13
and 14 in green the case where we do not run our pro-
posed algorithm to update the safe speed profile online.
One can see that the Euclidean distance between the x-,
y-coordinates of the two vehicles drops below 0.5 m in
this case, which we consider a crash given the vehicle
body radius of 0.32 m.

In Figures 15, 16 and 17, we repeat the same experi-
ment after replacing the second quadrotor vehicle with a
random human motion that intersects with the path of

6 The safe speed profile is updated at each sampling instant,
where the sampling frequency is 70 Hz.
7 The radius of the quadrotor body is 0.32 m, and so the
Euclidean distance between the x-, y-coordinates of the two
vehicles (

√
(x1 − x2)2 + (y1 − y2)2) should be kept higher

than 0.64 m.
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Fig. 12. The x-values of the two vehicles. Blue line: Our controlled

quadrotor vehicle with the proposed algorithm for updating the

safe speed profile. Green line: Our controlled quadrotor vehicle
without the proposed algorithm. Red line: The other quadrotor

vehicle (the dynamic obstacle).
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Fig. 13. The y-values of the two vehicles. Blue line: Our controlled

quadrotor vehicle with the proposed algorithm for updating the

safe speed profile. Green line: Our controlled quadrotor vehicle
without the proposed algorithm. Red line: The other quadrotor

vehicle (the dynamic obstacle).
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Minimum allowed distance = 0.64 m

Fig. 14. The Euclidean distance between the x-, y-coordinates

of the two vehicles (
√

(x1 − x2)2 + (y1 − y2)2). Blue line: with

the proposed algorithm for updating the safe speed profile online.
Green line: without updating the safe speed profile online (the

experiment was stopped after collision).

our controlled quadrotor vehicle. One can see from the
figures that our proposed algorithm succeeds to prevent
the collision with the moving human 8 .

6 Conclusions

In this paper, we studied the problem of constructing
IBC regions for affine systems. That is, we construct
safe regions in the state space within which we can fully

8 A demo video can be found at:
https://drive.google.com/folderview?id=
0BxQ2msoW3w5sampMRG9rZzluVjg&usp=sharing.
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Fig. 15. The x-values of the quadrotor vehicle and the moving

human. Blue line: quadrotor vehicle with the proposed algorithm

of updating the safe speed profile online. Red line: human motion.
Green line: quadrotor vehicle without the proposed algorithm.
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Fig. 16. The y-values of the quadrotor vehicle and the moving
human. Blue line: quadrotor vehicle with the proposed algorithm

of updating the safe speed profile online. Red line: human motion.

Green line: quadrotor vehicle without the proposed algorithm.
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Fig. 17. The Euclidean distance between the x-, y-coordinates

of the quadrotor vehicle and the moving human. Blue line: with
the proposed algorithm for updating the safe speed profile online.
Green line: without updating the safe speed profile online (the

experiment was stopped after collision).

control the given affine system using uniformly bounded
control inputs. After formulating the problem, we dis-
cussed the difficulties that are faced if one tries to di-
rectly exploit the existing results for checking IBC on
given polytopic regions. Instead, we explored the geome-
try of the problem, provided a computationally efficient
algorithm for constructing IBC regions, and proved its
soundness. As sample case studies, we showed how our
proposed algorithm can be useful for constructing safe
speed profiles for different classes of robotic systems. We
also provided several experimental results to verify the
theoretical contributions of the paper. This includes us-
ing our proposed algorithm for real-time collision avoid-
ance for UAVs.
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Fig. 18. An illustrative figure for the triangulation used in the
proof of Theorem 4.3.

Appendix

Continuation of the Proof of Theorem 4.3: We con-
struct a continuous PWL feedback up(x) under which all
the trajectories initiated in X◦ tend to O through X◦.
At a vertex v̄ ∈ O, select input ū such that Av̄+Bū = 0,
which is always possible by the definition of O. Next,
for the vertices vi satisfying B ∩ C◦(vi) 6= ∅, identify
b̄i ∈ B ∩ C◦(vi). Since b̄i ∈ C◦(vi), then by definition
hj ·b̄i < 0, for all j ∈ J(vi). Also, since b̄i ∈ B, there exists
ūi ∈ Rm such that Būi = b̄i. Now for ui = ciūi ∈ Rm,
where ci > 0, we have

hj · (Avi +Bui) = hj ·Avi + cihj · b̄i, (19)

for all j ∈ J(vi). The second term of the right-hand side
of (19) is always negative, and we can always select ci > 0
sufficiently large such that hj · (Avi + Bui) < 0, for all
j ∈ J(vi). The above control assignment at the vertices
of X satisfies the invariance conditions, and for the ver-
tices having vi /∈ O and B ∩ C◦(vi) 6= ∅, it satisfies the
invariance conditions strictly (with strict inequalities).
At x = 0, select u = 0. We construct a special trian-
gulation of X using the point set {v1, · · · , vp, 0}, where
{v1, · · · , vp} are the vertices ofX, such that if Si is an n-
dimensional simplex in the triangulation, then 0 ∈ Si is
a vertex of Si (Lee , 1997). This can be carried out by tri-
angulating each facet of X, Fj , into (n− 1)-dimensional
simplices, and then taking the convex hull of 0 ∈ X◦

and the (n − 1)-dimensional simplices to form a trian-
gulation of X consisting of n-dimensional simplices Si
with the desired property. Figure 18 shows a 2D illus-
tration of the triangulation. Based on the control values
selected at {v1, · · · , vp, 0}, one can always construct on
each simplex Si a unique affine feedback kix+ gi. More-
over, [ki gi]

T = [V̄ 1̄]−1w̄, where V̄ is a matrix whose
rows are the transpose of the vertices of Si, 1̄ is a col-
umn of ones, and w̄ is a column of the transpose of the
selected inputs at the vertices of Si (Habets, van Schup-
pen , 2004). Since u = 0 at x = 0 by assignment and
0 ∈ Si, then gi = 0; that is, the feedback on each Si is
linear. It can be easily shown that the overall control law
is a continuous PWL feedback, denoted by up(x), and
by a simple convexity argument, up(x) satisfies the in-
variance conditions of X at every x ∈ ∂X (Habets, van
Schuppen , 2004).

Let f(x) := Ax+Bup(x). Since 0 is a vertex in each Si,
f(0) = 0 and f(x) is linear on each Si, then the vector
field on ∂(λX) represents λ-scaled vectors of the vector
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field on ∂X for any λ ∈ (0, 1). Therefore, up(x) satisfies
the invariance conditions of λX for any λ ∈ (0, 1), and
so starting from any x0 ∈ λX, φ(x0, t, up) ∈ λX for all
t ≥ 0.

We next show that for every x0 ∈ X◦, φ(x0, t, up)→ O
as t →∞, which implies by a simple argument that we
can steer the trajectories to an ε-neighborhood of O in
finite time, where ε > 0 can be selected arbitrarily small.
Since 0 ∈ X◦ by assumption, it is known that X can be
expressed as X = {x ∈ Rn : ni · x ≤ 1, i = 1, · · · , r},
where ni ∈ Rn, ni · x = 1 if x ∈ Fi and ni · x < 1 if
x ∈ X, x /∈ Fi. We define V (x) = maxi∈{1,··· ,r} ni · x.
Notice that if x ∈ ∂X, then V (x) = 1. Similarly, if
x ∈ ∂(λX) for λ ∈ (0, 1), then V (x) = λ. One can
show that V (x) is locally Lipschitz, and its upper right
Dini derivative D+

f V (x) = maxi∈I(x) ni ·(Ax+Bup(x)),

where I(x) = {i ∈ {1, · · · , r} : ni · x = V (x)} (Danskin,
, 1966). With the aid of invariance conditions, it is shown
in Lemma 5.3 of (Helwa, Caines , 2014a), which also
applies to non-simplicial polytopes, that D+

f V (x) ≤ 0

for each x ∈ X. We hereby show that additionally {x ∈
X : D+

f V (x) = 0} ⊂ O. Notice that for a vertex

vi ∈ O, f(vi) = 0 by assignment, and so D+
f V (vi) = 0.

Next, the rest of the vertices of X satisfy B∩C◦(vi) 6= ∅
by assumption, and we assigned the control inputs at
these vertices to satisfy the invariance conditions strictly.
Thus, nj · (Avi + Bup(vi)) < 0, for all j ∈ J(vi). Note
that j ∈ I(vi) if by definition nj · vi = V (vi) = 1, i.e.
vi ∈ Fj . Then by the strict invariance conditions, we
have nj · (Avi + Bup(vi)) < 0 for all j ∈ I(vi), and so
D+
f V (vi) < 0 for all the vertices vi /∈ O. Let x̄ ∈ ∂X be

arbitrary, and suppose that x̄ ∈ Sk. Let Sx̄ denote the
smallest sub-simplex of Sk such that x̄ ∈ S◦x̄, the relative
interior of Sx̄. Since x̄ ∈ S◦x̄, we can write x̄ =

∑
s αsvs,

where αs > 0,
∑
s αs = 1, and vs are the vertices of Sx̄,

which are a subset of the vertices of the n-dimensional
simplex Sk. Since the vector field f(x) is linear on the
simplex Sk by construction, we have f(x̄) =

∑
s αsf(vs).

We now study D+
f V (x̄). It is straightforward to show

I(x̄) ⊂ I(vs) for every vertex vs ∈ Sx̄. Then,

D+
f V (x̄) = max

i∈I(x̄)
ni ·

∑
s

αsf(vs)

≤
∑
s

αs max
i∈I(x̄)

ni · f(vs)

≤
∑
s

αs max
i∈I(vs)

ni · f(vs) =
∑
s

αsD
+
f V (vs).

Since αs > 0 and D+
f V (vs) ≤ 0 for every s, then

D+
f V (x̄) = 0 only if D+

f V (vs) = 0 for all the ver-
tices vs ∈ Sx̄, which happens only if vs ∈ O for ev-
ery vertex vs ∈ Sx̄. For this case, since the set O
is affine, then x̄ ∈ O. To sum up, for any x ∈ ∂X,
if D+

f V (x) = 0, then x ∈ O. Since the vector field

on ∂(λX) represents λ-scaled vectors of the vector
field on ∂X for all λ ∈ (0, 1), it can be easily shown
that for any x ∈ X, if D+

f V (x) = 0, then x ∈ O,

i.e. {x ∈ X : D+
f V (x) = 0} ⊂ O. Recall that

D+
f V (x) ≤ 0 for all x ∈ X. By LaSalle’s Invariance

Principle, we know that the trajectories φ(x0, t, up) tend
to {x ∈ X : D+

f V (x) = 0} ⊂ O as t→∞.

Combining the two parts above, for any x0 ∈ X◦,
φ(x0, t, up) eventually tends to O through X◦.
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