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An Iterative Sum-of-Squares Optimization for Static Output Feedback
of Polynomial Systems

Simone Baldi1

Abstract— This work proposes an iterative procedure for
static output feedback of polynomial systems based on Sum-of-
Squares optimization. Necessary and sufficient conditions for
static output feedback stabilization of polynomial systems are
formulated, both for the global and for the local stabilization
case. Since the proposed conditions are bilinear with respect
to the decision variables, an iterative procedure is proposed
for the solution of the stabilization problem. Every iteration
is shown to improve the performance with respect to the
previous one, even if convergence to a local minimum might
occur. Since polynomial Lyapunov functions and control laws
are considered, a Sum-of-Squares optimization approach is
adopted. A numerical example illustrates the results.

I. I NTRODUCTION

The static output feedback (SOF) problem is still an active
research topic in the control community: the reason why
such control technique still receives so much attention is
probably driven both by practical industrial needs, since
static output feedback is the simplest control loop that can
be realized in practice (e.g. for linear systems it simply
amounts to finding a constant feedback gain via the available
measurements), and by theoretical reasons, since several
dynamic control design problems can be recast as static
output feedback problems for a properly augmented system
[1]. Despite the simplicity of this structure, the SOF problem
has still challenging open issues for the systems and control
community.

SOF stabilization of linear systems has been widely
studied, e.g. in [2], [3], [4], [5], while research on SOF
stabilization of (certain classes of) nonlinear systems has
been increasing in the latest years, especially for nonlinear
systems with polynomial vector fields. Recently the interest
on polynomial systems has increased dramatically, possibly
driven by two main reasons: one is that polynomial systems
appear in a wide range of applications, spanning from
biology to HVAC control to jet propulsion [6]; the second
reason is the recent development of numerical tools based on
sum-of-squares (SOS) decomposition for nonlinear analysis
and controller synthesis [7]. Generally speaking, SOS is a
generalization of the well-known linear matrix inequalities
(LMI) methods to polynomial systems. There are toolboxes
such as SOSTOOLS [8] that can recast the polynomial
formulation into a Semidefinite programming which can be
solved efficiently by solvers such as Sedumi [9] or SDPT3
[10].
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The work in nonlinear static output feedback can be
distinguished into looking for (Lyapunov-based) sufficient
conditions for stabilization and/or developing numerical al-
gorithms for stabilization. In [11] a Hamilton-Jacobi frame-
work was proposed for static output feedback of nonlinear
systems, with a sufficient condition and a (partial) converse
one. The work in [12] focuses on nonlinear systems with
delayed disturbances, where a particular transformation and
a Lyapunov-Razumikhin criterion are used to synthesize a
sliding mode control. Several numerical algorithms for non-
linear static output feedback have been proposed in literature.
Nonlinear static output feedback results have been derived
for fuzzy systems: [13], [14] addresses static output feedback
controllers for Takagi-Sugeno fuzzy models with linear and
linear time-delay subsystems; for polynomial fuzzy systems
a sum-of-squares approach is used in [15]. In [16] a static
output feedback method with integral action is proposed for
discrete-time polynomial systems. Other research directions
on nonlinear static output feedback include sampled-data
control systems consisting of a nonlinear plant in feedback
with an output-feedback sampled-data polynomial controller
[17].

A major difficulty, in linear or nonlinear static output
feedback stabilization, is given by the non-convexity of the
static output feedback solution set. In order to avoid non-
convexity some simplifying assumptions must be made: for
example in [18] the Lyapunov function is restricted to be
only of function of states whose corresponding rows in the
control matrix are zeroes. In doing so, it avoids the non-
convexity of the static feedback design, but that makes the
results more conservative.

In this approach we first develop a necessary and suf-
ficient conditions for (global and local) stabilization via
static output feedback of polynomial input-affine systems.
Since the conditions are bilinear in the decision variables,
an iterative algorithm based on sum-of-square decomposition
will be developed to solve the stabilization problem: despite
converge to the global minimum cannot be guaranteed, we
can show that the solution of every iteration is feasible
for the next one, so that at least convergence to a local
minimum can be achieved. The work can be seen as an
extension of [5] to polynomial nonlinear systems. It has to
be underlined that an extension in this direction was done
in [19], with the main differences that we adopt a more
efficient sum-of-square decomposition, and furthermore we
investigate local stabilization problem, which is relevant for
nonlinear systems, where global stabilization cannot always
be achieved.
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The rest of the paper is organized as follows: Section II
presents the problem formulation for global stabilizationvia
static output feedback: a necessary and sufficient condition
is given, which is solved in Section III via an iterative SOS
method. The extension to local stabilization is discussed in
Section IV and Section V presents a numerical example.
Section VI concludes the paper.

The notation of this paper is standard, withX = X′ > 0
denoting a symmetric positive definite matrix, andX = X′ ≥
0 denoting a symmetric positive semidefinite matrix. The
prime symbol denotes transpose.

II. PROBLEM FORMULATION

Let us take a polynomial input-affine system in the form

ẋ = f (x)+g(x)u

y = h(x), (1)

wherex∈R
n, u∈R

m, y∈R
p are the state, input and output,

respectively, andf (x) g(x), h(x) are polynomial functions
of the statex. The purpose of the static output feedback
stabilization is to find a static output feedback lawu= k(y) =
k(h(x)) that stabilizes the system (wherek is also taken as
a polynomial function of the statex). By choosing a vector
of monomialz(x) of sufficiently high order,

z(x) =
[

x1 x2 · · · xn x2
1 · · · xa

1xb
2 · · ·x

c
n · · ·

]′
(2)

where the maximum order ofz(x) will depend on the degree
of f , g andh, it is possible to write the functions in (1) as

f (x) = Φz(x)

h(x) = Hz(x)

k(h(x)) = KH̄z(x). (3)

Note that in (3) we used two different matricesH andH̄ for
the following reason. If the desire is to design the control
input to be a linear function ofy, then u = KHz(x), i.e.
H = H̄. If the desire is to design the control input to be a
higher order polynomial ofy, then the appropriate structure
of the matrixH̄ must be found such that all the monomials
of y can be represented as a polynomial function ofx.
The representation as in (3) can always be found, given a
sufficiently high order ofz(x).

The problem of output feedback stabilization for the
polynomial system (1) is recast into the problem of solving
the following inequality (with some stability marginρ > 0)

z′(x)

(

[

Φ+g(x)KH̄
]′

M(x)P+

PM(x)
[

Φ+g(x)KH̄
]

+ρP

)

z(x)< 0, (4)

where the jacobianM(x) = dz(x)/dx is a polynomial matrix
of appropriate dimension. Note that (4) has been derived by
taking a Lyapunov function in the formV(x) = z′(x)Pz(x).
In the following, for brevity, we omit the argumentx from
z, M andg.

The following result holds
Lemma 1: Solving (4) is equivalent to solving the follow-

ing inequality

z′
(

Φ′M′P+PMΦ
)

z−z′PMgg′M′Pz

+
(

g′M′Pz+KH̄z
)′ (

g′M′Pz+KH̄z
)

+z′ρPz< 0.(5)
Proof:
(5)⇒ (4) This follows by observing that for (4) the following
holds

(4)< (4)+z′H̄ ′K′KH̄z= (5). (6)

(4) ⇒ (5) This follows by observing that if (4) holds then
there exist aγ > 0 such that

z′
(

[

Φ+gKH̄
]′

M′P+PM
[

Φ+gKH̄
]

+ρP

)

z

+
1
γ2 z′H̄ ′K′KH̄z< 0 (7)

z′
(

Φ′M′P+PMΦ+ρP

)

z− γ2zPMgg′M′Pz+

(γg′M′Pz+
1
γ

KH̄z)′(γg′M′Pz+
1
γ

KH̄z)< 0 (8)

γ2z′
(

Φ′M′P+PMΦ+ρP

)

z− γ4zPMgg′PM′z+

(γ2g′M′Pz+KH̄z)′(γ2g′M′Pz+KH̄z)< 0, (9)

and (5) follows by definingP̂= γ2P. End proof.

The expression in (5) is quadratic inP and cannot be
solved by standard Semidefinite Programming. In order to
solve this problem we introduce an auxiliary positive definite
symmetric matrixX = X′ such that

z′XMgg′M′Pz+z′PMgg′M′Xz−z′XMgg′M′Xz

< z′PMgg′M′Pz, (10)

where (10) is valid since

z′(X−P)Mgg′M′(X−P)z> 0 (11)

The observation is that if we find two matricesX and P
such that

z′
(

Φ′M′P+PMΦ
)

z+z′Ψz+

z′
(

g′M′P+KH̄
)′ (

g′M′P+KH̄
)

z< 0 (12)

whereΨ is defined as

Ψ = XMgg′M′P+PMgg′M′X−XMgg′M′X+ρP. (13)

Then (5) holds automatically, and thus (4) holds and the
static output feedback problem has been solved. So, the
idea is to develop an iterative method to findX, P, K and
ρ so that (12) holds.



III. I TERATIVE METHOD

The following generalized Schur complement is recalled
[20]

Lemma 2: The following inequality is valid

−p(x)+g′(x)g(x)< 0, ∀x (14)

if and only if

−p(x)+2g′(x)s−s′s< 0, ∀x,s (15)

where s is a variable of appropriate dimension.
Using the generalized Schur complement find that (12) is

equivalent to

z′
(

Φ′M′P+PMΦ+Ψ
)

z+

2z′
(

g′M′P+KH̄
)′

s−s′s< 0 (16)

∀s,x, which makes (16) linear with respect to the decision
variablesP and K. Note thatΨ is the same as in (13). We
exploit this transformation in order to develop an iterative
algorithm overP, X andK, as shown in Algorithm 1 (where
all inequalities have to be intended as relaxed to Sum-of-
Squares conditions).

Algorithm 1 Global Static Output Feeback Stabilization

1: Initialize:
2: Given an initialX
3: Optimization 1:
4: Solve forP, K andρ
5: ρ̄ = maxρ
6: s.t.

7: z′
(

Φ′M′P + PMΦ + Ψ
)

z + 2z′ (g′M′P+KH̄)
′ s −

s′s< 0
8: Ψ = ρ̄P−XMgg′M′P− PMgg′M′X+XMgg′M′X
9: P> 0

10: If ρ̄ > 0 problem solvedand return the desired controller
gainsK.

11: Otherwise,goto Optimization 2.
12: Optimization 2:
13: Given ρ̄ andX from Optimization 1
14: Solve forP
15: P̄= argmintr(P)
16: s.t.

17: z′
(

Φ′M′P + PMΦ + Ψ
)

z + 2z′ (g′M′P+KH̄)
′ s −

s′s< 0
18: Ψ = ρ̄P−XMgg′M′P− PMgg′M′X+XMgg′M′X
19: P> 0
20: If ‖X− P̄‖ < κ , with κ a prescribed tolerance, the

synthesis problem may not be solvable,Stop.
21: Else,goto Optimization 1, using as a newX the P̄ just

found.

Note that Optimization 1 implies the solution of a bisection
algorithm due to the product ofP and ρ . The solution of
Optimization 2 gives a newX for the next iteration.

Remark 1: Let the system be stabilizable under static
output feedback, so that inequality (12), (13) will have a
solution (thanks to the condition in (10)). Assume that a
solution to Optimization 1 exists at the first iteration. Then
for any following iteration, the existence of the solution is
guaranteed by inequality (12), (13) and the sequence of
solutions ρ̄i to Optimization 1 will be non decreasing. In
fact, if the following inequality holds

z′
(

Φ′M′Pi +PiMΦ
)

z+z′Ψiz+

z′
(

g′M′Pi +KH̄
)′ (

g′M′Pi +KH̄
)

z< 0, (17)

for some Pi > 0 at iteration i (Ψi is defined accordingly),
then the following is also true

z′
(

Φ′M′Pi +PiMΦ
)

z−z′PiMgg′M′Piz+z′ρPiz

z′
(

g′M′Pi +KH̄
)′ (

g′M′Pi +KH̄
)

z< 0, (18)

which means that at iteration i+1 Optimization 1 is feasible
with Pi+1 = P̄i , ρi+1 = ρ̄i . This proves that the sequence of
solutionsρ̄i to Optimization 1 will be nondecreasing.

Remark 2: A nondecreasing sequence of solutionsρ̄i to
Optimization 1 does not guaranteed thatρ̄i > 0 eventually.
Neither it is guaranteed convergence to the a global mini-
mum. In general convergence will be affected by the initial
choice for X.

Remark 3: In this work the inequality (12) is relaxed to

−z′
(

Φ′M′P+PMΦ+Ψ
)

z−

2z′
(

g′M′P+KH̄
)′

s+s′s is SOS (19)

The condition in [19] is less efficient than (19), in view of the
fact that the following result is used in [19]: (12) is relaxed
to

−ν ′





z′
(

Φ′M′P+PMΦ+Ψ
)

z ∗

(g′M′P+KH̄)z −I



ν ′ is SOS (20)

which clearly involves more decision variables, thus increas-
ing computational complexity. Since the gap between semi-
definiteness and sum-of-squares has been shown to increase
at higher dimensions [21], the relaxation (20) might lead to
increased conservativeness.

IV. L OCAL STABILITY

Global stabilization is not always possible with nonlinear
systems, e.g. if multiple equilibria are present: for this reason,
it is interesting to derive regional conditions for stabilization.
At first the definition for (local) regional stabilization isgiven
[22, Sect. 8.2]:

Definition 1: The origin of ẋ= f (x)+g(x)k(x) is region-
ally stable if it is (locally) asymptotically stable in a given
regionG which is a subset of the region of attraction, i.e.

lim
t→∞

x(t) = 0, ∀x(0) ∈ G, (21)



An example of a given regionG is e.g., G ⊂ Ωc =
{x∈ R

n : V(x)≤ c} where Ωc is an estimate of the region
of attraction.

The next proposition provides a sufficient condition for
the regional stabilization of the origin:

Proposition 1: If it exist a Lyapunov functionV(x) and a
multiplier m(x) such that the following is satisfied

V̇(x)−m(x)(V(x)−c)< 0

m(x)> 0, (22)

with c> 0, then the origin is regionally stable, whereΩc =
{x∈ R

n : V(x)≤ c} is an estimate of the region of attraction.
Proof:
The proof is straightforward via Lyapunov arguments as in
[22, Sect. 8.2]End proof.

Remark 4: In case the control designer requires the es-
timate of the region of attraction to be of a desired shape
(e.g. described by a given polynomial function r(x)), then
condition (22) can be modified into

V̇(x)−m1(x)(V(x)−c)< 0

V(x)−c−m2(x)(r(x)−b)> 0

m1(x)> 0

m2(x)> 0, (23)

with c,b > 0, where the second inequality guarantees that
{x∈ R

n : r(x)≤ b} ⊆ {x∈ R
n : V(x)≤ c}

The following lemma is an extension of Lemma 1 for local
regional stability

Lemma 3: The following condition for local regional sta-
bilization via output feedback (with some stability margin
ρ > 0)

z′
(

[

Φ+gKH̄
]′

MP+PM
[

Φ+gKH̄
]

+ρP

)

z−m
(

z′Pz−c
)

< 0 (24)

is equivalent to

z′
(

Φ′M′P+PMΦ
)

z+z′ρPz−z′PMgg′M′Pz

+
(

g′M′Pz+KH̄z
)′ (

g′M′Pz+KH̄z
)

−m
(

z′Pz−c
)

< 0, (25)

where the estimate of the region of attraction is given in both
cases byΩc = {x∈ R

n : z′(x)Pz(x)≤ c}
Proof
By following the same reasoning as Lemma 1
(25) ⇒ (24) This follows by observing that for (24) the
following holds

(24)< (24)+z′H̄ ′K′KH̄z= (25). (26)

(24) ⇒ (25) This follows by observing that if (24) holds
then there exist aγ > 0 such that

z′
(

[

Φ+gKH̄
]′

M′P+PM
[

Φ+gKH̄
]

+ρP

)

z

+
1
γ2 z′H̄ ′K′KH̄z−m

(

z′Pz−c
)

< 0 (27)

z′
(

Φ′M′P+PMΦ+ρP

)

z− γ2zPMgg′M′Pz+

(γg′M′Pz+
1
γ

KH̄z)′(γg′M′Pz+
1
γ

KH̄z)

−m
(

z′Pz−c
)

< 0 (28)

γ2z′
(

Φ′M′P+PMΦ+ρP

)

z− γ4zPMgg′PM′z+

(γ2g′M′Pz+KH̄z)′(γ2g′M′Pz+KH̄z)

−γ2m
(

z′Pz−c
)

< 0, (29)

and (25) follows by defininĝP= γ2P. End proof.

Note that condition (22) is bilinear with respect to the
decision variables, i.e. the Lyapunov functionV(x) and the
multiplier m(x). If Algorithm 1 wants to be extended to local
stabilization, an extra iterative step in necessary in order to
deal with this bilinearity. The resulting algorithm is presented
in Algorithm 2 (where all inequalities have to be intended as
relaxed to Sum-of-Squares conditions). The starting pointfor
the algorithm is an initial Lyapunov function that can certify
local stability. This initial Lyapunov function can be achieved
by running the method in [5] for the linearized version of
the system. From there, first, for a fixed Lyapunov function,
the largest estimate of the region of attraction is sought
(Optimization 1); then, for a fixed multiplier, the maximum
stability margin inside the region is sought (Optimization2,
which requires a bisection algorithm); then a new matrixX
is sought for the next iteration (Optimization 3).

V. NUMERICAL EXAMPLE

The following example has been selected to illustrate the
results of the method

ẋ1 = −x1+x1x2+x2u

ẋ2 = x1+2x2+x2
1+x2

1x2+u (30)

The maximum order of the monomial is chosen as 3, which
also accounts for the maximum order of the vector fieldf .
This means that

z(x) = [x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x2
2 x3

2]
′ (31)

At first it is assumed that the statex is completely measur-
able, so that the static output feedback problem is nothing but
a static state feedback problem. No global solution could be
found for this system, so that Algorithm 2 was run. Starting
with X = I , the algorithm terminates after 4 iterations with
ρ̄ = 1.9897 and

u = 23.1680x1−102.9800x2−0.0612x2
1+78.0630x1x2

+0.8709x2
2+4.7724x3

1−170.1000x2
1x2

−2.4245x1x2
2−229.5300x3

2 (32)



Algorithm 2 Local Static Output Feedback Stabilization

1: Initialize:
2: Given an initial X and an initial Lyapunov functionP

(e.g. a quadratic Lyapunov function coming from the
linearized version of the plant)

3: ρ̄ sufficiently small and ¯c− = 0
4: Optimization 1:
5: With fixed P, ρ̄ andX, solve forc, K andm
6: c̄= maxc
7: s.t.

8: z′
(

Φ′M′P+PMΦ+Ψ
)

z+2z′ (g′M′P+KH̄)
′ s−s′s−

m(z′Pz−c)< 0
9: Ψ = ρ̄P−XMgg′M′P−PMgg′M′X+XMgg′M′X

10: P> 0, m> 0
11: If c̄− c̄− > κc, with κc a prescribed tolerance,goto

Optimization 2and update ¯c− with the new ¯c.
12: Else,goto Optimization 3
13: Optimization 2:
14: With fixed m and c̄, solve forP, K andρ
15: ρ̄ = maxρ
16: s.t.

17: z′
(

Φ′M′P+PMΦ+Ψ
)

z+2z′ (g′M′P+KH̄)
′ s−s′s−

m(z′Pz−c)< 0
18: Ψ = ρ̄P−XMgg′M′P−PMgg′M′X+XMgg′M′X
19: P> 0
20: If ρ̄ > 0 problem solvedand return the desired controller

gainsK.
21: Otherwise,goto Optimization 1.
22: Optimization 3:
23: Given ρ̄ , m andX from Optimization 1
24: Solve forP
25: P̄= argmintr(P)
26: s.t.

27: z′
(

Φ′M′P+PMΦ+Ψ
)

z+2z′ (g′M′P+KH̄)
′ s−s′s−

m(z′Pz−c)< 0
28: Ψ = ρ̄P−XMgg′M′P−PMgg′M′X+XMgg′M′X
29: P> 0
30: If ‖X− P̄‖ < κ , with κ a prescribed tolerance, the

synthesis problem may not be solvable,Stop.
31: Else,goto Optimization 1, using as a newX the P̄ just

found.

Fig. 1 depicts the evolution of the state, of the state norm
and of the input with the controller (32). The exponential
bound given byρ̄ = 1.9897 is indicated by a dashed line.

As a further example, we assume now that onlyx2 is
measurable, which leads to the followinḡH matrix

H̄ =





0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1



 (33)

Starting withX = I , the algorithm terminates after 5 iterations
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Fig. 1: Evolution of the state, of the state norm and of the
input with the controller (32).

with

u = −22.8540x2−15.4830x2
2−40.1450x3

2 (34)

Fig. 2 depicts the evolution of the state, of the state norm
and of the input with the controller (34).
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Fig. 2: Evolution of the state, of the state norm and of the
input with the controller (34).

As a final example, we assume now that onlyx1−5x2 is
measurable, which leads to the followinḡH matrix

H̄ =





1 −5 0 0 0 0 0 0 0
0 0 1 0 25 0 0 −10 0
0 0 0 0 0 1 −15 75 −125



 (35)

Starting withX = I , the algorithm terminates after 4 iterations
with

u = 7.2304(x1−5x2)+0.2665(x1−5x2)
2

+3.9124(x1−5x2)
3 (36)

Fig. 3 depicts the evolution of the state, of the state norm
and of the input with the controller (36).

VI. CONCLUSIONS

This work proposed an iterative procedure for static output
feedback of polynomial systems based on Sum-of-Squares
optimization. Necessary and sufficient conditions for static
output feedback stabilization of polynomial systems were
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Fig. 3: Evolution of the state, of the state norm and of the
input with the controller (36).

formulated, both for the global and for the local stabilization
case. Since the proposed conditions are bilinear with respect
to the decision variables, an iterative procedure has been
proposed for the solution of the stabilization problem. Every
iteration is shown to improve the performance with respect
to the previous one, even if convergence to a local mini-
mum might occur. Since polynomial Lyapunov functions and
control laws are considered, a Sum-of-Squares optimization
approach has been adopted. A numerical example illustrated
the results.

Future work might include at least two directions: the first
one is adding input saturation constraints to the formulation,
so that regional stabilization can be achieved also taking into
account the unsaturated and saturated regions; the second
one is investigating rational Lyapunov functions for local
stabilization, by resorting to the Zubov’s method.
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