
A Common Framework for Attitude Synchronization of Unit Vectors in
Networks with Switching Topology

Pedro O. Pereira, Dimitris Boskos and Dimos V. Dimarogonas

Abstract— In this paper, we study attitude synchronization
for elements in the unit sphere of R3 and for elements in the
3D rotation group, for a network with switching topology. The
agents’ angular velocities are assumed to be the control inputs,
and a switching control law for each agent is devised that guar-
antees synchronization, provided that all elements are initially
contained in a given region, unknown to the network. The
control law is decentralized and it does not require a common
orientation frame among all agents. We refer to synchronization
of unit vectors in R3 as incomplete synchronization, and of
3D rotation matrices as complete synchronization. Our main
contribution lies in showing that these two problems can be
analyzed under a common framework, where all elements’
dynamics are transformed into unit vectors dynamics on a
sphere of appropriate dimension.

I. INTRODUCTION

Decentralized control in a multi-agent environment has
been a topic of active research, with applications in large
scale robotic systems. Attitude synchronization in satellite
formations is one of the relevant applications [1], [2], where
the control goal is to guarantee that a network of fully actu-
ated rigid bodies acquires a common attitude. Coordination
of underwater vehicles in ocean exploration missions [3], and
of unmanned aerial vehicles in aerial exploration missions,
may also be casted as attitude synchronization problems.

In the literature, attitude synchronization strategies for
elements in the special orthogonal group are found in [4]–
[12], which focus on complete attitude synchronization; and
in [13]–[23], which focus on incomplete attitude synchro-
nization. In this paper, we focus on both complete and
incomplete attitude synchronization. We refer to incomplete
attitude synchronization when the agents are unit vectors
in R3, a space also called S2; and we refer to complete
attitude synchronization, when the agents are 3D rotation
matrices, a space also called SO(3). Incomplete synchro-
nization represents a relevant practical problem, when the
goal among multiple agents is to share a common direction.
In flocking, for example, moving along a common direction
is a requirement. Also, in a network of satellites, whose
antennas are to point in a common direction, incomplete
synchronization may be more important than complete.

In [5]–[8], [10]–[12], state dependent control laws for
torques are presented which guarantee synchronization for
elements in SO(3), while in [16], [17], [24] state dependent
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control laws for torques are presented which guarantee syn-
chronization for elements in S2. In these works, all agents are
dynamic and their angular velocities are part of the state of
the system, rather than control inputs. In this paper, however,
we consider kinematic agents and we design control laws,
for the agents’ angular velocities, which are not exclusively
state dependent, but are also time dependent, with the time
dependency encapsulating the case of a switching network
topology.

We note that, regarding synchronization in SO(3), relevant
results are found in [20], [25]–[28]. In [20], [27]–[29],
consensus on non-linear spaces is analyzed with the help
of a common weak non-smooth Lyapunov function, i.e., a
Lyapunov function which is non-increasing along solutions.
Also, in [25], control laws which guarantee synchronization
under a switching topology are presented, under the hypoth-
esis of a dwell time between consecutive switches.

In our proposed framework, we relax the assumption of
a dwell time by providing conditions for synchronization
under average dwell time. Our approach is based on the
construction of a common weak non-smooth Lyapunov func-
tion for analyzing synchronization in Sn. In order to handle
the non-smoothness of the proposed Lyapunov function,
we present an invariance-like result (see also [30]–[33] for
invariance like theorems for switched systems). We propose
control laws for angular velocities of unit vectors in R3 and
3D rotation matrices that guarantee synchronization for a
network of agents with switching topology. The control laws
devised for unit vectors and rotation matrices achieve differ-
ent goals, and differ in two aspects worth emphasizing. First,
controlling rotation matrices requires more measurements
when compared with controlling unit vectors; secondly, while
controlling rotation matrices requires full actuation, i.e.,
all body components of the angular velocity need to be
controllable, controlling unit vectors does not. Our main
contribution compared to the aforementioned literature lies
in analyzing both problems under a common framework,
in order to allow for a unified stability analysis using the
same common weak Lyapunov function. Particularly both
problems are transformed into synchronization problems in
Sm for an appropriate m ∈ N. Since rotation matrices
can be parametrized by unit quaternions [34], which are
unit vectors in R4, these are chosen for the analysis of
the proposed control law. We also note that consensus in
Rn can be casted as a synchronization problem in Sn. We
note that under our framework, we do not require a dwell
time between consecutive switches. A preliminary version
of this work was presented at the 2016 IEEE Conference on
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Decision and Control [35]. With respect to this preliminary
version, this paper provides significant additional results.
In particular, more details on the derivation of the main
theorems and propositions are presented; additional figures
illustrating concepts and results are provided; and supple-
mentary simulations are presented which further illustrate
the theoretical results.

The remainder of this paper is structured as follows. In
Sections II and III, we present the notation used in this
manuscript and conditions on vector fields that guarantee
convergence to the consensus set, respectively. In Section IV,
we describe the common framework for analysis of both
synchronization in S2 and SO(3). In Sections IV-B and
IV-A, the control laws for synchronization in SO(3) and
S2 are presented, respectively, and the agents dynamics are
transformed into the common framework. In Section V,
asymptotic synchronization is established for the common
framework vector field. In Section VI, illustrative simulations
are presented.

II. NOTATION

In what follows, let n and m be two integers. 〈·, ·〉 : Rn×
Rn 7→ R denotes the inner product in Rn. Rm×n denotes
the set of linear mappings from Rn to Rm, and with In ∈
Rn×n as the identity matrix and 0m×n ∈ Rm×n as the zero
matrix. We denote by M3,3 and M̄3,3 the space of symmetric
matrices and antisymmetric matrices in R3×3, respectively.
Given a,b ∈ R3, the matrix S (a) ∈ M̄3,3 is the skew-
symmetric matrix that satisfies S (a) b = a× b; moreover,
given any A ∈ M̄3,3, S−1(A) ∈ R3 denotes the vector for
which S (S−1 (A)) = A. We denote by Sn = {x ∈ Rn+1 :
〈x,x〉 = 1} the set of unit vectors in Rn+1. The map Π :
Sn 3 x 7→ Π (x) ∈ R(n+1)×(n+1), yields a matrix that satisfies
Π (x)y = y−〈y,x〉x for any y ∈ R3, and it represents the
orthogonal projection operator onto the subspace orthogonal
to x ∈ Sn. e1, · · · , en ∈ Sn−1 ⊂ Rn denote the canonical
basis vectors in Rn. Given r ≥ 0, we denote B(r) = {x ∈
Rn : ‖x‖ < r} and B̄(r) = {x ∈ Rn : ‖x‖ ≤ r} as the
open and closed balls of radius r and centered around 0,
respectively. Given a set H, we use the notation |H| for the
cardinality of H. Given a function f : A 3 a 7→ f(a) ∈
B, for some arbitrary domain A and codomain B: if f is
differentiable df denotes its derivative; and given any N ∈ N,
we denote fN : AN 3 a := (a1, · · · , aN) 7→ fN(a) :=
(f(a1), · · · , f(aN)) ∈ BN . Finally, given a manifold M ,
TmM denotes the tangent space to M at m ∈M .

III. PRELIMINARIES

We consider a network of N ∈ N agents, with n ∈ N
the dimension of the space which the agents belong to. We
associate bijectively the (finite) set of network graphs to the
set {1, 2, · · · } =: P ⊂ N, and consider an average dwell
time switching signal σ : R≥0 7→ P [32]. We then consider
a trajectory

R≥0 3 t 7→ x(t) := (x1(t), · · · ,xN(t)) ∈ (Rn)N (1)

which satisfies

ẋ(t) = fσ(t)(x(t)),∀t ∈ R≥0, (2)

and where, for any p ∈ P ,

fp := (f1,p, · · · , fN,p) : (Rn)N 7→ (Rn)N . (3)

We now present conditions on the vector fields {fp}p∈P in (3)
which guarantee that x in (1) converges to the consensus set
C = {(x1, · · · ,xN) ∈ (Rn)N : x1 = · · · = xN}. In later
sections, when studying synchronization in S2 and SO(3),
given the proposed control laws, we verify that the dynamics
of all agents satisfy these conditions, allowing us to refer to
the results in this section.

Given x = (x1, · · · ,xN) ∈ (Rn)N , denote

H(x) := arg max
j∈N

(‖xj‖) ⊆ N . (4)

Then, given x = (x1, · · · ,xN) ∈ (Rn)N and i ∈ H(x),
‖xi‖ is larger than or equal to ‖xj‖ for all j ∈ N . Given
x = (x1, · · · ,xN) ∈ (Rn)N assume that

max
p∈P

〈xi, fi,p(x)〉 ≤ 0, for all i ∈ H(x), (5)

which quantifies an upper bound on the time deriva-
tive of 1

2‖xi‖
2 along a solution that satisfies (2), since

d
dt

1
2‖xi(t)‖

2 = 〈xi(t), fi,σ(t)(x(t))〉, for all time instants t
where the derivative is well defined. On the other hand, given
x 6∈ C, assume that (5) holds and that

∀p ∈ P∃i ∈ H(x) : 〈xi, fi,p(x)〉 < 0. (6)

Condition (6) implies that, for every switching signal p ∈ P ,
and within the set { 1

2‖xi‖
2}i∈H(x), one can always find an

element whose time derivative along a solution of (2), if well
defined, is negative. Conditions (5) and (6) are central for the
proof of the following theorem, which establishes asymptotic
convergence of (1) to C and constitutes the main result of
this section.

Theorem 1: Consider (1) and assume that for certain r >
0 and all x = (x1, · · · ,xN) ∈ B(r)N the following hold:

1) when x 6∈ C,
a) max

p∈P
〈xi, fi,p(x)〉 ≤ 0, for all i ∈ H(x) ,

b) ∀p ∈ P∃i ∈ H(x) : 〈xi, fi,p(x)〉 < 0,
2) when x ∈ C, 〈xi, fi,p(x)〉 = 0 for all i ∈ N and p ∈ P .

Then, the set B̄(r0)
N , with r0 := maxi∈N ‖xi(0)‖ < r,

is positively invariant. Moreover, for each initial condition
x(0) ∈ B(r)N , and given V : (Rn)N 3 x = (x1, · · · ,xN) 7→
V (x) := maxi∈N

1
2‖xi‖

2 ∈ R≥0, there exists a constant
V ∞ ∈ [0, V (x(0))] such that limt→∞ V (x(t)) = V ∞.
Finally, (1) converges asymptotically to V −1(V ∞) ∩ C ⊂
B̄(r0)

N ∩ C.
The proof is found in Appendix I.

IV. SYNCHRONIZATION

In the next subsections, we study synchronization of agents
in S2 and SO(3). More specifically, we first present feedback
control laws for the angular velocities of the agents, with
which we determine the closed loop dynamics. Afterwards,
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Fig. 1: Three unit vectors, ν1, ν2 and ν3, in R3 contained in
closed 30◦-cone formed by the unit vector ν̄.

by means of appropriate transformations, those dynamics are
rewritten in a common form that allows us to study syn-
chronization in S2 and SO(3) under a common framework.
Additionally, in Appendix V, we also show that consensus
in Rn can be casted as a synchronization problem in Sn, for
any n ∈ N.

Definition 1: Given n ∈ N, α ∈ [0, π] and ν̄ ∈ Sn, the
open α-cone C(α, ν̄) is defined as C(α, ν̄) := {ν ∈ Sn :
〈ν̄,ν〉 > cos(α)}, representing the set of unit vectors that
are α close to the unit vector ν̄. Similarly, we define the
closed α-cone C̄(α, ν̄) := {ν ∈ Sn : 〈ν̄,ν〉 ≥ cos(α)}.
In Fig. 1, we illustrate a closed cone, for n = 3, where
three unit vectors ν1, ν2 and ν3 are contained in the closed
30◦-cone formed by the unit vector ν̄.

Consider a group of unit vectors ν = (ν1, · · · ,νN) ∈
(Sn)N , for some N,n ∈ N. We say that ν belongs to an
open (closed) α-cone, for some α ∈ [0, π], if ∃ν̄ ∈ Sn :
ν ∈ C(α, ν̄)N(C̄(α, ν̄)N). We say that ν is synchronized if
ν1 = · · · = νN . We show later that, given the proposed
control laws, synchronization of a group of unit vectors
takes place asymptotically if the group of unit vectors is
initially contained in an open α?-cone, where α? = π

2
for synchronization in S2 and consensus in Rn; and where
α? = π

4 for synchronization in SO(3).
In the next subsections, we always consider a group of

N agents, indexed by the set N := {1, · · · , N}, operating
in either S2, SO(3) or Rn. The agents’ network graph is
modeled as a time varying digraph, R+ 3 t 7→ G(σ(t)) =
{N , E(σ(t))}, with σ : R≥0 7→ P as the switching signal,
and with G(p) and E(p) as the graph and edges’ set cor-
responding to the switching signal p ∈ P (where |P| ≤
2N(N−1)). We also denote Ni(p) ⊂ N as the neighbor set of
agent i ∈ N corresponding to the switching signal p ∈ P;
and, for convenience, we also denote {j1, · · · , j|Ni(q)|} ≡
Ni(q).

In order to perform analysis under a common framework,
we transform all problems’ dynamics into a standard form,
which we describe next. Given n ∈ N, we denote ν =

(ν1, · · · ,νN) : R≥0 7→ (Sn)N as the state of a group of
unit vectors in Sn, which evolves according to the dynamics

ν̇(t) = f̃σ(t)(ν(t)) =

 f̃1,σ(t)(ν(t))
...

f̃N,σ(t)(ν(t))

 ,ν(0) ∈ (Sn)N (7)

where f̃i,σ(t) : (Sn)N 3 ν := (ν1, · · · ,νN) 7→ f̃i,σ(t)(ν) ∈
Tνi

Sn ⊂ Rn+1 is defined as

f̃i,σ(t)(ν) :=
∑

j∈Ni(σ(t))

w̃ij(νi,νj)Π (νi)νj, (8)

for all i ∈ N ; i.e., ν̇i(t) = f̃i,σ(t)(ν(t)). Notice that
indeed 〈νi, f̃i,p(ν)〉 = 0 for all i ∈ N , p ∈ P and
ν = (ν1, · · · ,νN) ∈ (Sn)N , which implies that the set (Sn)N

is positively invariant with respect to (7).
The system (7)-(8) is the standard form all problems are

transformed into: for synchronization in S2, ν : R≥0 7→
(S2)N ; for synchronization in SO(3), ν : R≥0 7→ (S3)N ;
and for consensus in Rn, ν : R≥0 7→ (Sn)N .

The functions w̃ij : C(α, ν̄)2 7→ R≥0 in (8) are continuous
weight functions, for some α ∈ [π2 , π] and ν̄ ∈ Sn. Thus,
given (νi,νj) ∈ C(α, ν̄)2, w̃ij(νi,νj) is the weight agent i
assigns to the deviation between itself and its neighbor j,
for all i, j ∈ N (and where we emphasize that the agents
are within the same cone). All functions w̃ij are assumed to
satisfy the following condition,

w̃ij(νi,νj) > 0∀(νi,νj) ∈ C(α, ν̄)2 with 〈νi,νj〉 6= 1. (9)

Thus, from continuity, it follows that the weight between two
neighbors is zero if and only if they are synchronized, though
the weight may be arbitrarily small when the neighbors are
arbitrarily close to each other or when the neighbors are close
the boundaries of the domain of the weight functions.

The dependency of the dynamics (7)-(8) on time comes
from the time varying network graph, and more specifically,
the time varying neighbor set of each agent, as specified
in (8).

Although the results of the paper remain valid under
other types of switching (see proof of Theorem 1), in
practical cases the switching instants of each agent’s control
law cannot accumulate to a certain time value. In order
to formulate this observation as an assumption, we adopt
Definition 2.3. in [32], and say that the switching signal
σ has an average dwell-time τD > 0 and a chatter bound
N0 ∈ N if the number of switching times of σ in any open
finite interval (t1, t2) ⊂ R≥0 is upper bounded by N0+ t2−t1

τD
.

Assumption 2: For each agent i ∈ N , the time-varying
neighbor set R+ 3 t 7→ Ni(σ(t)) ⊂ N switches with an
average dwell-time τ iD > 0 and a chatter bound N i

0 ∈ N.
As explained in more detail in the next sections, each
agent i ∈ N is in charge of providing the input that follows
from composing the proposed output feedback control laws
with the measurements made at each time instant. Thus,
requiring an agent’s neighbor set to switch with an aver-
age dwell time guarantees that the agent’s input does not
experience infinite many discontinuities in any time interval
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Fig. 2: In complete synchronization, N agents, indexed by
i = {1, · · · , N}, synchronize their rotation matrices (u1,u2

and u3 stand for the canonical basis vectors in R3).

of finite length. In fact, if Assumption 2 is satisfied, then σ
has an average dwell time, which allows us to invoke the
results from Section III.

Proposition 3: If each agent’s i ∈ N neighbor set R+ 3
t 7→ Ni(σ(t)) switches with an average dwell-time τ iD and
chatter bound N i

0 , then the network dynamics (7) has a
switching signal with average dwell time τD = 1

N mini∈N τ
i
D

and chatter bound N0 = N maxi∈N N
i
0 .

A proof is found in Appendix II.

A. Complete synchronization in SO(3) casted as synchro-
nization in S3

Consider a group of N agents R1, . . . ,RN ∈ SO(3) :=
{R ∈ R3×3 : RTR = RRT = I,det(R) = 1}, where,
for every i ∈ N , Ri represents the orientation frame, w.r.t.
an unknown inertial orientation frame, of agent i. We say
that the agents are synchronized if they all share the same
complete orientation, i.e., if R1 = · · · = RN , as illustrated
in Fig. 2 for N = 2. The term complete synchronization
is used in juxtaposition with incomplete synchronization as
described in the next subsection. In incomplete synchro-
nization, rather than synchronizing all three bodies axes,
the agents synchronize only one body direction, and, as
explained in the next section, complete synchronization does
not guarantee incomplete synchronization (and vice-versa).

For each i ∈ N , ωi : R≥0 7→ R3 denotes the body-framed
angular velocity of agent i, which can be actuated. Each
rotation matrix Ri : R≥0 3 t 7→ Ri(t) ∈ SO(3) evolves
according to Ṙi(t) = fR(Ri(t),ωi(t)) where

fR : SO(3)× R3 3 (R,ω) 7→ fR(R,ω) ∈ TRSO(3)

fR(R,ω) := RS (ω) . (10)

If, at a time instant t ∈ R≥0, agent i ∈ N is aware of and
can measure the relative attitude between itself and another
agent j, then j ∈ Ni(σ(t)). This motivates the definition
of the measurement function hi(t, ·) for each time instant

t ∈ R≥0, namely

hi(t, ·) : SO(3)N 3 R 7→ hi(t,R) ∈ SO(3)|Ni(σ(t))|

hi(t,R) := (hij1(R), · · · ,hij|Ni(σ(t))|
(R)), (11)

where {j1, · · · , j|Ni(σ(t))|} ≡ Ni(σ(t)) and where

hij : SO(3)N 3 R := (R1, · · · ,RN) 7→ hij(R) ∈ SO(3)

hij(R) := RT

i Rj, (12)

for each j ∈ Ni(σ(t)). Thus, at each time instant t ∈ R≥0,
agent i ∈ N measures the |Ni(σ(t))| rotation matrices
corresponding to its neighbors orientation with respect to its
own orientation. We emphasize that the measurement in (12)
does not require an agent to be aware of its own rotation
matrix or its neighbors rotation matrices (recall that these are
specified in an unknown inertial orientation frame); rather it
requires an agent to measure the projection of each of its
neighbors three axes onto its own three axes.

Problem 1: For each agent i ∈ N and time in-
stant t ≥ 0, given the measurement function (11), de-
sign time-varying decentralized feedback laws ωhi (t, ·) :
SO(3)|Ni(σ(t))| 7→ R3, such that asymptotic synchronization
of R := (R1, · · · ,RN) : R≥0 7→ SO(3)N is attained, where
Ṙi(t) = fR(Ri(t),ω

h
i (t,hi(t,R(t)))) for every i ∈ N .

Problem 1 may be restated as finding a control law for
each agent that depends exclusively on the measurement
function as defined in (11), and which encodes the partial
state information available to each agent at a given time
instant.

Definition 2: The angular displacement between two ro-
tation matrices is given by θ : SO(3)×SO(3) 3 (R1,R2) 7→
θ(R1,R2) := arccos

(
tr(RT1 R2)−1

2

)
∈ [0, π].

For each agent i ∈ N and each time instant t ∈ R≥0,
consider the control law ωhi (t, ·) : SO(3)|Ni(σ(t))| 3 hi :=
(hij1 , · · · ,hij|Ni(σ(t))|

) 7→ ωhi (t,hi) ∈ R3 defined as

ωhi (t,hi) :=
∑

j∈Ni(σ(t))

wij(θ(I,hij))S−1

(
hij − hTij

2

)
,(13)

where wij : [0, π] 7→ R≥0 is continuous and satisfies

wij(θ) > 0 ∀θ ∈ (0, π]. (14)

Notice that wij corresponds to a weight on the feedback
law (13) that agent i assigns to the displacement between
itself and its neighbor j. Denote ωcli as the composition
of the output feedback control law (13) with the output
function (11), i.e., ωcli : R+ × SO(3)N 3 (t,R) 7→
ωcli (t,R) := ωhi (t,hi(t,R)) ∈ R3. It follows that

ωcli (t,R) =
∑

j∈Ni(σ(t))

wij(θ(I,RT
i Rj))S−1

(
RTi Rj−RTj Ri

2

)
,(15)

where we have made us of the notation R = (R1, · · · ,RN).
We emphasize that if Assumption 2 is satisfied, then (13)
(and (15)) does not have infinite many discontinuities in any
time interval of finite length, which in turn implies that it
can be implemented in a practical scenario.

Recall that we wish to analyze different problems under



a common framework where agents are unit vectors. Thus,
in order to cast complete synchronization in SO(3) in the
form (7), we perform a change of coordinates based on unit
quaternions. This change of variables serves only the purpose
of analysis, while the implemented control law is still that
in (13).

For that purpose, and for convenience, denote

S̃O(3) := {R ∈ SO(3) : θ(I,R) < π}

which is an open subset of SO(3), and where θ(I,R) <
π ⇔ 1 + tr(R) > 0 (see Definition 2). Consider then the
map T qr : S̃O(3) 3 R 7→ T qr (R) ∈ S3 defined as

T qr (R) :=
1

2

(√
1 + tr(R),

S−1 (R−RT )√
1 + tr(R)

)
, (16)

with T qr smooth on S̃O(3). Intuitively, T qr is a map that
transforms a rotation matrix into a unit vector in R4, also
named unit quaternion, whose first component is positive.
The idea followed later is: (i) given a rotation matrix R ∈
S̃O(3), to consider the quaternion q = T qr (R); and, (ii) given
the closed loop dynamics of the rotation matrix, to compute
the closed loop dynamics of the quaternion, which are in the
common form (8). For that purpose, consider also the map
T rq : S3 3 q := (q̄, q̂) 7→ T rq (q) ∈ SO(3) defined as

T rq (q) := I + 2q̄S (q̂) + 2S (q̂)S (q̂) ,

where T rq restricted to the image of T qr yields the inverse
map of T qr , i.e., T rq ◦ T qr = idS̃O(3).

Let us now compute the kinematics of a quaternion com-
puted from the mapping (16). Given R ∈ S̃O(3), consider
q = T qr (R). Given the kinematics (10), one can compute the
kinematics of the unit quaternion, as done in Appendix IV.
It follows that

q̇ ≡ fq : S̃3 × R3 3 (q,ω) 7→ fq(q,ω) ∈ TqS̃3

is given by

q̇(q,ω) ≡fq(q,ω) =
1

2
Q(q)[03×1 I3]

Tω, (17)

where, given any q ∈ S3, Q(q) ∈ TqS3 ⊂ R4×4 is the linear
map that satisfies

Q(q)v := 〈q, e1〉v − 〈q,v〉 e1 + 〈e1,v〉q+

+ diag(0,S (q̂))v, (18)

for any v ∈ R4 (it is easy to verify that 〈q, Q(q)v〉 = 0).
The control law (15) may also be rewritten in terms of

unit quaternions, which motivates the definition of ωqi (t, ·) :
(S̃3)N 3 q := (q1, · · · ,q1) 7→ ωqi (t,q) ∈ R3 as

ωqi (t,q) := ωcli (t,R)|R=T rq
N (q)

=
∑

j∈Ni(σ(t))

2 〈qi,qj〉wij(θ(qi,qj))[03×1 I]Q(qi)
Tqj,(19)

where we have made used of (47) and (48) in
Appendix IV, and where, for brevity, we denoted
θ(qi,qj) := arccos(2 〈qi,qj〉2 − 1). Denote w̃ij(qi,qj) :=

〈qi,qj〉wij(arccos(2 〈qi,qj〉2 − 1)), and notice that this
satisfies (9) for α = π

4 and for any ν̄ ∈ S3 (see also (14)).
Then, the unit quaternion kinematics (17), when composed

with the control law (19), is in the same form as (8), i.e.

fq(qi,ω
q

i (t,q))|q=(q1,··· ,qN ) =

(17) =
1

2
Q(qi)[03×1 I3]

Tωqi (t,q)|q=(q1,··· ,qN )

(19) =
∑

j∈Ni(σ(t))
w̃ij(qi,qj)Q(qi)diag(0, I3)Q(qi)

Tqj

(18) =
∑

j∈Ni(σ(t))
w̃ij(qi,qj)Π (qi)qj

(8) =: f̃i,σ(t)(q).

We have then casted this problem in the form (7) with ν ≡
q ∈ (S3)N .

Remark 4: Consider (q1, · · · ,qN) ∈ C(π4 , q̄)N for some
q̄ ∈ S3, as required by w̃ij to be positive. Without loss of
generality, one may assume that q̄ = e1, where T rq (q̄) =
I. It then follows that θ(T rq (q̄), T rq (qi)) = θ(I, T rq (qi)) =
arccos(2(〈q̄,qi〉)2 − 1) ≤ arccos

(
2 cos2

(
π
4

)
− 1
)

= π
2 for

all i ∈ N . As such, i.e. all rotation matrices are π
2 close to the

identity matrix, and therefore if (q1, · · · ,qN) ∈ C(π4 , q̄)N

then (R1, · · · ,RN) ∈ S̃O(3)N .

B. Incomplete synchronization in SO(3) casted as synchro-
nization in S2

In this section, we consider again a group of N agents
operating in SO(3), but with a different synchronization
objective. As in Section IV-A, for each i ∈ N , Ri rep-
resents the orientation frame of agent i. Additionally, for
each agent i there is a constant body direction n̄i ∈ S2,
known by the agent and its neighbors, which is required
to synchronize with all the other agents’ body directions.
The goal of incomplete attitude synchronization in SO(3) is
that all agents share the same orientation along the chosen
body directions; i.e., given (R1, · · · ,RN) ∈ SO(3)N and
(n̄1, · · · , n̄N) ∈ (S2)N , incomplete synchronization exists
when R1n̄1 = · · · = RN n̄N , as illustrated in Fig. 3 for N =
2. We note that the requirement for incomplete synchroniza-
tion is independent from that of complete synchronization:
i.e., complete synchronization does not imply incomplete
synchronization (consider the case where n̄1 6= n̄2), and vice-
versa.

Similarly to Section IV-A, for each i ∈ N , ωi : R≥0 7→
R3 denotes the body-framed angular velocity of agent i,
which can be actuated. Again, each rotation matrix Ri :
R≥0 3 t 7→ Ri(t) ∈ SO(3) evolves according to Ṙi(t) =
fR(Ri(t),ωi(t)) with fR as defined in (10). If, additionally,
we consider some constant n̄i ∈ S2, then ni := Rin̄i :
R≥0 3 t 7→ ni(t) ∈ S2, evolves according to ṅi(t) =
fn(Ri(t),ωi(t), n̄i) where

fn : SO(3)× R3 × S2 3 (R,ω, n̄) 7→ fn(R,ω, n̄) ∈ TRn̄S2

fn(R,ω, n̄) := fR(R,ω)n̄ = RS (ω) n̄ = −S (Rn̄)Rω.(20)
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(a) Two agents not synchronized, i.e., n1 6= n2 with n̄1 = n̄2 =
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(b) Two agents synchronized, i.e, n1 = n2 with n̄1 = n̄2 =
3−

1
2 [1 1 1]T .

Fig. 3: In incomplete synchronization, all agents i =
{1, · · · , N}, align the unit vectors ni , Rin̄i, where n̄i is
fixed in rigid body i (u1,u2 and u3 stand for the canonical
basis vectors in R3).

In what follows, we make use of the notation below,

R = (R1, · · · ,RN), (21)
(n1, · · · ,nN) = (R1n̄1, · · · ,RN n̄N). (22)

If, at a time instant t ∈ R≥0, agent i ∈ N is aware of the
relative attitude of agent’s j unit vector to be synchronized,
then j ∈ Ni(σ(t)). This motivates the definition of the
measurement function hi(t, ·) for each time instant t ∈ R≥0,
namely

hi(t, ·) : SO(3)N 3 R 7→ hi(t,R) ∈ (S2)|Ni(σ(t))|

hi(t,R) := (hij1(R), · · · ,hij|Ni(σ(t))|
(R)), (23)

where {j1, · · · , j|Ni(σ(t))|} ≡ Ni(σ(t)) and where

hij : SO(3)N 3 R 7→ hij(R) ∈ S2

hij(R) := RT

i Rjn̄j = RT

i nj, (24)

for each j ∈ Ni(σ(t)), and where we have used of the
notation in (21) and (22). Thus, at each time instant t ∈
R≥0, agent i ∈ N measures the |Ni(σ(t))| unit vectors
corresponding to the projection of a neighbor’s unit vector
onto agent’s i orientation frame.

Problem 2: For each agent i ∈ N and time in-
stant t ≥ 0, given the measurement function (23), de-
sign time-varying decentralized feedback laws ωhi (t, ·) :
(S2)|Ni(σ(t))| 7→ R3, such that asymptotic synchronization of
(R1n̄1, · · · ,RN n̄N) : R≥0 7→ (S2)N is accomplished, where
Ṙi(t) = fR(Ri(t),ω

h
i (t,hi(t,R(t)))) for every i ∈ N .

Problem 2 may be restated as finding a control law for

each agent that depends exclusively on the measurement
function as defined in (23), and which encodes the partial
state information available to each agent at a given time
instant.

Definition 3: The angular displacement between two unit
vectors is given by θ : S2 × S2 3 (n1,n2) 7→ θ(n1,n2) :=
arccos(〈n2,n2〉) ∈ [0, π].

For each t ∈ R≥0 and agent i ∈ N , consider the control law
ωhi (t, ·) : (S2)|Ni(σ(t))| 3 hi := (hij1 , · · · ,hij|Ni(σ(t))|

) 7→
ωhi (t,h) ∈ R3 defined as

ωhi (t,hi) :=
∑

j∈Ni(σ(t))

wij(θ(n̄i,hij))S (n̄i)hij, (25)

where wij : [0, π] 7→ R≥0 is a continuous function satisfying

wij(θ) > 0,∀θ ∈ (0, π], (26)

and corresponding to a weight on the feedback law (25) agent
i assigns to the angular displacement between itself and its
neighbor j. Denote ωcli as the composition of the output
feedback control law (25) with the output function (23),
i.e., ωcli : R+ × SO(3)N 3 (t,R) 7→ ωcli (t,R) :=
ωhi (t,hi(t,R)) ∈ R3. It follows that

ωcli (t,R) := ωhi (t,hi(t,R))

=
∑

j∈Ni(σ(t))
wij(θ(n̄i,RT

i Rjn̄j))S (n̄i)RT

i Rjn̄j

= RT

i

∑
j∈Ni(σ(t))

wij(θ(ni,nj))S (ni)nj, (27)

where we have used of (21) and (22); and of the fact that
θ(ni,nj) = θ(RT

i ni,RT
i nj) for any Ri ∈ SO(3) and any

ni,nj ∈ S2. We emphasize that the control law (27) is based
on the output feedback control law, and thus depends only
on the relative orientation measurements (see (23) and (24));
moreover, (27) is orthogonal to n̄i, which implies that full
angular velocity control is not necessary, i.e. we only need
to control the angular velocity along the two directions
orthogonal to n̄i (ωhi : R+ × (S2)|Ni(σ(t))| 7→ Tn̄i

S2 ⊂ R3).

Denote w̃ij(ni,nj) = wij(θ(ni,nj)), which satisfies (9)
for any α ∈ [0, π] and ν̄ ∈ S2, due to (26) and Definition 3.
With the above in mind, the kinematics (20), when composed
with the proposed law (27) yield (8), i.e.,

fn(Ri,ω
cl

i (t, (R1, · · · ,RN)), n̄i)|Rin̄i=ni∀i∈N
(20) = −S (ni)Riω

cl

i (t, (R1, · · · ,RN))|Rin̄i=ni∀i∈N

(27) = −
∑

j∈Ni(σ(t))
w̃ij(ni,nj)S (ni)S (ni)nj

=
∑

j∈Ni(σ(t))
w̃ij(ni,nj)Π (ni)nj

(8) =: f̃i,σ(t)(n)|n=(n1,··· ,nN )∈(S2)N .

We have thus casted this problem in the form (7)-(8) with
ν ≡ n ∈ (S2)N .

As stated in Section IV, consensus in Rn can also be casted
as a synchronization problem in Sn, for any n ∈ N. This case
is presented in Appendix V.
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Fig. 4: Illustration of (28) as in Definition (4): xi =
hν̄(νi)

(28)
= QT

ν̄νi, and green lines are those spanned by the
columns of Qν̄ (which form a plane).

V. ANALYSIS

In this section, we analyze the solutions of (7)-(8), and
show that given a wide set of initial conditions, asymptotic
synchronization is guaranteed. Specifically, asymptotic syn-
chronization is guaranteed if all unit vectors are initially
contained in an open α?-cone, i.e. if ∃ν̄ ∈ Sn : ν(0) ∈
C(α?, ν̄)N , where α? = π

2 for synchronization in S2 and
consensus in Rn, and α? = π

4 for synchronization in SO(3).
Remark 5: If ν(0) ∈ C(α, ν̄)N for some α ∈ [0, α?) and

some ν̄ ∈ Sn, then Proposition 11 in Appendix III guarantees
that there exist n+1 linearly independent unit vectors {ν̄k ∈
Sn}k∈{1,··· ,n+1} such ν(0) ∈ C(α?, ν̄k)N∀k ∈ {1, · · · , n+1}.
Thus, if ν(0) is contained in an open α cone, then there exist
other bigger cones that contain ν(0); as such, the choice of
ν̄ is not unique.
Next, we introduce a coordinate transformation that we
exploit in order to cast the dynamics (8) into a form that
satisfies the conditions of Theorem 1. In particular, given
some ν̄ ∈ S2 we consider the projection of the cone C(π2 , ν̄)
to the plane in Rn+1 orthogonal to ν̄ and containing zero,
and then map this plane isometrically to Rn.

Definition 4: Let ν̄ ∈ Sn and Qν̄ ∈ R(n+1)×n, such that ν̄
and the columns of Qν̄ form an orthonormal basis of Rn+1,
and consider the diffeomorphism hν̄ : C(π2 , ν̄) 7→ B(1) (see
Notation for the definition of B), defined as

hν̄(νi) = QT

ν̄νi. (28)

Its derivative is given by dhν̄ = QT
ν̄ , and its inverse h−1

ν̄ :
B(1) 7→ C(π2 , ν̄) is given by h−1

ν̄ (xi) =
√

1− ‖xi‖2ν̄ +
Qν̄xi.
Figure 4 illustrates the mapping hν̄ as introduced in Defini-
tion 4, for n = 2 and N = 3.

Proposition 6: Consider ν̄ ∈ Sn and νi,νj ∈ C(π2 , ν̄).
Then, 〈ν̄,ν〉 =

√
1− ‖hν̄(ν)‖2 > 0 and the following

implications hold: ‖hν̄(νi)‖ > ‖hν̄(νj)‖ ⇔ 0 < 〈ν̄,νi〉 <
〈ν̄,νj〉, and ‖hν̄(νi)‖ ≥ ‖hν̄(νj)‖ ⇔ 0 < 〈ν̄,νi〉 ≤ 〈ν̄,νj〉.

Proof: Since hν̄(ν) = Qν̄ν, then ‖hν̄(ν)‖2 =
〈QT

ν̄ν, Q
T
ν̄ν〉 = 〈ν,Π (ν̄)ν〉 = 1 − (〈ν̄,ν〉)2 (notice that

Qν̄Q
T
ν̄ = Π (ν̄)). Since 〈ν̄,ν〉 > 0, for any ν ∈ C(π2 , ν̄),

it follows that 〈ν̄,ν〉 =
√

1− ‖hν̄(ν)‖2. The implications
in the Proposition follow since 〈ν̄,ν〉 =

√
1− ‖hν̄(ν)‖2 is

decreasing with ‖hν̄(ν)‖, and since νi,νj ∈ C(π2 , ν̄).
Consider now the solution ν : R≥0 7→ (Sn)N of (7)-(8)

with ν(0) ∈ C(π2 , ν̄)N for some ν̄ ∈ Sn, which, as will be
shown in Theorem 9, remains in C(π2 , ν̄)N for all t ≥ 0; and
define x : R≥0 7→ (Rn)N as x = hNν̄ ◦ ν. Then, based on
the transformation introduced in Definition 4, it follows that
ẋ(t) = fσ(t)(x(t)), where

fσ(t)(x) = dhNν̄ (ν)f̃σ(t)(ν)|ν=(h−1
ν̄ )N (x), (29)

and ẋi = hν̄ ◦ νi evolves according to ẋi(t) = fi,σ(t)(x(t)),
where

fi,σ(t)(x) = dhν̄(νi)f̃σ(t)(ν)|ν=(h−1
ν̄ )N (x) (30)

(8) and Def 4 = QT

ν̄

∑
j∈Ni(σ(t))

w̃ij(νi,νj)Π (νi)νj|ν=(h−1
ν̄ )N (x).

It follows from (30) that, for ν ∈ C(π2 , ν̄)N with ν̄ ∈ Sn,
x = hNν̄ (ν) ∈ B(1)N and any p ∈ P ,

〈xi, fi,p(x)〉 (30)
= 〈QT

ν̄νi, Q
T

ν̄

∑
j∈Ni(p)

w̃ij(νi,νj)Π (νi)νj〉

= 〈νi,Π (ν̄)
∑

j∈Ni(p)
w̃ij(νi,νj)Π (νi)νj〉

= 〈νi − 〈νi, ν̄〉 ν̄,
∑

j∈Ni(p)
w̃ij(νi,νj)Π (νi)νj〉

= −〈ν̄,νi〉
∑

j∈Ni(p)
w̃ij(νi,νj)〈ν̄,Π (νi)νj〉 (31)

The following result provides certain properties that are
exploited in determining the sign of (31).

Proposition 7: Consider three unit vectors ν1, ν2, ν̄ ∈ Sn,
satisfying 0 < 〈ν̄,ν1〉 ≤ 〈ν̄,ν2〉. Then (a) 〈ν̄,Π (ν1)ν2〉 =
0 iff ν1 = ν2, and (b) 〈ν̄,Π (ν1)ν2〉 > 0 iff ν2 6= ν1.
The proof is found in Appendix III. We show next, by
combining Propositions 6 and 7 and exploiting (31), that the
conditions of Theorem 1 are satisfied for the dynamics (29)-
(30).

Proposition 8: Consider the vector field as defined
in (29)-(30) for a certain ν̄ ∈ Sn and assume that the
switching signal σ : R≥0 7→ P encodes only connected
network graphs. Then the vector field (29)-(30) satisfies the
conditions of Theorem 1 for r = 1.

Proof: In order to verify that the conditions of Theo-
rem 1 are satisfied by the vector field in (29)-(30), we exploit
(31) and the fact that for each x = (x1, · · · ,xN) ∈ B(1)N

there exists a (unique) ν = (ν1, · · · ,νN) ∈ C(α?, ν̄)N such
that x = hNν̄ (ν). We proceed with the verification of Condi-
tion 1) of Theorem 1 and pick x ∈ B(1)N , where x = hNν̄ (ν)
for certain ν ∈ C(α?, ν̄)N . Notice, that since ν ∈ C(α?, ν̄)N ,



it holds by definition that 〈ν̄,νi〉 > cos(α?) ≥ 0∀i ∈ N .
Therefore, since Condition 1)a) depends exclusively on the
sign of (31), we can ignore the effect of the positive term
〈ν̄,νi〉.

In order to show Condition 1)a), pick any p ∈ P and
notice, that due to (9) and continuity of w̃ij it holds that
w̃ij(νi,νj) ≥ 0 for any νi,νj ∈ C(α?, ν̄) and i, j ∈ N .
In addition, by recalling that H(x = (x1, · · · ,xN)) =
arg maxi∈N ‖xi‖ and thus, that ‖xi‖ ≥ ‖xj‖ for all i ∈
H(x) and j ∈ N , it follows from Proposition 6 that
〈ν̄,νi〉 ≤ 〈ν̄,νj〉 for all j ∈ N . From the latter and the
result of Proposition 7, we get that 〈ν̄,Π (νi)νj〉 ≥ 0 for all
j ∈ N (p). Thus, we conclude from (31) that for any p ∈ P
and x ∈ B(1)N it holds 〈xi, fi,p(x)〉 ≤ 0, which by virtue of
(5) implies that Condition 1)a) is satisfied.

For the verification of Condition 1)b), we additionally
assume that x 6∈ C := {(x1, · · · ,xN) ∈ (Rn)N : x1 =
· · · = xN}. We will show that for each p ∈ P there exists
k ∈ H(x) such that 〈xk, fk,p(x)〉 < 0. Indeed, suppose on
the contrary that there exists p ∈ P such that

〈xi, fi,p(x)〉 = 0∀i ∈ H(x), (32)

and recall that the agents’ network is not synchronized, since
x 6∈ C. Consider then an l ∈ H(x), for which 〈xl, fl,p(x)〉 =
0 according to assumption (32). Notice also, that due to (9),
Propositions 6 and 7 and (31), it can be shown (as in the
proof of Condition 1)a) above) that 〈xl, fl,p(x)〉 = 0 is
satisfied only if all neighbors of agent l are synchronized
with agent l, i.e., only if νj = νl ⇔ xj = xl for all
j ∈ Nl(p). This implies that all j ∈ Nl(p) are contained in
H(x), i.e.,Nl(p)∪{l} ⊆ H(x). As such, by assumption (32),
〈xj, fj,p(x)〉 = 0 for all j ∈ Nl(p), which means that
the previous rationale is applicable for all j ∈ Nl(p), thus
leading to the conclusion that all neighbors of all neighbors
of agent l are necessarily synchronized with each other. Since
the graph encoded by p ∈ P is connected, the previous
rationale, applied N − 1 times, leads to the conclusion that
all agents are synchronized. Since x 6∈ C, a contradiction has
been reached, and therefore, for each p ∈ P , there exists
a k ∈ H(x) for which 〈xk, fk,p(x)〉 < 0, and therefore
condition 1)b) of Theorem 1 is satisfied.

Finally, let x ∈ C. Since x1 = · · · = xN ⇔ ν1 = · · · =
νN , it follows from Proposition 7 that 〈xi, fi,p(x)〉 = 0 for all
p ∈ P and i ∈ N . Thus, the second condition of Theorem 1
is also satisfied.

Theorem 9: Consider the solution ν : R≥0 7→ (Sn)N of (7)
with ν(0) ∈ C(α?, ν̄)N for some ν̄ ∈ Sn. Then, for a network
graph connected at all times, i) ν(t) ∈ C̄(α, ν̄)N for all t ≥
0, where α = arccos(maxi∈N 〈ν̄,νi〉 (0)) ∈ [0, α?); ii) ν
synchronizes asymptotically and limt→∞ ν̄νi(t) exists for all
i ∈ N ; and iii) all unit vectors converge to a constant unit
vector, i.e. ∃ν? ∈ Sn : limt→∞ ν(t) ∈ C(0,ν?)N .

Proof: Consider a solution ν of (7), and x = hNν̄ ◦
ν. Since α? is either π

2 or π
4 , then ν(0) is within the

domain of hNν̄ and moreover B̄(r0)
N ⊂ B(1)N where r0

(28)
=

maxi∈N ‖QT
ν̄νi(0)‖ Prop 6

=
√

1−maxi∈N (〈ν̄,νi〉 (0))2 < 1

(where the latter inequality follows from the fact that ν(0) ∈
C(α?, ν̄)N ). From Proposition 8, the dynamics (29) satisfy
Theorem’s 1 conditions and therefore the set B̄(r0)

N is posi-
tively invariant for trajectories of ẋ(t) = fσ(t)(x(t)). This, in
turn, implies that the set H−1

ν̄ (B̄(r0)
N) = C̄(α, ν̄)N , where

α = arccos(maxi∈N 〈ν̄,νi〉 (0)) ∈ [0, α?), is positively
invariant for trajectories of ν̇(t) = f̃σ(t)(ν(t)); i.e, all unit
vectors are forever contained in the closed α-cone they start
on. This suffices to conclude part i) in the Theorem.

Let us now focus on part ii) of the Theorem. From Propo-
sition 8, the dynamics (29) satisfy Theorem’s 1 conditions.
It follows from Theorem 1 that limt→∞ xi(t) − xj(t) =
0 for all i, j ∈ N , which implies that limt→∞ νi(t) −
νj(t) = 0, for all i, j ∈ N (see Proposition 6). More-
over, it follows that the Lyapunov function in Theo-
rem 1 converges to a constant, i.e., limt→∞ V (x(t)) =
limt→∞maxi∈N

1
2‖xi(t)‖

2 = limt→∞
1
2‖x1(t)‖2 = V ∞, for

some constant 0 ≤ V ∞ ≤ V (0) < 1
2 . From Proposition 6,

it follows that limt→∞ ν̄νi(t) = limt→∞

√
1− ‖xi(t)‖2 =√

1− 2V ∞.
We now prove part iii) of the Theorem. Since ν(0) ∈

C(α?, ν̄)N for some ν̄ ∈ Sn, Proposition 11 guaran-
tees that there exist n + 1 linearly independent unit vec-
tors {ν̄1, · · · , ν̄n+1} such that ν(·) ∈ C(α?, ν̄k)N for all
k ∈ {1, · · · , n + 1}. From part ii) of this Theorem, it
follows that, for each k ∈ {1, · · · , n + 1}, there ex-
ists a constant V ∞k < 1

2 such that limt→∞ ν̄
T
k ν1(t) =√

1− 2V ∞k . Thus, it follows that limt→∞Aν1(t) = b ⇔
limt→∞ ν1(t) = A−1b, where AT = [ν̄1 · · · ν̄n+1] is non-
singular, since ν̄1, · · · , ν̄n+1 are linearly independent, and
bT = [

√
1− 2V ∞1 · · ·

√
1− 2V ∞n+1]. Since synchronization

is asymptotically reached, limt→∞ νi(t) = A−1b for all
i ∈ N .

VI. SIMULATIONS

In this section, we present simulations that illustrate some
of the results in the previous sections.

All simulations are provided for a network of six agents,
i.e., N = {1, · · · , 6}, whose network topology is presented
in Fig. 6. The neighbor sets for all agents change in time:
for agent 1, N1 alternates between {2} and {2, 4}; for agent
2, N2 alternates between {3} and {3, 6}; for agent 3, N3

alternates between {4} and {4, 5}; for agent 4, N4 alternates
between {5} and {5, 1}; for agent 5, N5 alternates between
{6} and {6, 3}; for agent 6, N6 alternates between {1} and
{1, 2}. For these time-varying neighbor sets, the network
graph is connected at all times.

The switching time instants for the neighbor set of each
agent i ∈ N are those from the sequences T i = { 1

i +ki}k∈N,
which are shown in the time axes in Fig 5. For the same
initial conditions, we perform two simulations, each one with
different weight functions: for agents whose i ∈ N is even,
gij(θ) = j for both simulations; for agents whose i ∈ N is
odd, we consider gij(θ) = j(2 − cos(θ)) for simulation 1
and gij(θ) = j(1 − cos(θ)) for simulation 2. Notice that
gij(0) = j > 0 for the former case, and gij(0) = 0 for the



latter case, which means odd agents penalize small errors
differently between the two simulations.

In Figs. 5a-5f, six unit vectors are randomly initialized in
an open π

2 -cone around (1, 0, 0) ∈ S2. In Figs. 5a and 5d,
the trajectories of the unit vectors on the unit sphere are
shown, and a visual inspection indicates convergence to
a synchronized network. In Figs. 5b and 5e, the function
V (x) = maxi∈N

1
2‖xi‖

2 – used in Theorem 9 – is provided,
and we can verify that despite being non-smooth, it is
almost always decreasing; notice that V (x(·)) converges to
a constant which quantifies the asymptotic angular distance
between all unit vectors and (1, 0, 0). In Figs. 5c and 5f,
the angular distance, i.e., θ(·, ·) as in Definition 3, between
some agents is presented, and it indicates convergence to a
synchronized network. Notice that in simulation 1 conver-
gence is quicker when compared to simulation 2. This is a
consequence of choosing, for simulation 2, weight functions
that are zero when two unit vectors are synchronized, i.e.,
gij(0) = 0 for i odd. This means that odd agents do not
penalize the error between themselves and their neighbors
as much as when they are close, and thus leading to a slow
convergence to a synchronized network. In turn, even agents
i ∈ N tend to converge to some odd agent, when |Ni(·)| = 1
(if |Ni(·)| = 1 then Ni(·) is a set composed of one odd
number); and tend to converge to somewhere in between
their two neighbors when |Ni(·)| = 2. This explains the
oscillatory behavior for simulation 2 in Figs.5e and 5f.

In Figs. 5g-5l, six rotation matrices were randomly ini-
tialized such that θ(I,Ri) ≤ π

2 for all i ∈ N . In Figs. 5g
and 5j, the trajectories of the rotation matrices are shown
on a sphere of π radius1, and a visual inspection indicates
convergence to a synchronized network. In Figs. 5h and 5k,
the function V (x) = maxi∈N

1
2‖xi‖

2 – used in Theorem 9
– is provided, and we can verify that despite being non-
smooth, it is almost always decreasing; notice that V (x(·))
converges to a constant which quantifies the asymptotic
angular distance between all rotation matrices and I (the
rotation matrix that all rotation matrices start close to).
In Figs. 5i and 5l, the angular distance, i.e., θ(·, ·) as
in Definition 2, between some agents is presented, and it
indicates convergence to a synchronized network. Notice that
in simulation 1 convergence is quicker when compared to
simulation 2. The explanation for this behavior is the same
as that provided before, and it is a consequence of choosing,
for simulation 2, weight functions that are zero when two
rotation matrices are synchronized, i.e., gij(0) = 0 for i odd.
The oscillatory behavior for simulation 2 in Figs.5k and 5l
is also explained by the same reasoning described before.

VII. CONCLUSIONS

In this paper, we studied attitude synchronization in S2 and
in SO(3), for a group of agents under connected network
switching graphs. We proposed switching output feedback
control laws for each agent’s angular velocity, which are

1For each rotation matrixRi, we plot θini where θi = θ(I,Ri) ∈ [0, π]
and ni =

1
2 sin(θi)

S−1 (Ri −RTi ) ∈ S2.

decentralized and do not require a common orientation frame
among agents. Our main contribution lied in transforming
those two problems into a common framework, where all
agents dynamics are transformed into unit vectors’ dynamics
on a sphere of appropriate dimension. Convergence to a syn-
chronized network was guaranteed for a wide range of initial
conditions. Directions for future work include extending all
results to agents controlled at the torque level, rather than
the angular velocity level.

APPENDIX I
PROOF OF THEOREM 1

Proof: [of Theorem 1] In what that follows, we in-
voke [36, Corollary 4.7]. We emphasize that the latter
corollary requires persistent dwell time signals and Lyapunov
functions to be continuously differentiable. However, an
average dwell time signal is necessarily a persistent dwell
time signal [30]. On the other hand, the latter corollary can be
extended to continuous Lyapunov functions by replacing [36,
Theorem 1] with [37, Corollary 4.4 b)] (and making used
of the Clarke generalized derivative). Finally, [36] considers
multiple Lyapunov functions, one for each switching signal
mode, whilst in this proof we restrict ourselves to a common
Lyapunov function. For brevity, in what follows, we denote

x 7→ f(x) :⇔ (Rn)N 3 x := (x1, · · · ,xN) 7→ f(x).

Consider then any p ∈ P and the vector field (3), and
denote

x 7→ vi,p(x) := 〈xi, fi,p(x)〉 ∈ R,∀i ∈ N (33)

which are all continuous functions. Consider then the con-
tinuous function

x 7→ V (x) := max
i∈N

1

2
‖xi‖2 ∈ R+

0 , (34)

whose generalized gradient (in the sense of Clarke) is given
by (see (4) and denote co(S) as the convex hull of a finite
point set S ⊂ Rm, for any m ∈ N)

x 7→ ∂V (x) = co({ei ⊗ xi}i∈H(x)) ⊆ RnN , (35)

and where we emphasize that ∪v≤ 1
2 r

2V −1(v) = (B̄(r))N

for any r ∈ R+ (see Notation for definition of B). The
generalized directional derivative of V along (3), for a mode
p ∈ P , is then given by

x 7→ V ◦p (x) := max
dV ∈∂V (x)

〈dV, fp(x)〉

(35) = max co({〈xi, fi,p(x)〉}i∈H(x)). (36)

Recall (33), and notice that the Theorem’s condition 1a)
reads as vi,p(x)|∀i∈H(x) ≤ 0 and condition 1b) reads as
∃k ∈ H(x) : vi,p(x)|i∈H(x) < 0, for any p ∈ P . As such, the
generalized derivative in (36) can be expressed equivalently
as

x 7→ V ◦p (x) =


vi,p(x)|any i∈H(x) < 0 x ∈ Ap

max co({vi,p(x)}i∈H(x)) ≤ 0 x ∈ Bp

0 x ∈ C
,(37)
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Fig. 5: Simulations 1 and 2.
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Fig. 6: Time-varying digraph with 6 agents.

where

Ap := {x ∈ RnN : ∀k, l ∈ H(x), vk,p(x) = vl,p(x) < 0},(38)
Bp := {x ∈ RnN : ∃k, l ∈ H(x), vk,p(x) 6= vl,p(x)}. (39)

The function V in (34) is lower bounded and its gener-
alized derivative along (1) is non-positive. This implies that
limt→∞ V (x(t)) =: V ∞ ∈ [0, V (x(0))]; and that B̄(r0)

N ,
with r0 := maxi∈N ‖xi(0)‖, is positively invariant (since
V (x) ≤ V (x(0))⇔ x ∈ ∪r≤V (x(0))V

−1(r) = B̄(r0)
N ).

Moreover, it follows from (37), that

(V ◦p )−1(0) ⊆ C ∪Bp,

and, moreover, (see Proposition 10 in this appendix)

(V ◦p )−1(0) ⊆ C ∪Bp. (40)

We now wish to compute the largest invariant subset (in
the sense of [36, Corollary 4.4]) of V −1(V ∞) ∩ (V ◦p )−1(0).
For that purpose, consider a solution

R ⊃ I 3 t 7→ x(t) ∈ V −1(V ∞) ∩ (V ◦p )−1(0). (41)

Composing (34) with (41) yields a constant function I 3
t 7→ V (x(t)) = V ∞, whose derivative is well defined,
namely

I 3 t 7→ V̇ (x(t)) = vi,p(x(t))|∀i∈H(x(t)) = 0. (42)

In fact, (42) implies that vk,p(x) = vl,p(x) for all k, l ∈
H(x), which is not satisfied for any x ∈ Bp as defined
in (39). This implies that x in (41) does not belong to Bp. It
then follows that the largest invariant subset of V −1(V ∞) ∩
(V ◦p )−1(0) ⊆ V −1(V ∞) ∩ (C ∪ Bp) is, in fact, a subset of
V −1(V ∞) ∩ C, which is independent of the mode p ∈ P .

In brief, we used a Lyapunov function common to all
modes, and verified that the largest invariant set for each
mode is independent of the mode. Based on the previous
observations, we can invoke [36, Corollary 4.7], from which
it follows that (1) converges to V −1(V ∞)∩C ⊂ B̄(r0)

N ∩C.

Proposition 10 (Closure of the set where V ◦p vanishes):
In order to verify that (40) holds, consider a convergent
sequence in (V ◦p )−1(0), namely

{xm ∈ (V ◦p )−1(0)}m∈N, (43)
x∞ := lim

m→∞
xm ∈ Ap ∪Bp ∪ C.

Let us prove (40) by assuming that x∞ ∈ Ap, which will
lead to a contraction. For that purpose, denote Bε(x

∞) :=
{x ∈ RnN : ‖x − x∞‖ < ε} as an open ball of size ε > 0

around x∞.
a) Since the sequence (43) belongs to (V ◦p )−1(0), it follows

that for any m ∈ N, there exist i ∈ H(xm) s.t. vi,p(xm) = 0.
b) Since the sequence (43) is convergent, it follows that
for any ε > 0 there exits M ∈ N s.t., for all m ≥ M ,
xm ∈ Bε(x

∞). c) By definition of H in (4), it follows
that for any x ∈ RnN there exists ε1 > 0 s.t., for all
y ∈ Bε1

(x), H(y) ⊆ H(x). d) Since v1,p, . . . , vN,p in (33)
are continuous, it follows that for any x ∈ Ap (see (38))
there exists ε2 ∈ (0, ε1) s.t., for all y ∈ Bε1

(x), vi,p(y) <

0∀i ∈ H(y)
c)

⊆ H(x). e) Combining a) with d), it follows
that for ε = ε2 there exists M ∈ N s.t., for all m ≥ M ,
xm ∈ Bε2

(x∞)
d)⇒ vi,p(x

m) < 0∀i ∈ H(xm) ⊆ H(x∞).
However, e) contradicts a), which implies that x∞ 6∈ Ap.

APPENDIX II
PROOF OF PROPOSITION 1

A switching signal σ has an average dwell-time τD > 0
and a chatter bound N0 ∈ N if the number of switching
times of σ in any open finite interval (t1, t2) ⊂ R is upper
bounded by #s(t1, t2) = N0 + t2−t1

τD
[32].

Proof: [of Proposition 1] For brevity, denote τmin
D =

mini∈N τ
i
D, Nmax

0 = maxi∈N N
i
0 , T as the set of switching

time instants of σ and T i as the set of switching time instants
of Ni ◦σ for each i ∈ N . If N0 = NNmax

0 and τD = 1
N τ

min
D ,

then #s(t1, t2) = N
(
Nmax

0 + t2−t1
τmin
D

)
. Next, we show that

this function indeed upper bounds the number of switches
of σ. Consider then any open interval (t1, t2) ⊂ R≥0 where

0 < t2 − t1 ≤
1

N
τmin

D ≤ τ iD,∀i ∈ N . (44)

Consider a switch instant t in that interval, i.e t ∈ T and
t ∈ (t1, t2). It follows that t ∈ T j for some j ∈ N . Under
Assumption 2, the next N j

0 switches from T j may come only
after a period τ jD ≥ τmin

D ≥ 1
N τ

min
D ; and, since (44) holds, it

then follows that agent j can only switch N j
0 times in (t1, t2).

Since this is valid for any j ∈ N , it follows that a maximum
of NNmax

0 switches are possible in (t1, t2). It also follows
from (44) that NNmax

0 ≤ #s(t1, t2), and therefore #s(t1, t2)
upper bounds the number of switches in the interval (t1, t2).

Consider now any open interval (t1, t2) ⊂ R≥0 where

k − 1

N
τmin

D < t2 − t1 ≤
k

N
τmin

D , (45)

for some k ∈ {2, 3, · · · }. The interval (t1, t2) may be broken
in k intervals of equal length, i.e., given ∆t = t2−t1

k ,
(t1, t2)\ ∪l∈{2,··· ,k} {t1 + (l′ − 1)∆t} = ∪l∈{1,··· ,k}(t1 +
(l − 1)∆t, t1 + l∆t). For any l ∈ {1, · · · , k}, the interval
(t1 + (l − 1)∆t, t1 + l∆t) has length ∆t ≤ 1

N τ
min
D where

the inequality follows since (45) holds. Thus, we invoke the
same reasoning as before to conclude that in each of those
intervals only a maximum of NNmax

0 switches can occur,
and, as such, only a total of kNNmax

0 switches can occur in
(t1, t2). It also follows from (45) that kNNmax

0 ≤ #s(t1, t2),
and therefore #s(t1, t2) upper bounds the number of switches
in the interval (t1, t2).
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Fig. 7: Illustration of result in Proposition 11 for n = 2:
closed (α+ δ)-cones formed by ν and η contain closed α-
cone formed by ν; also, ν and η are linearly independent.

APPENDIX III
AUXILIARY RESULTS

Proposition 11: Let ν ∈ Sn and α ∈ [0, π2 ). There exist
n + 1 linearly independent unit vectors ν1, · · · ,νn+1 ∈ Sn
such that C(α,ν) ⊂ C(α + δ,νi) ⊂ C(π2 ,νi) for all i ∈
{1, · · · , n+ 1} and for some δ ∈ (0, π2 − α).

Proof: It is trivial to verify that C(α,ν) ⊂ C(α+ δ,νi)
for any δ ∈ (0, π2 − α).

Recall that, by definition, 〈ν,n〉 > cos(α) > 0 for all
n ∈ C(α,ν). Consider now the unit vector ηi = cos(δ)ν +
sin(δ)ν⊥i ∈ Sn, for some δ ∈ (0, π2 −α) and where ν⊥i ∈ Sn
is an unit vector orthogonal to ν. Since δ ∈ (0, π2 − α), it
follows that cos(δ) > 0. Then 〈n,ηi〉 = cos(δ) 〈n,ν〉 +
sin(δ) 〈n,ν⊥i 〉 > cos(δ) cos(α) − sin(δ) sin(α) = cos(α +
δ) > cos(α), for all n ∈ C(α,ν). Since there are n unit
vectors ν⊥1 , · · · ,ν⊥n orthogonal to ν, it follows that we can
find n linearly independent unit vectors η1, · · · ,ηn such that
C(α,ν) ⊂ C(α + δ,ηi) for all i ∈ {1, · · · , n}. Moreover,
{ν,η1, · · · ,ηn} are n+ 1 linearly independent unit vectors.

Figure 7 illustrates the result in Proposition 11 for n = 2.
From Proposition 11 it follows that if a group of unit vectors
(in Rn+1) is contained in a closed α-cone for some α ∈
[0, π2 ), then we can find n + 1 larger (by δ) closed cones
that contain the same group of unit vectors; i.e., given ν =
(ν1, · · · ,νN) ∈ C̄(α, ν̄)N for some ν̄ ∈ Sn, there exist n+1
linearly independent unit vectors, {ν̄1, · · · , ν̄n+1}, such that
ν ∈ C̄(α + δ, ν̄i)

N for all i ∈ {1, · · · , n + 1} and for some
δ ∈ (0, π2 − α).

Proof: [of Proposition 7] Sufficiency: Regarding (a),
if ν2 = ν1, then 〈ν,Π (ν1)ν2〉 = 〈ν̄,Π (ν1)ν1〉 = 0.
Regarding (b), if ν1 6= ν2 then 〈ν1,ν2〉 < 1. Con-
sider then the following two cases: (1) 〈ν,ν1〉 = 〈ν,ν2〉
and (2) 〈ν,ν1〉 6= 〈ν,ν2〉. For case (1), it follows that
〈ν,Π (ν1)ν2〉 = 〈ν,ν2〉 − 〈ν,ν1〉νT1 ν2 = 〈ν,ν1〉 (1 −
νT1 ν2) > 0, where the inequality applies since νT1 ν2 < 1
and since, by assumption 0 < 〈ν,ν1〉. For case (2), the
Proposition’s assumption becomes 0 < 〈ν,ν1〉 < 〈ν,ν2〉.
Then, since 〈ν1,ν2〉 < 1, it follows that 0 < 〈ν,ν1〉 <
〈ν,ν1〉 〈ν1,ν2〉 ⇒ 〈ν,Π (ν1)ν2〉 > 0. Necessity: Regarding

(a), if we assume on the contrary that ν1 6= ν2, then it follows
from before that 〈ν,Π (ν1)ν2〉 = 〈ν,ν2〉−〈ν,ν1〉νT1 ν2 > 0,
which implies that ν1 = ν2. Similarly, regarding (b), if
we assume on the contrary that ν1 = ν2, then it follows
from before that 〈ν,Π (ν1)ν2〉 = 〈ν̄,Π (ν1)ν1〉 = 0, which
implies that ν1 6= ν2.

APPENDIX IV
QUATERNIONS

This section provides some auxiliary results that are useful
in Section IV-A. Recall the map (16). Given R ∈ S̃O(3),
consider then q = T qr (R), and for i ∈ {1, 2, 3, 4}, denote
the ith component of the quaternion as qi = T qir (R) (denote
dT qir as the derivative of the function T qir ). Its kinematics are
given by

q̇i(q,ω) ≡fqi(q,ω)

:=tr(dT qir (R)fR(R,ω)T )|R=T rq (q)

(10) =− tr(dT qir (R)S (ω)RT )|R=T rq (q)

=− tr(RTdT qir (R)S (ω))|R=T rq (q)

= 〈S−1 (X −XT ) ,ω〉 |X=RT dT qir (R)|R=T rq (q)

where we have made use of the facts that tr(AB) = tr(BA)
and tr(AS (a)) = 〈a,S−1 (A−AT )〉 for any A,B ∈ R3×3

and a ∈ R3. Denote S̃3 as the image of the map T qir .
Collectively, the kinematics of the quaternion

q̇ ≡ fq : S̃3 × R3 3 (q,ω) 7→ fq(q,ω) ∈ TqS̃3

are given by

q̇(q,ω) ≡fq(q,ω) := (fq1(q,ω), · · · , fq4(q,ω))

=
1

2
Q(q)[03×1 I3]

Tω

with Q as defined in (18), and which can be extended from
S̃3 to S3.

It can be verified that, given any q1,q2 ∈ S3, and R1 =
T rq (q1) and R2 = T rq (q2), it follows that

RT

1R2 = T rq (Q(q1)
Tq2). (46)

It can also be easily verified that, given q ∈ S3, and R =
T rq (q), it follows that

θ(I3,R)|R=T rq (q) = arccos(2 〈q, e1〉2 − 1),

S−1 (R−RT ) |R=T rq (q) = 2 〈q, e1〉 [03×1 I]Q(q)e1.

Combining the latter with (46), it follows that

θ(I3,RT

1R2)|RT1 R2=T rq (Q(q1)Tq2) =

= arccos(2 〈e1, Q(q1)
Tq2〉2 − 1)

= arccos(2 〈q1,q2〉2 − 1), (47)

and that (note, from (18), that Q(q)Te1 = q)

S−1 (RT

1R2 − (RT

1R2)
T ) |RT1 R2=T rq (Q(q1)Tq2) =

= 2 〈e1, Q(q1)
Tq2〉 [03×1 I]Q(Q(q1)

Tq2)
Te1.

= 2 〈q1,q2〉 [03×1 I]Q(q1)
Tq2. (48)



APPENDIX V
CONSENSUS IN Rn CASTED AS SYNCHRONIZATION IN Sn

In this section, we consider a group of N agents operating
in Rn, for some n ∈ N. For each i ∈ N , ui : R≥0 7→ Rn

is the body-framed linear velocity of agent i, which can be
actuated. Consider then x = (x1, · · · ,xN) : R≥0 7→ (Rn)N ,
where each position xi : R≥0 3 t 7→ xi(t) ∈ Rn evolves
according to

ẋi(t) = Riui(t) =: fi(ui(t)), (49)

where fi : Rn 3 u 7→ fi(u) := Riu ∈ Rn and where
Ri ∈ SO(3) represents the body orientation frame of agent
i w.r.t. some unknown inertial orientation frame. In physical
terms,Riui corresponds to the inertial-framed linear velocity
of agent i, and we assume that agent i is unaware of its
orientation w.r.t. the inertial orientation frame.

If, at a time instant t ∈ R≥0, agent i ∈ N is aware of
the relative position between itself and another agent j, then
j ∈ Ni(σ(t)), where σ(t) encodes the network graph at time
t. At each time instant t ∈ R≥0 and for x ∈ (Rn)N , each
agent i ∈ N measures hi(t,x), where hi(t, ·) : (Rn)N 3
x 7→ hi(t,x) ∈ (Rn)|Ni(σ(t))| is defined as

hi(t,x) := (hij1(x), · · · ,hij|Ni(σ(t))|
(x)) ∈ (Rn)|Ni(σ(t))|,(50)

where {j1, · · · , j|Ni(σ(t))|} ≡ Ni(σ(t)) and where hij :
(Rn)N 3 x := (x1, · · · ,xN) 7→ hij(x) ∈ Rn is defined
as

hij(x) := RT

i (xj − xi) ∈ Rn, (51)

for each j ∈ Ni(σ(t)). Thus, at each time instant t ∈
R≥0, an agent i ∈ N makes |Ni(σ(t))| measurements, and
each measurement corresponds to a distance vector between
agent i and one of its neighbors, projected onto agent’s
i orientation frame. Notice that (51) does not require a
common reference frame among agents, i.e., agents do not
need to agree on a common origin and orientation frame.

Problem 3: For each time instant t ∈ R≥0 and for each
i ∈ N , design time-varying decentralized feedback laws
uhi (t, ·) : (Rn)|Ni(σ(t))| 7→ Rn, such that asymptotic consen-
sus of x = (x1, · · · ,xN) : R≥0 7→ (Rn)N is accomplished,
where ẋi(t) = fi(u

h
i (hi(t,x(t)))) for every i ∈ N and with

hi(t, ·) as defined in (50).
For each t ∈ R≥0 and each agent i ∈ N , consider the control
law uhi (t, ·) : Rn|Ni(σ(t))| 3 hi := (hij1 , · · · ,hij|Ni(σ(t))|

) 7→
uhi (t,hi) ∈ Rn defined as

uhi (t,hi) := −
∑

j∈Ni(σ(t))

wij(‖hij‖)hij, (52)

where wij : R≥0 7→ R≥0 is a weight function agent i assigns
to the position error between itself and its neighbor j. This
weight may be used, for example, to bound the actuation:
indeed, if R≥0 3 x 7→ wij(x) := σ√

σ2+x2
for all j ∈ N and

some σ > 0, then ‖uhi (·, ·)‖ ≤ Nσ (since supx≥0 wij(x)x =
σ). Denote ucli as the composition of the control law (52)
with the measurement function (50), i.e., ucli : R≥0×(Rn)N 3

R
n

R
n+1

en+1 =

[

0

1

]

2 R
n+1

xj

zj =
xj+en+1

kxj+en+1k
2 Sn

xi

Sn 3
xi+en+1

kxi+en+1k
= zi

0

Fig. 8: Casting consensus in Rn as synchronization in Sn.

(t,x) 7→ ucli (t,x) := uhi (t,hi(t,x)) ∈ Rn. It follows that

ucli (t,x) =−RT

i

∑
j∈Ni(σ(t))

wij(‖xi − xj‖)(xi − xj).(53)

By composing (49) with (53), it follows that

ẋi(t) =
∑

j∈Ni(σ(t))

wij(‖xj(t)− xi(t)‖)(xj(t)− xi(t))(54)

which is not in the form (8). In order to write the closed
loop dynamics (54) as in (8), we perform a transformation
which is discussed next.

In order to analyze consensus in Rn under the same frame-
work as synchronization in S2 and SO(3), we now perform a
change of variables that serves only the purpose of analysis.
Consider then the unit vector en+1 = (0n, 1) ∈ Sn ∈ Rn+1

and the matrix P = [In 0n]T ∈ R(n+1)×n. Consider also the
mapping h : Rn 3 x 7→ h(x) ∈ C(π2 , en+1) ⊂ Sn ⊂ Rn+1,
defined as

h(x) :=
Px + en+1

‖Px + en+1‖
, (55)

where ‖Px + en+1‖ =
√

1 + ‖x‖2 ≥ 1 > 0 for all x ∈ Rn.
This transformation is illustrated in Fig.8. Notice that h is,
in fact, a diffeomorphism between Rn and C(π2 , en+1), with
h−1 : C(π2 , en+1) 3 z 7→ h−1(z) ∈ Rn given by

h−1(z) = P T

(
1

〈z, en+1〉
zi − en+1

)
. (56)

If follows from (55) and (56) that, for any zi, zj ∈
C(π2 , en+1),

Pxj − Pxi
‖Pxi + en+1‖

|xi=h−1(zi),xj=h−1(zj)

=
(
‖Pxj+en+1‖
‖Pxi+en+1‖

Pxj
‖Pxj+en+1‖ −

Pxi
‖Pxi+en+1‖

)
|xi=h−1(zi)

xj=h−1(zj)

= zj
〈zi, en+1〉
〈zj, en+1〉

− zi. (57)

Let x = (x1, · · · ,xN) ∈ (Rn)N and z = (z1, · · · , zN) ∈
C(π2 , en+1)

N where z = hN(x) ⇔ x = (h−1)N(z).
It holds that, for any i ∈ N , (note that dh(xi) =



1
‖Pxi+en+1‖Π (h(xi))P )

dh(xi)fi(u
cl

i (t,x))|x=(h−1)N (z) =

(49) = Π (h(xi))
PRiu

cl
i (t,x)

‖Pxi + en+1‖
|x=(h−1)N (z)

(54) =
∑

j∈Ni(σ(t))

Π (h(xi))wij (‖Pxj − Pxi‖) Pxj−Pxi
‖Pxi+en+1‖ |x=(h−1)N (z)

(57) =
∑

j∈Ni(σ(t))

Π (zi)wij

(∥∥∥ zj
〈en+1,zj〉 −

zi
〈en+1,zi〉

∥∥∥)( 〈en+1,zi〉
〈en+1,zj〉zj − zi

)
=

∑
j∈Ni(σ(t))

〈en+1,zi〉
〈en+1,zj〉wij

(∥∥∥ zj
〈en+1,zj〉 −

zi
〈en+1,zi〉

∥∥∥)Π (zi) zj

=:
∑

j∈Ni(σ(t))

w̃ij(zi, zj)Π (zi) zj

(8) =: f̃i,σ(t)(z)

where, in the one to last step, we defined w̃ij(zi, zj) :=
〈en+1,zi〉
〈en+1,zj〉wij

(∥∥∥ zj
〈en+1,zj〉 −

zi
〈en+1,zi〉

∥∥∥), which satisfies (9)
for α = π

2 and for ν̄ = en+1 ∈ Sn. We have thus casted
this problem in the form (8) with ν ≡ z ∈ (Sn)N .

Remark 12: Unlike synchronization in S2 and SO(3), the
unit vectors in this section are by construction contained in a
π
2 -cone formed by the unit vector en+1 (see the co-domain of
h in (55)). Also, note that h in (55) may be defined with other
vectors other than en+1, i.e., Rn 3 x 7→ h(x) = Px+ẽ

‖Px+ẽ‖
with some ẽ ∈ Sn satisfying 〈en+1, ẽ〉 6= 0 also works as an
alternative transformation.
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