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An lterative Sum-of-Squares Optimization for Static Output Feedback
of Polynomial Systems

Simone Baldk

Abstract— This work proposes an iterative procedure for The work in nonlinear static output feedback can be
static output feedback of polynomial systems based on Sum-of- distinguished into looking for (Lyapunov-based) sufficient
Squares optimization. Necessary and sufficient conditions for o itions for stabilization and/or developing numerical al-

static output feedback stabilization of polynomial systems are . e . . .
formulated, both for the global and for the local stabilization gorithms for stabilization. In [11] a Hamilton-Jacobi frame-

case. Since the proposed conditions are bilinear with respect WOrk was Pmposed.f(?r static output feedbacklof nonlinear
to the decision variables, an iterative procedure is proposed systems, with a sufficient condition and a (partial) converse
for the solution of the stabilization problem. Every iteration  one. The work in [12] focuses on nonlinear systems with
is shown to improve the performance with respect to the — yg|ayeq disturbances, where a particular transformation and
previous one, even if convergence to a local minimum might L . .

a Lyapunov-Razumikhin criterion are used to synthesize a

occur. Since polynomial Lyapunov functions and control laws o ) -
are considered, a Sum-of-Squares optimization approach is Sliding mode control. Several numerical algorithms for non-

adopted. A numerical example illustrates the results. linear static output feedback have been proposed in literature.
Nonlinear static output feedback results have been derived
I. INTRODUCTION for fuzzy systems: [13], [14] addresses static output feedback

. N . controllers for Takagi-Sugeno fuzzy models with linear and
The static output feedback (SOF) problem is still an aCt'Vﬁnear time-delay subsystems: for polynomial fuzzy systems

resiarch ttOFI)I? |r;] the cor:_tlzol community: theh re?tsorg why sum-of-squares approach is used in [15]. In [16] a static
sucb g:)n (;0. ec bm'?hueb st retqel\fe§ dso t”.‘ulc aden on I(§utput feedback method with integral action is proposed for
probably driven both by practical Industrial Needs, SiNChs e ate.time polynomial systems. Other research directions
static OPtp“‘ 'feedbac'k Is the S|mpl'est control Ioop th"?lt ¢ nonlinear static output feedback include sampled-data
be realized in practice (e.g. for linear systems it Slrnpl)éontrol systems consisting of a nonlinear plant in feedback

amounts to finding a constant feedback gain via the availabjg, o, output-feedback sampled-data polynomial controller
measurements), and by theoretical reasons, since sevi ]

dynamic control design problems can be recast as sta ICA major difficulty, in linear or nonlinear static output
output fegdback .prople.ms for.a properly augmented Syswf@edback stabilization, is given by the non-convexity of the
[1]. Despite the simplicity of this structure, the SOF problen%

h ill challenai . for th ¢ q ¢ ftic output feedback solution set. In order to avoid non-
cgrsnrilun(i:tya €nging open issues for the systems and contig nvexity some simplifying assumptions must be made: for

ilizati ¢ i h ) Iexample in [18] the Lyapunov function is restricted to be
SQF stabi lzation of linear_systems has been wide ¥nly of function of states whose corresponding rows in the
studied, e.g. in [2], [3], [4], [S], while research on SOI:control matrix are zeroes. In doing so, it avoids the non-

stabilization of (certain classes of) nonlinear systems h‘?:%nvexity of the static feedback design, but that makes the
been increasing in the latest years, especially for non"ne?‘ésults more conservative

systems wit_h polynomial vec_tor fields. Recent!y the intergst In this approach we first develop a necessary and suf-
on polynomial sy;tems has mcregsed dramat|ca!ly, poss'bfliY:ient conditions for (global and local) stabilization via
driven bY two main reasons. one Is thgt polynomlal_ SysteM3atic output feedback of polynomial input-affine systems.
appear in a wide range of applications, spanning frong, o the conditions are bilinear in the decision variables,
biology to HVAC control to jet propulsion [6]; the second ,, jterative algorithm based on sum-of-square decomposition
reason is the recent development QT numerical FOOlS based Ml be developed to solve the stabilization problem: despite
sum-of-squares (SOS) decomposition for nonlinear analysé%nverge to the global minimum cannot be guaranteed, we
and controller synthesis [7]. Generally speaking, SOS is &n show that the solution of every iteration is feasible
generalization of the well-known linear matrix inequalitiesror the next one, so that at least convergence to a local
(LMI) methods to polynomial systems. There are toolboxgﬁ]immum can be achieved. The work can be seen as an
such as SQSTOOLS _[8] _that can reca;t the ,pmynom'%lxtension of [5] to polynomial nonlinear systems. It has to
formulat|o_n_|nto a Semidefinite programming which can b%e underlined that an extension in this direction was done
solved efficiently by solvers such as Sedumi [9] or SDPT§, [19], with the main differences that we adopt a more

[10]. efficient sum-of-square decomposition, and furthermore we
. L investigate local stabilization problem, which is relevant for
S. Baldi is with the Delft Center for Systems and Control, l h lobal bilizati |

Delft University of Technology, Delft 2628CD, The Netherlands non megr systems, where global stabilization cannot always

s.baldi@tudelft.nl be achieved.
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The rest of the paper is organized as follows: Section Il The following result holds
presents the problem formulation for global stabilizatide Lemma 1: Solving (4) is equivalent to solving the follow-
static output feedback: a necessary and sufficient conditiong inequality
is given, which is solved in Section Ill via an iterative SOS

method. The extension to local stabilization is discussed i z’(CD’M’P+ pM¢>ZZ’nggM'pZ
Section IV and Section V presents a numerical example. _ B
Section VI concludes the paper. + (dM'Pz+KH2)' (¢ M'Pz+KHz) +ZpPz< 0(5)

The notation of this paper is standard, with= X' >0 Proof:
denoting a symmetric positive definite matrix, ad=X">  (5) = (4) This follows by observing that for (4) the following
0 denoting a symmetric positive semidefinite matrix. Theolds
prime symbol denotes transpose. _ _
e! _
Il. PROBLEM FORMULATION (4) < (4)+ZH'K'KHz = (5). ©)
Let us take a polynomial input-affine system in the form(4) = (5) This follows by observing that if (4) holds then

% £(x) +g(u there exist ay > 0 such that

y = he, @) z’<[¢+gKI—T]'M’P+ PM[® -+ gKH] +pP)z
wherex e R", ue R™, y € RP are the state, input and output, 1
respectively, andf(x) g(x), h(x) are polynomial functions +5ZH'K'KHz <0 (7)
of the statex. The purpose of the static output feedback y
stabilization is to find a static output feedback law k(y) = 7 (Q/M/PJF PM<D+pP) 72— PzPMgdM'Pz+
k(h(x)) that stabilizes the system (whekes also taken as
a polynomial function of the stat€). By choosing a vector

N } 1)/ /N } -
of monomialz(x) of sufficiently high order, (yYgM'Pz+ VKHZ) (YgM'Pz+ VKHZ) <0 (8)

ZX)= X X - X X o B G / 2) y22’<¢’M’P+PM¢+pP)Zy/‘zPMgdPM/z+
where the maximum order afx) will depend on the degree (Y’dM'Pz+KH2) (Y’dM'Pz+KHz) < 0, (9)
of f, g andh, it is possible to write the functions in (1) as ~
and (5) follows by defining® = y?P. End proof.
f(x) = dz(x)
h(x) = Hz(x) The expression in (5) is quadratic i and cannot be
k(h(x)) = KHz(x). (3) solved by standard Semidefinite Programming. In order to

N hat in (3 q diff icesand f solve this problem we introduce an auxiliary positive dedini
ote that in (3) we used two different matricklsan or ?ymmetric matrixX — X’ such that

the following reason. If the desire is to design the contro
input to be a linear function of, then u= KHz(x), i.e. ZXMgdM’Pz+ ZPMgdM’'Xz— ZXMgdM’X z
H = H. If the desire is to design the control input to be a /
higher order polynomial o, then the appropriate structure <ZPMggM'Pz (10)
of the matrixH must be found such that all the monomialsyhere (10) is valid since
of y can be represented as a polynomial functionxof
The representation as in (3) can always be found, given a Z(X—P)MggM’'(X—-P)z>0 (11)
sufficiently high order ofz(x).

The observation is that if we find two matricsand P

The problem of output feedback stabilization for thesuch that

polynomial system (1) is recast into the problem of solving
the following inequality (with some stability margjn > 0) Z'(CD’M’PJr PM¢> z+7ZWz+
Z(x) ([¢+9(X)KH_]'M(X)P+ Z (M'P+KH) (IM'P+KH)z<0 (12)

whereW is defined as

PM(x) [®+ g(x)KH]| +pP) z(x) <0, (4)
W = XMggM'P+PMggM'X —XMgdM’'X +pP. (13

where the jacobiaM(x) = dz(x)/dx is a polynomial matrix 9gMP+PMad %9 e (3)

of appropriate dimension. Note that (4) has been derived Byhen (5) holds automatically, and thus (4) holds and the

taking a Lyapunov function in the fornd (x) = Z(x)Pzx).  static output feedback problem has been solved. So, the

In the following, for brevity, we omit the argumemtfrom idea is to develop an iterative method to fiXd P, K and

z, M andg. p so that (12) holds.



[1l. | TERATIVE METHOD Remark 1: Let the system be stabilizable under static
The following generalized Schur complement is recalle@UtPut feedback, so that inequality (12), (13) will have a
[20] solut!on (thank; Fo t.he condmon in (10)). Assur_’ne that a
Lemma 2: The following inequality is valid solution to Optimization 1 exists at the first iteration. mhe
for any following iteration, the existence of the solutien i
—p(X) +d (x)g(x) <0, ¥x (14) guaranteed by inequality (12), (13) and the sequence of
it and only if solutions p; to Optimization 1 will be non decreasing. In
fact, if the following inequality holds
—p(x) +2¢'(x)s—s< 0, Vx,s (15)
_ _ _ _ _ z’(qn’M’F’,+|3.Mq>>z+z’tPiz+
where s is a variable of appropriate dimension.
Using the generalized Schur complement find that (12) is 7z (g’M’P. + KH)/ (g’M’H +KH) z<0, (17)
equivalent to

for some P> 0 at iteration i (¥; is defined accordingly),

Z (¢’M’P+ P|\/|q>+L|J)zJr then the following is also true
2Z (M'P+KH) s—gs< 0 (16) z’(CD’M’R+P.Md>>z—z’P.Mng’P.z+z’pP.z
Vs, X, which makes (16) linear with respect to the decision 7 (g’M’P, +K|—T)'(g’M’P.—|—KI-T)z< 0, (18)

variablesP and K. Note thatW is the same as in (13). We

exploit this transformation in order to develop an iterativ which means that at iteratiori 1 Optimization 1 is feasible
algorithm overP, X andK, as shown in Algorithm 1 (where with R.; = P, pi.1 = pi. This proves that the sequence of
all inequalities have to be intended as relaxed to Sum-o$olutionsp; to Optimization 1 will be nondecreasing.
Squares conditions). Remark 2: A nondecreasing sequence of solutignto
Optimization 1 does not guaranteed that> 0 eventually.
Algorithm 1 Global Static Output Feeback Stabilization  Neither it is guaranteed convergence to the a global mini-

1: Initialize: mum. In general convergence will be affected by the initial
2: Given an initialX choice for X. _ _ _ .
3: Optimization 1 Remark 3: In this work the inequality (12) is relaxed to
4: Solve forP, K andp
5. 0= maxp 4 <q>’|v|’P+ p|v|q>+qJ)z_
6: S.L. — .
7. Z(OMP + PMO + W)z + 27 (@MP+KR)'s — 2Z (gM'P+KH)'s+5 is SOS  (19)
ds<0 The condition in [19] is less efficient than (19), in view of th
8  W=pP—XMgdM'P— PMggM’X +XMggM’'X fact that the following result is used in [19]: (12) is relake
o P>0 to
10: If p> 0 problem solvedand return the desired controller (o
gainsK. —v/ OMP+PMO+H )z v/ is SOS (20)
11: Otherwise,goto Optimization 2 (IM'P+ Kl—T)z —

12: Optimization 2

13: Given p and X from Optimization 1
14: Solve forP

15: P =argmintr(P)

16: S.

which clearly involves more decision variables, thus iasre

ing computational complexity. Since the gap between semi-
definiteness and sum-of-squares has been shown to increase
at higher dimensions [21], the relaxation (20) might lead to

17 Z(OMP + PM® + W)z 4 27 (GM'P+KH)'s increased conservativeness.
gs<0 IV. LOCAL STABILITY
18: W =pP—XMggM'P— PMggM’X +XMggM’X Global stabilization is not always possible with nonlinear
190 P>0 _ _ _ systems, e.qg. if multiple equilibria are present: for tleiason,
20: If |[X—P| <k, with k a prescribed tolerance, theitjs interesting to derive regional conditions for stataliion.
synthesis problem may not be solvadtop. At first the definition for (local) regional stabilization ggven
21: Else, goto Optimization 1 using as a newX the P just 22 sect. 8.2]:
found. Definition 1: The origin ofX= f(x) +g(X)k(x) is region-

ally stable if it is (locally) asymptotically stable in a g
Note that Optimization 1 implies the solution of a bisectionregion G which is a subset of the region of attraction, i.e.
algorithm due to the product d® and p. The solution of )
Optimization 2 gives a new for the next iteration. lim x(t) =0, Vx(0) €G, (21)

t—o0



An example of a given regiorG is e.g.,G C Q. = (24) = (25) This follows by observing that if (24) holds
{xeR":V(x) <c} whereQc is an estimate of the region then there exist & > 0 such that
of attraction.

_, _
The next proposition provides a sufficient condition for Zl([q’+9KH] M'P+PM[®+gKH]| -|—pP)z
the regional stabilization of the origin: 1  — _
Proposition 1: If it exist a Lyapunov functionV (x) and a +?Z'H/K/KHZ— m(ZPz—c) <0 (27)

multiplier m(x) such that the following is satisfied
. z’<CD’M’P+ PM¢+pP)z y’zPMgdM'Pz+
V(x) —m(x)(V(x) —c) < 0

1 - 1 -
m(x) > 0, (22) (yYdM'Pz+ ;/KHZ)’(yg’M/Pz—k ;/KHZ)
with ¢ > 0, then the origin is regionally stable, whefg = —m(ZPz—c) <0 (28)
{xe R":V(x) <c} is an estimate of the region of attraction. z’( I ) )
P'M'P+PM® P)z—y'zPMggPM'z

Proof: v + P v o9 +
The proof is straightforward via Lyapunov arguments as in (Y’dM'Pz+KHZ)' (g M'Pz+ KH2)
[22, Sect. 8.2]End proof. —yzm(z’Pz— c) <0, (29)

Remark 4: In case the control designer requires the egnd (25) follows by defining® = y*P. End proof.
timate of the region of attraction to be of a desired shape . R .
(e.g. described by a given polynomial functiofx)), then Note that condition (22) is bilinear with respect to the

condition (22) can be modified into decision variables, i.e. the Lyapunov functigiix) and the
multiplier m(x). If Algorithm 1 wants to be extended to local
V(x) —m(x)(V(x) —c) <0 Ztabliliz_ar:iohq, zt;\)nl extrg iteTrEtive stlep in Inec_easary in lot(?je
eal with this bilinearity. The resulting algorithm is peese
V() —c—mp(x)(r(x) ~b) >0 in Algorithm 2 (where all inequalities have to be intended as
my(x) >0 relaxed to Sum-of-Squares conditions). The starting foint
mp(x) > 0, (23) the algorithm is an initial Lyapunov function that can dgrti

local stability. This initial Lyapunov function can be aeted
with ¢,b > 0, where the second inequality guarantees thaby running the method in [5] for the linearized version of

{xeR":r(x) <b} C{xeR":V(x) <c} the system. From there, first, for a fixed Lyapunov function,
The following lemma is an extension of Lemma 1 for locathe largest estimate of the region of attraction is sought
regional stability (Optimization 1); then, for a fixed multiplier, the maximum

Lemma 3: The following condition for local regional sta-Stability margin inside the region is sought (Optimizat®n
bilization via output feedback (with some stability margirwhich requires a bisection algorithm); then a new makix
p>0) is sought for the next iteration (Optimization 3).

B B V. NUMERICAL EXAMPLE
Z’<[CD+9KH]/MP+ PM[® + gKH]| The following example has been selected to illustrate the
results of the method

+pP>z—m(z’Pz— c)<0 (24) X = X+ XaXo 4 XU

Xo X1+ 2% + X% + X%Xz +u (30)

is equivalent to ) o )
The maximum order of the monomial is chosen as 3, which

also accounts for the maximum order of the vector fiéld

z’<<D’M’P+ PMdJ) z+7pPz—ZPMgdM’'Pz This means that

+(gM'Pz+KH2)' (¢M'Pz+KH2) 2= e X xe % X4 e xg X (31)

-m(ZPz-c) <0, (25) At first it is assumed that the stakeis completely measur-
_ _ o _ able, so that the static output feedback problem is nothirig b
where the estimate of the region of attraction is given irhbota static state feedback problem. No global solution could be

cases byQ. = {xe R": Z(x)Pzx) < c} found for this system, so that Algorithm 2 was run. Starting
Proof with X =1, the algorithm terminates after 4 iterations with
By following the same reasoning as Lemma 1 p =1.9897 and

(25) = (24) This follows by observing that for (24) the

_ _ _ 2
following holds u = 23168%; — 1029800 —0.0617 + 78.0631 %2

+0.87093 + 4.7724¢ — 170.1000Ex,
(24) < (24) +ZH'K'KHz = (25). (26) —2.4245¢ %5 — 22953006 (32)



Algorithm 2 Local Static Output Feedback Stabilization

1:
2:

Initialize:
Given an initial X and an initial Lyapunov functior

(e.g. a quadratic Lyapunov function coming from the

linearized version of the plant)
. p sufficiently small ancc™ =0
: Optimization 1
: With fixed P, p and X, solve forc, K andm
C = maxc
S.g.
74 ¢’M’P+PM¢+W)Z+22’(g’M’P+KI—T)'S—S’S—

m(ZPz—c) <0
Y = pP — XMggM’P — PMggM’X + X MggM’X
P>0, m>0
If c—Cc > K¢, with k¢ a prescribed tolerancegoto
Optimization 2and update™ with the newc.
Else,goto Optimization 3
Optimization 2
With fixed m andc, solve forP, K and p
p = maxp
s..
Z( oMP+ PM¢+w) 24+2Z (M'P+KH)'s—'s—

m(ZPz—c) <0

W = pP - XMggM’'P — PMgdM’X + XMggM’X

P>0
If p > 0 problem solvedand return the desired controller
gainsK.
Otherwise,goto Optimization 1
Optimization 3
Given p, m and X from Optimization 1
Solve forP

P = argmirtr(P)
s.d.
Z( oMP+ PM(D+W) 2427 (M'P+KH)'s—gs—

m(ZPz—c) <0
W = pP - XMggM’'P — PMgdM’X + XMggM’X
P>0
If |X—P|| <k, with k a prescribed tolerance, the
synthesis problem may not be solvab&top. _
Else, goto Optimization 1 using as a newX the P just
found.

10:
11:

12:
13:
14:
15:
16:

17:

18:
19:
20:

21:
22:
23:
24:
25:
26:

27:

28:
29:
30:

31:

Fig. 1 depicts the evolution of the state, of the state norm
and of the input with the controller (32). The exponential

bound given byp = 1.9897 is indicated by a dashed line.

As a further example, we assume now that omjyis
measurable, which leads to the followikf matrix

H= (33)

[cNeoNe]
o O

0
0
0

[oNeNe)
[eoNeNe)
= O O

1
0
0

[eoNeNe)

0
0
0

25

25

% 05 1 25
Fig. 1: Evolution of the state, of the state norm and of the
input with the controller (32).

with

u

—22.8540¢, — 15.48306G — 40.1450¢  (34)

Fig. 2 depicts the evolution of the state, of the state norm
and of the input with the controller (34).

Fig. 2: Evolution of the state, of the state norm and of the
input with the controller (34).

As a final example, we assume now that orjy- 5x; is
measurable, which leads to the followikt matrix

1 -500 0 0 O 0 0
0O 0 10 25 0 O -10 0
0O 0 00 O 1 -15 75 -125

Starting withX =1, the algorithm terminates after 4 iterations
with

H= (35)

7.2304x; — 5%2) 4 0.2665x; — 5%2)?
+3.9124x; — 5xp)°

u

(36)

Fig. 3 depicts the evolution of the state, of the state norm
and of the input with the controller (36).

VI. CONCLUSIONS

This work proposed an iterative procedure for static output
feedback of polynomial systems based on Sum-of-Squares
optimization. Necessary and sufficient conditions foristat

Starting withX =1, the algorithm terminates after 5 iterationsoutput feedback stabilization of polynomial systems were
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